

According to Newton's law of gravity, the acceleration of the Earth centre due to the gravitational force of the Sun is $a_{\mathrm{CM}}=\frac{G M_{s}}{R_{S}^{2}}$, where M_{S} and R_{S} are the mass of the Sun and the distance between the Sun and the planet respectively, G is simply a constant. Acceleration can also refer to as force/mass. However, the acceleration exerted by the Sun on water masses located on the Earth surface ($r=6400 \mathrm{~km}$) should be $a_{\text {surface }}=\frac{G M_{S}}{\left(R_{s}-r\right)^{2}}$

The tidal acceleration is the acceleration difference between the surface and the centre, or part of the $a_{\text {surface }}$ is used for maintaining Sun-earth rotation:

$$
a_{\text {tidal, sun }}=a_{\text {surface }}-a_{\mathrm{CM}}=\frac{G M_{S}}{R_{s}^{2}}\left\{\left(1-\frac{r}{R_{s}}\right)^{-2}-1\right\} \approx \frac{G M_{s}}{R_{s}^{2}}\left\{\left(1+2 \frac{r}{R_{s}}\right)-1\right\}=\operatorname{Gr} \frac{M_{S}}{R_{s}^{3}}
$$

Here, the binomial approximation was used to substract two very close numbers in the curly bracket. Basically, $a_{\text {surface }}$ is the sum of a_{CM}, which make the Earth moves around the Sun and $a_{\text {tidal, sun }}$, which is due to the geographical difference of the gravity. Notice the cubic exponent of R_{S}. Similarly, if the sun is replaced by the moon, we can have a similar equation $a_{\text {tidal, moon }}=G r \frac{M_{m}}{R_{m}^{3}}$ with M_{m} the mass of the moon and R_{m} the distance between the Earth and the moon. The moonearth common mass centre (see note) is <<6400 km from surface, so the difference can be ignored.

If we compare the magnitudes between two tidal accelerations, and substitute the numbers

$$
\frac{a_{\text {tidal, moon }}}{a_{\text {tidal, sun }}}=\frac{M_{m}}{M_{s}}\left(\frac{R_{S}}{R_{m}}\right)^{3}=\frac{1}{27 \times 10^{6}} \times(400)^{3} \approx 2.37
$$

The tidal acceleration (force) by the moon is roughly twice larger than the one by the Sun.
Reference:

https://en.wikipedia.org/wiki/Tidal force

