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Notations

• We denote

∆f (x) = f (x + 1)− f (x),

∆2f (x) = ∆[f (x + 1)− f (x)] = f (x + 2)− 2f (x + 1) + f (x)

∆3f (x) = f (x + 3)− 3f (x + 2) + 3f (x + 1)− f (x)

· · · · · · .

• Also
Ef (x) = f (x + 1)

so that
E = 1 + ∆, ∆ = E − 1.
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Formal calculus

• We develop the formal Taylor series

Ef (x) = f (x + 1)

= f (x) +
f ′(x)

1!
· 1 +

f ′′(x)

2!
· 12 +

f (3)(x)

3!
· 13 + · · ·

• But then

Ef (x) =
(
I +

d

dx
+

1

2!

d2

dx2
+

1

3!

d3

dx3
+ · · ·

)
f (x)

= (I + D +
1

2!
D2 +

1

3!
D3 + · · · )f (x)

= eD f .
• Hence

∆f (x) = (E − 1)f (x) = (eD − 1)f (x).

and
∆nf (x) = (eD − 1)nf (x).
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Formal calculus

• Conversely, we have
eD = 1 + ∆,

so that
D = log(1 + ∆)

and ( d

dx

)n
=
{

log(1 + ∆)
}n

=
{

∆− ∆2

2
+

∆3

3
− ∆4

4
+ · · ·

}n

• We need to introduce Stirling number of the first kind in order
to describe the expansion.
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Stirling numbers of the first kind

• Recall that the Stirling no. of the first kind (−1)n−mS
(m)
n

counts the number of permutations of n symbols which have
exactly m cycles. (Cycles are those related to permutation
groups).

• Generating function:

x(x − 1) · · · (x − n + 1) =
n∑

m=0

S
(m)
n xm

• Recursions:(
m

r

)
S

(m)
n+1 = S

(m−1)
n − nS

(m)
n , n ≥ m ≥ r

(
m

r

)
S

(m)
n =

n−r∑
k=m−r

(
n

k

)
S

(r)
n−kS

(m−r)
k , n ≥ m ≥ r .
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A formal expansion

•
dm

dxm
f (x) = m!

∞∑
n=m

S
(m)
n

n!
∆nf (x)
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Another formal expansion

• The formula
∆nf (x) = (eD − 1)nf (x).

can be formally expanded as

∆nf (x) = (eD − 1)nf (x)

= n!
∞∑
k=n

S
(n)
k

k!
f (k)(x)

=
(
ηnDn +

n

2!
ηn+1Dn+1 + · · ·

)
f (x).

• Here S
(n)
k is the Stirling numbers of the second kind.
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Stirling numbers of the second kind
• Generating function:

xn =
n∑

m=0

S
(m)
n x(x − 1) · · · (x −m + 1).

• S
(m)
n counts the number of different ways to partition a set of

n objects into m non-empty subsets.
• Explicit form:

S
(m)
n =

1

m!

m∑
k=0

(−1)(m−k)

(
m

k

)
kn.

• Recursions:

S
(m)
n = mS

(m)
n + S

(m−1)
n , n ≥ m ≥ 1,(

m

r

)
S

(m)
n =

n−r∑
k=m−r

(
n

k

)
S

(r)
n−kS

(m−r)
k , n ≥ m ≥ r .
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Some Stirling numbers of the Second Kind

Figure: S
(k)
n : Digital Library of Mathematical Functions, National

Institute of Standard and Technology
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Logarithmic differences

• Theorem (C. & Feng (2009))

Let f be meromorphic σ = σ(f ) <∞. Then

f (z + η)

f (z)
= e

η
f ′(z)
f (z)

+O(rβ+ε)
,

holds for r 6∈ E ∪ [0, 1], where β =

{
max{σ − 2, 2λ− 2}, λ < 1

max{σ − 2, λ− 1}, λ ≥ 1
where λ is the maximum of the exponent convergence of zeros and
poles of f .

• No such comparison is possibly if σ(f ) =∞ in general.
Consider e.g. f (z) = ee

z
. Then

f (z + 1)/f (z) = exp[(e − 1)ez ] grows faster than f .
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Main result I

• Theorem (C. & Feng (2016))

Let f be a meromorphic function with order σ = σ(f ) < 1. Then
for any positive integers n, N such that N ≥ n, and for each ε > 0,
there is a set E ⊂ [1, +∞) of finite logarithmic measure so that

∆nf (z)

f (z)
= n!

(
N∑

k=n

S
(n)
k

k!

f (k)(z)

f (z)

)
+ O

(
r (n+N+1)(σ−1)+ε

)
(1)

for |z | = r /∈ E ∪ [0, 1]

• Here the exceptional set E are intervals that we remove
arising from the zeros and poles of f .
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Logarithmic measures

• A subset E of R has finite logarithmic measure if

lm(E ) =

∫
E∩(1,∞)

dr

r

is finite. Otherwise, the set E is said to have an infinite
logarithmic measure.

• E.g. If En = [en, (e + 1)n], then lm(E ) =∞
• E.g. if En = [en, en(1 + 1/ne)], then lm(E ) <∞
• An ingenious combinatorial type estimate due to H. Cartan.
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Main result II

• Theorem (C. & Feng (2016))

Let f be a meromorphic function with order σ = σ(f ) < 1. Then
for each positive integer k, and for each ε > 0, there exists an
exceptional set E (η) in C consisting of a union of disks centred at
the zeros and poles of f (z) such that when z lies outside of the
E (η),

∆f

f
: =

f (z + η)− f (z)

f (z)

= η
f ′(z)

f (z)
+
η2

2!

f ′′(z)

f (z)
+ · · ·+ ηk

k!

f (k)(z)

f (z)
+ O

(
ηk+1r (k+1)(σ−1)+ε

)
.

(2)

Moreover, the set πE (η) ∩ [1, +∞), where πE (η) is obtained from
rotating the exceptional disks of E (η) so that their centres all lie on
the positive real axis, has finite logarithmic measure.
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Taylor expansion

• Applying Taylor expansion

f (z + η)− f (z)

f (z)
= η

f ′(z)

f (z)
+
η2

2!

f ′′(z)

f (z)
+· · ·+ηn

n!

f (n)(z)

f (z)
+
Rn(z + η)

f (z)

where

Rn(z + η)

f (z)
=

1

n!

∫ z+η

z
(z + η − t)n

f (n+1)(t)

f (z)
dt

=
ηn+1

n!

∫ 1

0
(1− T )n

f (n+1)(z + Tη)

f (z)
dT . (3)

Then we rewrite:∣∣∣Rn(z + η)

f (z)

∣∣ =
∣∣∣ηn+1

n!

∫ 1

0
(1−T )n

f (n+1)(z + Tη)

f (z + Tη)

f (z + Tη)

f (z)
dT
∣∣∣
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Taylor expansion
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Rn(z + η)
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Rn(z + η)

f (z)
=

1

n!

∫ z+η

z
(z + η − t)n

f (n+1)(t)

f (z)
dt

=
ηn+1

n!

∫ 1
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n!

∫ 1
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(1−T )n

f (n+1)(z + Tη)

f (z + Tη)

f (z + Tη)

f (z)
dT
∣∣∣
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Some estimates

Lemma (E. Hille, G. Gundersen (1988))

Let f be a meromorphic function of finite order σ(f ) = σ. Then
for any ε > 0, there exists a set E ⊂ (1,∞) that depends on f and
it has finite logarithmic measure, such that for all z satisfying
|z | = r /∈ E ∪ [0, 1], we have∣∣∣∣ f ′(z)

f (z)

∣∣∣∣ ≤ |z |σ−1+ε. (4)

Lemma (C. & Feng (2008))

Let f (z) be a finite order meromorphic function of order σ, then
for each ε > 0, ∣∣∣∣ f (z + 1)

f (z)

∣∣∣∣ ≤ exp(|z |σ−1+ε) (5)

holds for all |z | outside a set of finite logarithmic measure.
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Linear difference equations
• We considered linear difference equations of the form

an(z)∆nf (z) + · · ·+ a1(z)∆f (z) + a0(z)f (z) = 0, (6)

where a0(z), · · · , an(z) are polynomials.

• Theorem (C. & Feng (2016))

Let f be an entire solution of the difference equation (6) above
with order σ(f ) = χ < 1. Then χ is a rational number which can
be determined from a gradient of the corresponding
Newton-Puisseux diagram for equation (6). In particular,

logM(r , f ) = Lrχ
(
1 + o(1)

)
where L > 0, χ > 0 and M(r , f ) = max|z|=r |f (z)|. That is, the
solution has completely regular growth.

• This provides an analogue of a classical result for linear
differential equations by G. Valiron about a century ago
(without order restriction).



Finite-differences When formal becomes “real” Linear difference equations Wiman-Valiron theory Little Picard’s theorem

Linear difference equations
• We considered linear difference equations of the form

an(z)∆nf (z) + · · ·+ a1(z)∆f (z) + a0(z)f (z) = 0, (6)

where a0(z), · · · , an(z) are polynomials.

• Theorem (C. & Feng (2016))

Let f be an entire solution of the difference equation (6) above
with order σ(f ) = χ < 1. Then χ is a rational number which can
be determined from a gradient of the corresponding
Newton-Puisseux diagram for equation (6). In particular,

logM(r , f ) = Lrχ
(
1 + o(1)

)
where L > 0, χ > 0 and M(r , f ) = max|z|=r |f (z)|. That is, the
solution has completely regular growth.

• This provides an analogue of a classical result for linear
differential equations by G. Valiron about a century ago
(without order restriction).



Finite-differences When formal becomes “real” Linear difference equations Wiman-Valiron theory Little Picard’s theorem

Linear difference equations
• We considered linear difference equations of the form

an(z)∆nf (z) + · · ·+ a1(z)∆f (z) + a0(z)f (z) = 0, (6)

where a0(z), · · · , an(z) are polynomials.

• Theorem (C. & Feng (2016))

Let f be an entire solution of the difference equation (6) above
with order σ(f ) = χ < 1. Then χ is a rational number which can
be determined from a gradient of the corresponding
Newton-Puisseux diagram for equation (6). In particular,

logM(r , f ) = Lrχ
(
1 + o(1)

)
where L > 0, χ > 0 and M(r , f ) = max|z|=r |f (z)|. That is, the
solution has completely regular growth.

• This provides an analogue of a classical result for linear
differential equations by G. Valiron about a century ago
(without order restriction).



Finite-differences When formal becomes “real” Linear difference equations Wiman-Valiron theory Little Picard’s theorem

An example

• The equation

z(z − 1)(z − 2)∆3f (z − 3) + z(z − 1)∆2f (z − 2)+

z∆f (z − 1) + (z + 1)f (z) = 0

admits an entire solution of order 1/3. This e.g. is due to
Ishizaki & Yanagihara (2004). Our theory allows to conclude
one entire solutions has growth

logM(r , f ) = Lr1/3
(
(1 + o(1)

)
.
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Wiman-Valiron theory I
.

• Let

f (z) =
∞∑
n=0

anz
n

be an entire function in C, M(r , f ) = max|z|=r |f (z)| denotes
the maximum modulus of f on |z | = r > 0.

• anz
n → 0 as n→∞.

• µ(r , f ) = maxn≥0 |an|rn maximal term→ 0
• central index ν(r , f ) is the greatest exponent m such that

|am|rm = µ(r , f ),

• ν(r , f ) is a real, non-decreasing function of r .
•

lim sup
r→∞

log ν(r , f )

log r
= σ = lim sup

r→∞

log logM(r , f )

log r
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Wiman-Valiron theory II

Theorem (C. & Feng (2016))

Let f be a transcendental entire function of order σ(f ) = σ < 1,
0 < ε < min{1

8 , 1− σ} and z is “close to” where f (z) is maximal.
Then for each positive integer k , there exists a set E ⊂ (1,∞) that
has finite logarithmic measure, such that for all r /∈ E ∪ [0, 1],

∆k f (z)

f (z)
=
(ν(r , f )

z

)k(
1 +Rk(z)

)
(7)

where Rk(z) = O
(
ν(r , f )−κ+ε

)
and κ = min{1

8 , 1− σ}.
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Connection to little Picard’s theorem

• Integrability of discrete Painlevé equations: 2nd-order
non-linear difference equations. Ablowitz, Herbst, Hablurd,
Korhonen (2000, 2007): a finite order meromorphic solution.

• This is an analogue for Painlevé’s test for Painlevé’s equations.

• Crucial estimate are average estimates of f (z + 1)/f (z)
(Halburd-Korhonen (2006), C. & Feng (2008)) that are
analogue for Nevanlinna’s average estimate for f ′(z)/f (z).

• Picard type theorems (Nevanlinna theory) for difference
operators. Chiang, Feng, Halburd, Korhonen (2006, 2016).



Finite-differences When formal becomes “real” Linear difference equations Wiman-Valiron theory Little Picard’s theorem

Difference-type Picard’s theorem

Theorem (Halburd-Korhonen (2006))

If f is a finite-order meromorphic function that possesses three
paired-values with separation η, then f ∈ ker(∆f ), i.e.,
0 ≡ ∆ηf (z) := f (z + η)− f (z). i.e., f is a periodic with period η.

Figure: The left-side are the pre-images (two points differ by η) of the
right-side.

• Original Picard’s theorem can be thought of this way: The
preimages of three points are empty sets. So f ∈ ker( d

dz ).
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Askey-Wilson type Picard’s theorem

Theorem (C. & Feng (2015))

Let f be a meromorphic function with finite logarithmic order, and
that f has three distinct AW−Picard exceptional values. Then
f ∈ ker(Dq), i.e., f is an AW−constant.

Figure: The left-side are the pre-images of the right-side

• Cheng & C. (2017) also establishes an analogue for the Wilson
operator.
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Summary and problems
• We have reviewed a classical finite-difference differential

(classical-quantum) relationship:

∆f n = (eD − 1)nf = n!
N∑

k=n

S
(n)
k

k!
f (k)(z) + o(1)

• Problem 1: Can we REALLY have

∆f n(z) = (eD − 1)nf = n!
∞∑
k=n

S
(n)
k

k!
f (k)(z) ?

• Problem 2: How about:( d

dx

)n
f =

{
log(1 + ∆)

}n
f = n!

∞∑
k=n

S
(n)
k

k!
∆k f (x) ?

• Problem 3: Others, e.g.

exp(2xt − ytDx) f (x) = exp(2xt − yt2) · f (x − yt)?

Essentially due to Weisner (related to Hermite expansion).
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Figure: Clear Water Bay, Hong Kong Thank you for your attention !!
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