Supplement: Quadratic Forms and the Principal Axes Theorem

A quadratic form is a homogeneous polynomial of degree two with n variables (homogeneous: same degree for each monomial). In formula, it is just an algebraic expression of the form:

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

The study of quadratic forms has two origins. The first one is in number theory, like the study of Pythagorean triple (x, y, z) of integers such that $x^{2}+y^{2}=z^{2}$, or the "sum of four squares" problem: express every positive integer into a sum of four integer squares $x^{2}+y^{2}+z^{2}+w^{2}$ (prototype of quaternions). The second one is in calculus. In the Taylor's expansion (with remainder) of a multi-variable, twice continuously differentiable function f about a point $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$:
$f(\mathbf{x})=f(\mathbf{a})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\mathbf{a})\left(x_{i}-a_{i}\right)+\frac{1}{2!} \sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\mathbf{a}+\theta(\mathbf{x}-\mathbf{a}))\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right), \quad 0<\theta<1$.
The second-order term appears as a quadratic form. So at those critical points where the gradient vector vanishes: $\left(\frac{\partial f}{\partial x_{1}}(\mathbf{a}), \ldots, \frac{\partial f}{\partial x_{n}}(\mathbf{a})\right)=(0, \ldots, 0)$, the local behavior of f near the point a will be determined by the second-order term. If the quadratic form is always "positive", f should have a local minimum there.

Matrix Representation of a Quadratic Form:

We note that by introducing an $n \times n$ matrix $A=\left(a_{i j}\right)$, we can rewrite a quadratic form into a matrix-vector product:

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}=\mathbf{x}^{T} A \mathbf{x}
$$

(identify an 1×1 matrix as a number.) Moreover, we can make A to be a symmetric matrix A^{\prime} by choosing $a_{i j}^{\prime}=\frac{1}{2}\left(a_{i j}+a_{j i}\right)$ [thus we have $a_{i j} x_{i} x_{j}+a_{j i} x_{j} x_{i}=a_{i j}^{\prime} x_{i} x_{j}+a_{j i}^{\prime} x_{j} x_{i}$]. So from now on we can always assume that A is a symmetric matrix in the matrix representation of a quadratic form.

"Extremal Values" of a Quadratic Form:

The extremal points (local maxima, local minima, saddle points) are important pieces of information when studying a multivariable function. As a quadratic form $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ will satisfy:

$$
Q(c \mathbf{x})=(c \mathbf{x})^{T} A(c \mathbf{x})=c^{2} \mathbf{x}^{T} A \mathbf{x}=c^{2} Q(\mathbf{x}) \quad \text { for any } c \in \mathbb{R}
$$

it will not have extremal points in the usual sense. But we can study the extremal points of $Q(\mathbf{x})$ when \mathbf{x} is restricted to the unit sphere $\|\mathbf{x}\|=1$ instead. And it turns out that the eigenvectors of A will give all these extremal "directions".

Theorem 6 (P.441): Let $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ be the quadratic form given by an $n \times n$ symmetric matrix A. Then an extremal point of the restriction of $Q(\mathbf{x})$ on the unit sphere $\|\mathbf{x}\|=1$ in \mathbb{R}^{n} is an eigenvector of A.

Proof: As we are finding the extremal points of a function in n-variables subject to a constraint $\|\mathbf{x}\|^{2}=1$, the method of Lagrange multipliers applies here. So we solve:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x_{k}}\left[Q(\mathbf{x})-\lambda\left(\|\mathbf{x}\|^{2}-1\right)\right]=0, \quad 1 \leq k \leq n \tag{*}\\
\|\mathbf{x}\|^{2}-1=0
\end{array}\right.
$$

Note that the first set of equations can be re-written as:

$$
\begin{equation*}
\frac{\partial}{\partial x_{k}}\left\{\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}-\lambda\left(\sum_{i=1}^{n} x_{i}^{2}-1\right)\right\}=2 \sum_{i=1}^{n} a_{k i} x_{i}-\lambda\left(2 x_{k}\right), \quad 1 \leq k \leq n . \tag{**}
\end{equation*}
$$

To verify the above claim, let us first fix an index i and consider the differentiation of the partial sum $\sum_{j=1}^{n} a_{i j} x_{i} x_{j}$ withrespect to x_{k}.
(i) When $i=k$, we have:

$$
\frac{\partial}{\partial x_{k}} \sum_{j=1}^{n} a_{k j} x_{k} x_{j}=\frac{\partial}{\partial x_{k}}\left(a_{k k} x_{k}^{2}+\sum_{j \neq k} a_{k j} x_{k} x_{j}\right)=2 a_{k k} x_{k}+\sum_{j \neq k} a_{k j} x_{j}=a_{k k} x_{k}+\sum_{j=1}^{n} a_{k j} x_{j} .
$$

(ii) When $i \neq k$ (there are $n-1$ such i 's), we have:

$$
\frac{\partial}{\partial x_{k}} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}=\frac{\partial}{\partial x_{k}}\left(a_{i k} x_{i} x_{k}+\sum_{j \neq k} a_{i j} x_{i} x_{j}\right)=a_{i k} x_{i}+0=a_{k i} x_{i}
$$

since $A^{T}=A$, i.e. $a_{i k}=a_{k i}$.
So, when summing up the terms in (i) and (ii), we get:

$$
\frac{\partial}{\partial x_{k}}\left\{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}\right\}=\underbrace{a_{k k} x_{k}+\sum_{j=1}^{n} a_{k j} x_{j}}_{\text {(i) }}+\underbrace{\sum_{i \neq k} a_{k i} x_{i}}_{\text {(ii) }}=\sum_{j=1}^{n} a_{k j} x_{j}+\sum_{i=1}^{n} a_{k i} x_{i}=2 \sum_{i=1}^{n} a_{k i} x_{i},
$$

and this verifies $(* *)$. Note that $\sum_{i=1}^{n} a_{k i} x_{i}$ is exactly the k-th component of the matrixvector product $A \mathbf{x}$. Hence the first vector equation of $(*)$ exactly says that $A \mathbf{x}=\lambda \mathbf{x}$, and the second vector equation of $(*)$ says $\mathbf{x} \neq \mathbf{0}$.

Hence an extremal point of $Q(\mathbf{x})$ restricted to $\|\mathbf{x}\|=1$ should be an eigenvector of A.

Corollary: An extremal value of the restriction of $Q(\mathbf{x})$ on the unit sphere $\|\mathbf{x}\|=1$ is an eigenvalue of A.
Proof: By Theorem 6, an extremal value of $Q(\mathbf{x})$ on $\|\mathbf{x}\|=1$ should be attained at an eigenvector \mathbf{v} (with $\|\mathbf{v}\|=1$) of A. Let λ be the corresponding eigenvalue. Then:

$$
Q(\mathbf{v})=\mathbf{v}^{T} A \mathbf{v}=\mathbf{v}^{T}(\lambda \mathbf{v})=\lambda \mathbf{v}^{T} \mathbf{v}=\lambda\|\mathbf{v}\|^{2}=\lambda .
$$

So the corresponding extremal value is simply the eigenvalue λ.

Positive-Definite Quadratic Forms

Definition (P.437): A quadratic form Q is called:
a. positive definite if $Q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$,
b. negative definite if $Q(\mathbf{x})<0$ for all $\mathbf{x} \neq \mathbf{0}$,
c. indefinite if $Q(\mathbf{x})$ assumes both positive and negative values.

An $n \times n$ symmetric matrix A is called positive-definite (negative-definite or indefinite) if the associated quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is a positive-definite (negative-definite or indefinite) quadratic form.
Remark: Sometimes we will say that a quadratic form Q is positive semi-definite if $Q(\mathbf{x}) \geq 0$ for every \mathbf{x}. Similarly, Q is said to be negative semi-definite if $Q(\mathbf{x}) \leq 0$ for every \mathbf{x}.

Intuitively speaking, when all the extremal values are positive (thus the minimal one is also positive), a multivariable function should remain positive over its domain. The following theorem verifies this claim.
Theorem 5 (P.437): Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is:
a. positive definite if and only if the eigenvalues of A are all positive,
b. negative definite if and only if the eigenvalues of A are all negative,
c. indefinite if and only if A has both positive and negative eigenvalues.

Proof: As A is a symmetric matrix, we have an orthogonal diagonalization $A=P D P^{T}$, i.e. $D=P^{T} A P$. Let $\mathbf{y}=P^{T} \mathbf{x}$, thus $\mathbf{x}=P \mathbf{y}$. Then the quadratic form $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ can be expressed as:

$$
\begin{aligned}
Q(\mathbf{x}) & =\mathbf{x}^{T} A \mathbf{x}=(P \mathbf{y})^{T} A(P \mathbf{y})=\mathbf{y}^{T}\left(P^{T} A P\right) \mathbf{y}=\mathbf{y}^{T} D \mathbf{y} \\
& =\lambda_{1} y_{1}^{2}+\ldots+\lambda_{n} y_{n}^{2} .
\end{aligned}
$$

Now, since P is invertible, $\mathbf{x} \neq \mathbf{0}$ if and only if $\mathbf{y} \neq \mathbf{0}$, so the results of the theorem can be concluded easily by the simple expression of $Q(\mathbf{x})$ in terms of the coordinates of \mathbf{y}.

The same proof will also shows that:
Corollary: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is:
a. positive semi-definite if and only if the eigenvalues of A are all non-negative,
b. negative semi-definite if and only if the eigenvalues of A are all non-positive.

The above change of variable $\mathbf{x}=P \mathbf{y}$ actually proves the following result:
Theorem 4 (Principal Axes Theorem, P.435): Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x}=P \mathbf{y}$, that transforms the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ into a quadratic form $\mathbf{y}^{T} D \mathbf{y}$ with no cross-product term.

Example: Let $f(x, y)=x^{3}+3 x y^{2}-y^{3}-75 x$. By direct computations, we have:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=3 x^{2}+3 y^{2}-75, \quad \frac{\partial f}{\partial y}=6 x y-3 y^{2} \\
& \frac{\partial^{2} f}{\partial x^{2}}=6 x, \quad \frac{\partial^{2} f}{\partial x \partial y}=6 y, \quad \frac{\partial^{2} f}{\partial y^{2}}=6 x-6 y
\end{aligned}
$$

So the critical points of f are $(-\sqrt{5},-2 \sqrt{5}),(\sqrt{5}, 2 \sqrt{5}),(-5,0)$ and $(5,0)$. At these critical points, the corresponding matrices $\left(\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\right)$ are:

$$
\left[\begin{array}{cc}
-6 \sqrt{5} & -12 \sqrt{5} \\
-12 \sqrt{5} & 6 \sqrt{5}
\end{array}\right], \quad\left[\begin{array}{cc}
6 \sqrt{5} & 12 \sqrt{5} \\
12 \sqrt{5} & -6 \sqrt{5}
\end{array}\right], \quad\left[\begin{array}{cc}
-30 & 0 \\
0 & -30
\end{array}\right], \quad\left[\begin{array}{cc}
30 & 0 \\
0 & 30
\end{array}\right],
$$

which have eigenvalues $(-30,30),(-30,30),(-30,-30)$ and $(30,30)$ respectively.
The corresponding quadratic forms will be indefinite, indefinite, negative-definite, and positive-definite respectively. Using continuity argument, we can show that the behavior of quadratic forms will be the same in nearby points. So f has saddle points at $(-\sqrt{5},-2 \sqrt{5})$ and $(\sqrt{5}, 2 \sqrt{5})$, a local maximum point at $(-5,0)$, and a local minimum point at $(5,0)$.

