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We prove that the periodic equation [ — K " + & f = 0 admits a solution with finite
exponent of convergence if and only if K = (n 4 1)*/9 where 1 is a non-negative integer
satisfying a certain (n + 1) x (n + 1)-determinant condition. Moreover, we obtain explicit
representations for such solutions. Our result is somewhat similar to a result due to Bank,
Laine and Langley [5] for a second order equation.
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1. INTRODUCTION

We are concerned with the number of zeros of a third order linear
differential equation with entire periodic coefficients. Our domain will
be the entire complex plane and we shall employ Nevanlinna value
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distribution theory. For details of this theory we refer the reader to the
book of Hayman [11].

Let f(z) be a solution of an arbitrary linear differential equation with
its zeros ai, as, as, . .. ordered by increasing moduli. We define the expo-
nent of convergence ,(f) of f to be inf{l ST e 1/|ai* < oo} The
theory of complex oscillation of differential equations is to investigate
how the quantity A(f) is affected by the coefficients of the equation
and what value it takes including infinity. See Bank and Laine [2], and
Laine [12].

Results concerning linear differential equations with entire periodic
coefficients are particularly interesting. In fact, Bank and Laine [3] were
able to find explicit representations for solutions f of such equations
in the second order case, provided A(f) < oo. These representations
depend upon whether f(z) and f(z+ w) are linearly independent, where
@ is the period of the coefficients. Their results have been generalized
to some higher order equations by Bank and Langley [8], see Lemma D
below.

In another paper [4], Theorem 2, Bank, Laine and Langley proved a
specific result concerning the complex oscillation of a periodic second
order differential equation.

THEOREM A. Let K € C and suppose that
"+ @E—-K)yf =0 (1.1)

has a non-trivial solution f(z) such that M(f) < oc. Then

K= (1.2)

Ea
where g is an odd positive integer. Conversely, if K is of the form (1.2),
then the equation (1.1) admits two linearly independent solutions f| and
freachwith i(fH)<1,i=1,2.

Of course, Theorem A is a special case of the following Theorem B,
where A(f) is more restricted, see Bank, Laine and Langley [5],
Theorem 3.3.

THEOREM B. Let P be a polynomial of degree n > 1, and let Q be an
entire function of order o(Q) < n. Suppose that the equation

"+ €+ f =0 (1.3)
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admits a non-trivial solution f(z) with .(f) < n. Then f has no zeros,
Q is a polynomial and

1 1
L P:z _Pl."
) 16( ) +3

Clearly, the equation (1.3) reduces to (1.1), provided P(z) = z. We
remark that (1.1) plays an important role in a number of recent papers,
see Bank and Langley [6], [7], Chiang [9] and Wang [13], [14].

In [10], Theorem 3.2, Theorem B was extended to some third order
equations. As a special case, we recall

THEOREM C. Let P be a polynomial of degree n > 1, and Qy, Q be
entire functions each of order < n. Suppose that

" +oif +E+Qf=0 (1.4)

admits a solution f such that .(f) < n. Then f has no zeros,Q) and Q
are polynomials such that

1 2
= Pr2 _Pu
0] 9( ) +3

and i i
=P _ _pp",
Q=3 9

In view of the relation between Theorem A and Theorem B, it is
natural to ask, whether a similar result related to Theorem C holds in
the case of P(z) = z, i.e., provided the coefficients of (1.4) are periodic.
We prove such a result below, including explicit representations of solu-
tions. Observe that A. Baesch determines, in a forthcoming paper [1],
all solutions f of

k-2
FO+Y A D+ A f =0, k=3, (1.5)
j=1
where Aj, ..., A;_, are constants and Ay(z) is a nonconstant periodic

entire function rational in €%, such that logt N(r, 1/f) = o(r). She
proves that this situation appears if and only if at least one of certain
k* linear differential equations with polynomial coefficients admits a
non-trivial polynomial solution. Qur result below deals with a special
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case of (1.5) only. However, our characterization is of a more simple,
constructive type. The open determinant problem described in Section 4
is perhaps of some independent interest.

2. THE MAIN RESULT

THEOREM 1. Let K € C, and suppose that

f"—=Kf' +e&f=0 (2.1)
admits a non-trivial solution f such that

log" N(r, 1/f) = o(r)
as r — 00, Then there exist two integers r and s, r + 5 > 0, such that

_ (rHs+1)
=T

K 2.2)

Moreover, if n = r + 5 > 0, then n satisfies the following tridiagonal
(n + 1) x (n + 1)-determinant condition:

detA =0, 2.3)

where the non-zero diagonals of A are determined by

ajj—1:=0G-DjG+ D —2jn—jn% j=1,....n,
ajji==3j(j+1)+2n+n? i=0,....n, (2.4)
ajj+1 =30+ 1), $ &0 =L
Furthermore, [ admits one of the following representations:
—s—1
fi@) =e"7 ‘Y explcie??), (2.5)
where c? +27=0,i=1,2,3, and
i .
v = digl, d_d,#0. (2.6)

j=—r

Conversely, suppose K takes the form (2.2) and, if n = r+ 5 > 0,
then n satisfies (2.3) and (2.4). Then there exists a rational function of
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the form (2.6) such that the three functions defined by (2.5) are linearly
independent solutions of (2.1) each with A(f;) < 1fori=1,2,3.

Remark The hypothesis log™ N(r, 1/ f) = o(r) as r — oo that we have
made above is in fact weaker than A(f) < co, see Lemma D below.

The proof of Theorem A depends heavily on the explicit representa-
tion of solutions of periodic differential equations obtained by Bank and
Laine [3], and a special non-linear second order differential equation in
E = f1f2, where f and f, are two linearly independent solutions,
see [3], p. 6. For higher order equations, no such useful differential
equation in F has been found. Qur argument depends on the following
representation lemma obtained by Bank and Langley for higher order
equations, see [8], Theorem 2:

LEMMA D. Suppose that k > 3, that Ay is a non-constant periodic entire
function, rational in €, and that A,, ..., Ay_» are constants. Suppose
finally that f is a non-trivial solution of

k—2
YO +> 4y" =0
=0

such that
log" N(r, 1/f) = o(r)

as r — oo. Then there exists an integer q with 1 < g < k, a constant d,
and rational functions (&) and (&), analytic on 0 < |¢| < oo such that

f (@) = w9 exp (dz + S(€99)) . 2.7)

3. PROOF OF THEOREM 1

Under the hypothesis of Theorem 1 and by Lemma D (2.7), we may
write [ as

f(2) = %G, (3.1)

where G(&) = (&) exp(S(&)), 1 < g < 3, d is a constant and both
and S are rational and analytic on 0 < || < 0.
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By substituting f(z) of (3.1) into (2.1) and denoting & = %9, we
have

£GP @) + 3dg + 3G () + Bd g + 3dg + 1 — *K )G (&)

+ @ (¢ +d* — Kd)G(&) = 0. (3.2)
We denote now )
O =Y it (33)
j=—r
and J
S@ =" di¢l. (3.4)
j=—n

Since f must be of infinite order, we have (m, n) # (0, 0). We may also
assume that s > —r and m > —n. Then we have, for m > 1,

G© G,

e m—1 o) m72! s 2m—2 9] 2m—3
G©) "+ 0E") GO oL + 0@™)

and
@y
Gy

as § — oo and « # 0 is a constant. It follows from (3.2) that 3(m— 1)+
3 =g, and since 1 < g < 3, we deduce readily that g =3 and m = 1
in (3.4). Therefore, we must have m < 1. Moreover, by considering
G (t) = G(1/1), we have, again from (3.2), the following equation:

a3é—3m73 + O(C3m_4)

PG +3(1 — d)PGl (1) + Bd>q — 3dq + | — K¢ )G, (1)
— ¢+ d> — Kd)G,(t) = 0. (3.5)

Likewise, we deduce, for n > 1,
Gi(/G1() ~ "™, G{(1)/G (1) ~ B2

and
G (0)/Gi(0) ~ B

for some constant 8 # () as ¢+ — oco. It follows from (3.5) that (3n —
3) 43 = 0 and hence n = 0. Therefore we must have n < 0. However,
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recalling that (m, n) # (0,0) and m > —n, we have m = 1, n = 0 and
so G may be written as

G(&) = y(§) exp(ct) (3.6)

for some non-zero constant c¢. From this expression, we have

GY()/GE&) ~ ¢! as & — oo, j =1, 2, 3. Substituting these estimates

into (3.2) once more, we deduce that ¢* + ¢* =0, ie., ¢ + 27 = 0.
Substituting now (3.6) into (3.2), and making use of ¢ = 3, we get

EY" @ + (3¢5 + 9d +3)8) ¥ (@) + (3¢°2 + 2¢(9d + 3)¢
+(27d* +9d + 1 — 9K)¢) ¥'(2) + (¢*(9d + 3)¢*
+c(27d* +9d + 1 — 9K )¢ + 27(d” — Kd)) y(2) = 0. (3.7)

Substituting (3.3) into (3.7), making use of 427 =0, and collecting
the coefficient of the highest term £**2 in (3.7), we get

(3d + 1 + 5)3c%¢c, = 0,
hence d = (—s—1)/3. Likewise, the coefficient of the lowest term ¢~ is
(=r)(=r = 1)(=r = 2) +3(3d + D)(=r)(=r — 1)
+(27d* +9d + 1 — 9K)(—r) + 27(d*> — Kd)) c_, = 0,
and so we must have
r* —9dr’ +27d%r — 27d° = 9(r — 3d)K.
Therefore,

P —9dr? +27d% — 27d° 1 1
K= =—(r—3d)? == s+ 17 (3.8
90 — 3d) 9(r 3d) 9(r+s+) (3.8)

Gathering the results from above, we deduce that f takes the form
—=s—1
f2)=e 3 “y(e?)explce??), (3.9)

where ¢ + 27 = 0 and

v =) dig/, dd#0.

j==r
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It remains to verify the determinant condition (2.3). Setting n = r + s
and assuming that n > 0, we rewrite f as

f(2) = W(e™)exp(ce”? — 2/3), (3.10)
where
W)=Y ejtl, ej=d; ;and ege, = did—, # 0. (3.11)
j=0
Substituting (3.10) into (2.1), and making use of (3.8), we obtain
22U @) + 3282 — Q)W) + (6 — 2n — n?)g — 6c +3c%/5) V()
— (4 2m)(A = c/O)¥() = 0. (3.12)

Then we substitute (3.11) into (3.12), and this gives

n—1

Z B¢/ =0, (3.13)

j=—1
where _
B_| = (n* 4 2n)cey + 3cte,
Bi=(j—n)j+n+2)j+ e
— {3+ D +2)~2n —n*}cejp + 320 +2)eji2
forO0<j<n-2 and
B,_| = —(2n? 4 n)(e,—1 + cen).

Therefore, we must have B; = 0 for all j = —1, ..., n — 1. Let
now B denote the tridiagonal determinant whose non-zero diagonals are
determined by

bj',j_l ::aj“,'_l, j=1,...,ﬂ,

bj‘j::caj‘j, j=0,...,ﬂ,
.. -

bj‘j_;,_l .—Caj!j,;,], ]—0,...,”—1,

see (2.4). Then the above result can be rewritten as a matrix equation
en 0
Bl & l=1:])- (3.14)
én 0
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As ege, # 0, the determinant det(B) must be zero for (3.14) to admit a
non-trivial solution. Since det(B) = ¢"*! det(A), this proves the neces-
sary part of Theorem 1.

To prove the converse, it is immediately seen that f,;(z) = exp(c;e”/> —
z/3), where cf +27 =0,i =1, 2, 3, are linearly independent zero-
free solutions of (2.1) for K = 1/9. Hence, we may assume that
K = (n+1)?/9 where n = r+ s > 0 and r, s are two given
integers. We define W(£) by (3.11) where the coefficients ¢;, 0 < j < n
are as given after (3.13), satisfying (3.14). Therefore, by reversing the
argument above, the function defined by (3.11) solves the equation

(3.12), provided ¢ 4+ 27 = 0. In particular, the function (3.10) then
1

solves (2.1) and it can be written as f(z) = e 3 “w(e?)exp(ce’?),
where ¥(0) =35° djgf, which is precisely (2.5).

j==r

4. CONCLUDING REMARKS

In Theorem A, a solution of (1.1) with A(f) < oo exists for each possible
n. The situation in Theorem 1 is different. In fact, the tridiagonal deter-
minant condition (2.3) seems to be equivalent to n # 3k 4+ 2, k=0, 1,
2, .... This has been verified numerically up to n = 100. Unfortunately,
we have been unable to find a general proof. As the referee has pointed
out, the condition (2.3) in fact implies that n #£ 3k +2, k=0, 1,2, ...,
by applying a simple congruence argument on the formulae below. The
converse conclusion seems to be a non-trivial problem. By elementary
linear algebra, the tridiagonal matrix A in (2.3) can be expressed as the
product of three matrices (5;;), («;;) and (y;,), where (c;;) is a diagonal
matrix, while (f;;) is a lower triangular matrix such that 8; = 1 for
all i, and (y;;) an upper triangular matrix such that y;; = 1 for all i.
Therefore, it suffices to consider the vanishing of det(c;;). Now, it is
easy to see that ap o = ap and that the recursion formula
Ol j+1 = Qjt1, j+1 — MJ—“ J=0pyn—1
L,
holds. By (2.4), this results in a continued fractional representation

B;;

JiJ .
C\f_,;+1‘_,:+]:Aj,f+——, _]IO,....F.‘,—],

ij,j
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where
Ajj==3G+ DG +2)+2n+n?,
Bj;=-30+1D((+DG+2)=2(j+ n — (j+ Hn?),

for the diagonal elements of (@;;). Hence, the determinant condition (2.3)
reduces to the question whether at least one of the diagonal elements
o, j=0, ..., n, vanishes.
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