Supplement: Quadratic Forms and the Principal Axes Theorem

A quadratic form is a homogeneous polynomial of degree two with n variables (homoge-
neous: same degree for each monomial). In formula, it is just an algebraic expression of the
form:

n
Q(z1, T2, ..., Ty) = Z ;T
ij=1
The study of quadratic forms has two origins. The first one is in number theory, like the
study of Pythagorean triple (z,v,z) of integers such that z? + y?> = 22, or the “sum of
four squares” problem: express every positive integer into a sum of four integer squares
22 4+ y* + 2% + w? (prototype of quaternions). The second one is in calculus. In the Taylor’s
expansion (with remainder) of a multi-variable, twice continuously differentiable function f
about a point a = (aq,...,a,):

flx +Z &rl —a)+ o JZ_ 855](93132 (a+0(x—a))(z;—a;)(z;—a;), 0<60<1.
The second-order term appears as a quadratic form. So at those critical points where the
gradient vector vanishes: (aa—jl(a), Ce %(a)) = (0,...,0), the local behavior of f near

the point a will be determined by the second-order term. If the quadratic form is always
“positive” | f should have a local minimum there.

Matrix Representation of a Quadratic Form:

We note that by introducing an n x n matrix A = (a;;), we can rewrite a quadratic form
into a matrix-vector product:

n
Qzy,...,x,) = Z QT = x! Ax.

4,j=1

(identify an 1 x 1 matrix as a number.) Moreover, we can make A to be a symmetric matrix
! 1 l

A" by choosing a; 5(ai; +aj;) [thus we have a;;z:2; + aj0;0; = a; LT+ ajixjxi]. So from

NOw on we can always assume that A is a symmetric matriz in the matrix representation of

a quadratic form.

“Extremal Values” of a Quadratic Form:

The extremal points (local maxima, local minima, saddle points) are important pieces of
information when studying a multivariable function. As a quadratic form Q(x) = x* Ax will
satisfy:

Q(cx) = (x)TA(ex) = *xTAx = Q(x) for any ¢ € R,

it will not have extremal points in the usual sense. But we can study the extremal points
of Q(x) when x is restricted to the unit sphere ||x|| = 1 instead. And it turns out that the
eigenvectors of A will give all these extremal “directions”.

Theorem 6 (P.441): Let Q(x) = x’ Ax be the quadratic form given by an n X n symmetric
matrix A. Then an extremal point of the restriction of (x) on the unit sphere ||x|| =1 in
R" is an eigenvector of A.



Proof: As we are finding the extremal points of a function in n-variables subject to a
constraint ||x||> = 1, the method of Lagrange multipliers applies here. So we solve:

o 2 g6~ AP~ 1] =0, 1<k <
Ix|[?—1=0.

Note that the first set of equations can be re-written as:

() 8xk{ Z QijTiTj — Z%Q - 1)} = 2;&kiﬂfi —A(2x), 1<k<n.

7.7_ =1

To verify the above claim, let us first fix an index ¢ and consider the differentiation of the
partial sum Z?Zl a;jT;x; withrespect to xy.

(i) When i = k, we have:

0 — 0
- E A TpTj = akkxk + E QT | = 26kafﬂk + g A5 = Akl + g QAp;Tj.
8$k = 0
J:

J#k Jj#k Jj=1

(ii) When i # k (there are n — 1 such i’s), we have:

E A;jT;Tj = <alkx T + E ;5T x3> = a;xx; + 0 = ag;x;,
T

J#k

since AT = A, ie. ajp = a.

So, when summing up the terms in (i) and (ii), we get:

n n n
O { Z Z R 1']} = QgkTk + Z QT+ Z i Ti = Z agjTi + Z apiTi = 2 Z aRiTi,

= Tk j=1 i=1 i—1
It} (ii)

and this verifies (k). Note that Y . | ayx; is exactly the k-th component of the matrix-
vector product Ax. Hence the first vector equation of (%) exactly says that Ax = Ax, and
the second vector equation of (x) says x # 0.

Hence an extremal point of Q(x) restricted to ||x|| = 1 should be an eigenvector of A.
0

Corollary: An extremal value of the restriction of (x) on the unit sphere ||x|| = 1 is an
eigenvalue of A.

Proof: By Theorem 6, an extremal value of Q(x) on ||x|| = 1 should be attained at an
eigenvector v (with ||v|| = 1) of A. Let A be the corresponding eigenvalue. Then:

Q(v) =viAv =vI(Av) = AWwiv = \|v|]* =

So the corresponding extremal value is simply the eigenvalue \. 0



Positive-Definite Quadratic Forms

Definition (P.437): A quadratic form @ is called:
a. positive definite if Q(x) > 0 for all x # 0,
b. negative definite if Q(x) < 0 for all x # 0,
c. indefinite if Q(x) assumes both positive and negative values.

An n x n symmetric matrix A is called positive-definite (negative-definite or indefinite) if
the associated quadratic form x” Ax is a positive-definite (negative-definite or indefinite)
quadratic form.

Remark: Sometimes we will say that a quadratic form Q is positive semi-definite if Q(x) > 0
for every x. Similarly, @ is said to be negative semi-definite if Q(x) < 0 for every x.

Intuitively speaking, when all the extremal values are positive (thus the minimal one is
also positive), a multivariable function should remain positive over its domain. The following
theorem verifies this claim.

Theorem 5 (P.437): Let A be an n x n symmetric matrix. Then a quadratic form x” Ax is:
a. positive definite if and only if the eigenvalues of A are all positive,
b. negative definite if and only if the eigenvalues of A are all negative,
c. indefinite if and only if A has both positive and negative eigenvalues.

Proof: As A is a symmetric matrix, we have an orthogonal diagonalization A = PDPT | i.e.
D = PTAP. Let y = PTx, thus x = Py. Then the quadratic form Q(x) = x? Ax can be
expressed as:

Q(x) = x"Ax = (Py)"A(Py) =y" (P"AP)y = y" Dy

Now, since P is invertible, x # 0 if and only if y # 0, so the results of the theorem can be
concluded easily by the simple expression of Q(x) in terms of the coordinates of y. 0

The same proof will also shows that:

Corollary: Let A be an n x n symmetric matrix. Then a quadratic form x? Ax is:
a. positive semi-definite if and only if the eigenvalues of A are all non-negative,

b. negative semi-definite if and only if the eigenvalues of A are all non-positive.

The above change of variable x = Py actually proves the following result:

Theorem 4 (Principal Axes Theorem, P.435): Let A be an n x n symmetric matrix. Then
there is an orthogonal change of variable, x = Py, that transforms the quadratic form x’ Ax
into a quadratic form y? Dy with no cross-product term.



Example: Let f(x,y) = 23 + 3zy* — y* — 75z. By direct computations, we have:

ﬁ = 32% + 3y* — 75, ﬁ = 6zy — 3y°,
ox oy

2 2 2

oJ 6 oF ﬂ:6x—6y.

— = =6
ozz 0 00y Y dy?
So the critical points of f are (—v/5, —2v/5), (v/5,2v/5), (—=5,0) and (5,0). At these critical
i ) are:
Ox;0x; ’

—6v/5 —12V/5 6v5 12v/5 -30 0 30 0
| R v B e R

points, the corresponding matrices (

—-12v/5 65 125 —6+/5 0 —30 0 30

which have eigenvalues (—30, 30), (—30, 30), (—30,—30) and (30, 30) respectively.

The corresponding quadratic forms will be indefinite, indefinite, negative-definite, and
positive-definite respectively. Using continuity argument, we can show that the behavior of
quadratic forms will be the same in nearby points. So f has saddle points at (—+/5, —2v/5)
and (v/5,2v/5), a local maximum point at (—5,0), and a local minimum point at (5,0).



