Supplement: Quadratic Forms and the Principal Axes Theorem

A quadratic form is a *homogeneous* polynomial of degree two with n variables (homogeneous: same degree for each monomial). In formula, it is just an algebraic expression of the form:

$$Q(x_1, x_2, \dots, x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j.$$

The study of quadratic forms has two origins. The first one is in number theory, like the study of Pythagorean triple (x, y, z) of integers such that $x^2 + y^2 = z^2$, or the "sum of four squares" problem: express every positive integer into a sum of four integer squares $x^2 + y^2 + z^2 + w^2$ (prototype of quaternions). The second one is in calculus. In the Taylor's expansion (with remainder) of a multi-variable, twice continuously differentiable function f about a point $\mathbf{a} = (a_1, \ldots, a_n)$:

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{a})(x_i - a_i) + \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{a} + \theta(\mathbf{x} - \mathbf{a}))(x_i - a_i)(x_j - a_j), \quad 0 < \theta < 1.$$

The second-order term appears as a quadratic form. So at those critical points where the gradient vector vanishes: $\left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \ldots, \frac{\partial f}{\partial x_n}(\mathbf{a})\right) = (0, \ldots, 0)$, the local behavior of f near the point \mathbf{a} will be determined by the second-order term. If the quadratic form is always "positive", f should have a local minimum there.

Matrix Representation of a Quadratic Form:

We note that by introducing an $n \times n$ matrix $A = (a_{ij})$, we can rewrite a quadratic form into a matrix-vector product:

$$Q(x_1,\ldots,x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j = \mathbf{x}^T A \mathbf{x}.$$

(identify an 1×1 matrix as a number.) Moreover, we can make A to be a symmetric matrix A' by choosing $a'_{ij} = \frac{1}{2}(a_{ij} + a_{ji})$ [thus we have $a_{ij}x_ix_j + a_{ji}x_jx_i = a'_{ij}x_ix_j + a'_{ji}x_jx_i$]. So from now on we can always assume that A is a symmetric matrix in the matrix representation of a quadratic form.

"Extremal Values" of a Quadratic Form:

The extremal points (local maxima, local minima, saddle points) are important pieces of information when studying a multivariable function. As a quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ will satisfy:

$$Q(c\mathbf{x}) = (c\mathbf{x})^T A(c\mathbf{x}) = c^2 \mathbf{x}^T A \mathbf{x} = c^2 Q(\mathbf{x}) \text{ for any } c \in \mathbb{R},$$

it will not have extremal points in the usual sense. But we can study the extremal points of $Q(\mathbf{x})$ when \mathbf{x} is restricted to the unit sphere $||\mathbf{x}|| = 1$ instead. And it turns out that the eigenvectors of A will give all these extremal "directions".

Theorem 6 (P.441): Let $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be the quadratic form given by an $n \times n$ symmetric matrix A. Then an extremal point of the restriction of $Q(\mathbf{x})$ on the unit sphere $||\mathbf{x}|| = 1$ in \mathbb{R}^n is an eigenvector of A.

Proof: As we are finding the extremal points of a function in *n*-variables subject to a constraint $||\mathbf{x}||^2 = 1$, the method of Lagrange multipliers applies here. So we solve:

(*)
$$\begin{cases} \frac{\partial}{\partial x_k} \left[Q(\mathbf{x}) - \lambda(||\mathbf{x}||^2 - 1) \right] = 0, \quad 1 \le k \le n; \\ ||\mathbf{x}||^2 - 1 = 0. \end{cases}$$

Note that the first set of equations can be re-written as:

$$(**) \qquad \frac{\partial}{\partial x_k} \Big\{ \sum_{i,j=1}^n a_{ij} x_i x_j - \lambda (\sum_{i=1}^n x_i^2 - 1) \Big\} = 2 \sum_{i=1}^n a_{ki} x_i - \lambda (2x_k), \quad 1 \le k \le n.$$

To verify the above claim, let us first fix an index *i* and consider the differentiation of the partial sum $\sum_{j=1}^{n} a_{ij} x_i x_j$ with respect to x_k .

(i) When i = k, we have:

$$\frac{\partial}{\partial x_k} \sum_{j=1}^n a_{kj} x_k x_j = \frac{\partial}{\partial x_k} \left(a_{kk} x_k^2 + \sum_{j \neq k} a_{kj} x_k x_j \right) = 2a_{kk} x_k + \sum_{j \neq k} a_{kj} x_j = a_{kk} x_k + \sum_{j=1}^n a_{kj} x_j.$$

(ii) When $i \neq k$ (there are n-1 such i's), we have:

$$\frac{\partial}{\partial x_k} \sum_{j=1}^n a_{ij} x_i x_j = \frac{\partial}{\partial x_k} \left(a_{ik} x_i x_k + \sum_{j \neq k} a_{ij} x_i x_j \right) = a_{ik} x_i + 0 = a_{ki} x_i,$$

since $A^T = A$, i.e. $a_{ik} = a_{ki}$.

So, when summing up the terms in (i) and (ii), we get:

$$\frac{\partial}{\partial x_k} \Big\{ \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \Big\} = \underbrace{a_{kk} x_k + \sum_{j=1}^n a_{kj} x_j}_{(\mathbf{i})} + \underbrace{\sum_{i\neq k} a_{ki} x_i}_{(\mathbf{i}\mathbf{i})} = \sum_{j=1}^n a_{kj} x_j + \sum_{i=1}^n a_{ki} x_i = 2\sum_{i=1}^n a_{ki} x_i,$$

and this verifies (**). Note that $\sum_{i=1}^{n} a_{ki} x_i$ is exactly the k-th component of the matrixvector product $A\mathbf{x}$. Hence the first vector equation of (*) exactly says that $A\mathbf{x} = \lambda \mathbf{x}$, and the second vector equation of (*) says $\mathbf{x} \neq \mathbf{0}$.

Hence an extremal point of $Q(\mathbf{x})$ restricted to $||\mathbf{x}|| = 1$ should be an eigenvector of A.

Corollary: An extremal value of the restriction of $Q(\mathbf{x})$ on the unit sphere $||\mathbf{x}|| = 1$ is an eigenvalue of A.

Proof: By Theorem 6, an extremal value of $Q(\mathbf{x})$ on $||\mathbf{x}|| = 1$ should be attained at an eigenvector \mathbf{v} (with $||\mathbf{v}|| = 1$) of A. Let λ be the corresponding eigenvalue. Then:

$$Q(\mathbf{v}) = \mathbf{v}^T A \mathbf{v} = \mathbf{v}^T (\lambda \mathbf{v}) = \lambda \mathbf{v}^T \mathbf{v} = \lambda ||\mathbf{v}||^2 = \lambda.$$

So the corresponding extremal value is simply the eigenvalue λ .

Positive-Definite Quadratic Forms

Definition (P.437): A quadratic form Q is called:

- a. positive definite if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- b. negative definite if $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- c. *indefinite* if $Q(\mathbf{x})$ assumes both positive and negative values.

An $n \times n$ symmetric matrix A is called positive-definite (negative-definite or indefinite) if the associated quadratic form $\mathbf{x}^T A \mathbf{x}$ is a positive-definite (negative-definite or indefinite) quadratic form.

Remark: Sometimes we will say that a quadratic form Q is *positive semi-definite* if $Q(\mathbf{x}) \ge 0$ for every \mathbf{x} . Similarly, Q is said to be *negative semi-definite* if $Q(\mathbf{x}) \le 0$ for every \mathbf{x} .

Intuitively speaking, when all the extremal values are positive (thus the minimal one is also positive), a multivariable function should remain positive over its domain. The following theorem verifies this claim.

Theorem 5 (P.437): Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^T A \mathbf{x}$ is:

- a. positive definite if and only if the eigenvalues of A are all positive,
- b. negative definite if and only if the eigenvalues of A are all negative,
- c. indefinite if and only if A has both positive and negative eigenvalues.

Proof: As A is a symmetric matrix, we have an orthogonal diagonalization $A = PDP^{T}$, i.e. $D = P^{T}AP$. Let $\mathbf{y} = P^{T}\mathbf{x}$, thus $\mathbf{x} = P\mathbf{y}$. Then the quadratic form $Q(\mathbf{x}) = \mathbf{x}^{T}A\mathbf{x}$ can be expressed as:

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = (P \mathbf{y})^T A (P \mathbf{y}) = \mathbf{y}^T (P^T A P) \mathbf{y} = \mathbf{y}^T D \mathbf{y}$$
$$= \lambda_1 y_1^2 + \ldots + \lambda_n y_n^2.$$

Now, since P is invertible, $\mathbf{x} \neq \mathbf{0}$ if and only if $\mathbf{y} \neq \mathbf{0}$, so the results of the theorem can be concluded easily by the simple expression of $Q(\mathbf{x})$ in terms of the coordinates of \mathbf{y} .

The same proof will also shows that:

Corollary: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^T A \mathbf{x}$ is:

- a. positive semi-definite if and only if the eigenvalues of A are all non-negative,
- b. negative semi-definite if and only if the eigenvalues of A are all non-positive.

The above change of variable $\mathbf{x} = P\mathbf{y}$ actually proves the following result:

Theorem 4 (Principal Axes Theorem, P.435): Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross-product term. **Example**: Let $f(x, y) = x^3 + 3xy^2 - y^3 - 75x$. By direct computations, we have:

$$\frac{\partial f}{\partial x} = 3x^2 + 3y^2 - 75, \quad \frac{\partial f}{\partial y} = 6xy - 3y^2,$$
$$\frac{\partial^2 f}{\partial x^2} = 6x, \quad \frac{\partial^2 f}{\partial x \partial y} = 6y, \quad \frac{\partial^2 f}{\partial y^2} = 6x - 6y.$$

So the critical points of f are $(-\sqrt{5}, -2\sqrt{5}), (\sqrt{5}, 2\sqrt{5}), (-5, 0)$ and (5, 0). At these critical points, the corresponding matrices $(\frac{\partial^2 f}{\partial x_j \partial x_i})$ are:

$$\begin{bmatrix} -6\sqrt{5} & -12\sqrt{5} \\ -12\sqrt{5} & 6\sqrt{5} \end{bmatrix}, \begin{bmatrix} 6\sqrt{5} & 12\sqrt{5} \\ 12\sqrt{5} & -6\sqrt{5} \end{bmatrix}, \begin{bmatrix} -30 & 0 \\ 0 & -30 \end{bmatrix}, \begin{bmatrix} 30 & 0 \\ 0 & 30 \end{bmatrix},$$

which have eigenvalues (-30, 30), (-30, 30), (-30, -30) and (30, 30) respectively.

The corresponding quadratic forms will be indefinite, indefinite, negative-definite, and positive-definite respectively. Using continuity argument, we can show that the behavior of quadratic forms will be the same in nearby points. So f has saddle points at $(-\sqrt{5}, -2\sqrt{5})$ and $(\sqrt{5}, 2\sqrt{5})$, a local maximum point at (-5, 0), and a local minimum point at (5, 0).