
Supplement: Quadratic Forms and the Principal Axes Theorem

A quadratic form is a homogeneous polynomial of degree two with n variables (homoge-
neous: same degree for each monomial). In formula, it is just an algebraic expression of the
form:

Q(x1, x2, . . . , xn) =
n∑

i,j=1

aijxixj.

The study of quadratic forms has two origins. The first one is in number theory, like the
study of Pythagorean triple (x, y, z) of integers such that x2 + y2 = z2, or the “sum of
four squares” problem: express every positive integer into a sum of four integer squares
x2 + y2 + z2 +w2 (prototype of quaternions). The second one is in calculus. In the Taylor’s
expansion (with remainder) of a multi-variable, twice continuously differentiable function f
about a point a = (a1, . . . , an):

f(x) = f(a)+
n∑

i=1

∂f

∂xi
(a)(xi−ai)+

1

2!

n∑
i,j=1

∂2f

∂xj∂xi
(a+θ(x−a))(xi−ai)(xj−aj), 0 < θ < 1.

The second-order term appears as a quadratic form. So at those critical points where the
gradient vector vanishes: ( ∂f

∂x1
(a), . . . , ∂f

∂xn
(a)) = (0, . . . , 0), the local behavior of f near

the point a will be determined by the second-order term. If the quadratic form is always
“positive”, f should have a local minimum there.

Matrix Representation of a Quadratic Form:

We note that by introducing an n×n matrix A = (aij), we can rewrite a quadratic form
into a matrix-vector product:

Q(x1, . . . , xn) =
n∑

i,j=1

aijxixj = xTAx.

(identify an 1× 1 matrix as a number.) Moreover, we can make A to be a symmetric matrix
A′ by choosing a′ij = 1

2
(aij +aji) [thus we have aijxixj +ajixjxi = a′ijxixj +a′jixjxi]. So from

now on we can always assume that A is a symmetric matrix in the matrix representation of
a quadratic form.

“Extremal Values” of a Quadratic Form:

The extremal points (local maxima, local minima, saddle points) are important pieces of
information when studying a multivariable function. As a quadratic form Q(x) = xTAx will
satisfy:

Q(cx) = (cx)TA(cx) = c2xTAx = c2Q(x) for any c ∈ R,

it will not have extremal points in the usual sense. But we can study the extremal points
of Q(x) when x is restricted to the unit sphere ||x|| = 1 instead. And it turns out that the
eigenvectors of A will give all these extremal “directions”.

Theorem 6 (P.441): Let Q(x) = xTAx be the quadratic form given by an n×n symmetric
matrix A. Then an extremal point of the restriction of Q(x) on the unit sphere ||x|| = 1 in
Rn is an eigenvector of A.
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Proof: As we are finding the extremal points of a function in n-variables subject to a
constraint ||x||2 = 1, the method of Lagrange multipliers applies here. So we solve:

(∗)


∂

∂xk

[
Q(x)− λ(||x||2 − 1)

]
= 0, 1 ≤ k ≤ n;

||x||2 − 1 = 0.

Note that the first set of equations can be re-written as:

(∗∗) ∂

∂xk

{ n∑
i,j=1

aijxixj − λ(
n∑

i=1

x2i − 1)
}

= 2
n∑

i=1

akixi − λ(2xk), 1 ≤ k ≤ n.

To verify the above claim, let us first fix an index i and consider the differentiation of the
partial sum

∑n
j=1 aijxixj withrespect to xk.

(i) When i = k, we have:

∂

∂xk

n∑
j=1

akjxkxj =
∂

∂xk

(
akkx

2
k +

∑
j 6=k

akjxkxj

)
= 2akkxk +

∑
j 6=k

akjxj = akkxk +
n∑

j=1

akjxj.

(ii) When i 6= k (there are n− 1 such i’s), we have:

∂

∂xk

n∑
j=1

aijxixj =
∂

∂xk

(
aikxixk +

∑
j 6=k

aijxixj

)
= aikxi + 0 = akixi,

since AT = A, i.e. aik = aki.

So, when summing up the terms in (i) and (ii), we get:

∂

∂xk

{ n∑
i=1

n∑
j=1

aijxixj

}
= akkxk +

n∑
j=1

akjxj︸ ︷︷ ︸
(i)

+
∑
i 6=k

akixi︸ ︷︷ ︸
(ii)

=
n∑

j=1

akjxj +
n∑

i=1

akixi = 2
n∑

i=1

akixi,

and this verifies (∗∗). Note that
∑n

i=1 akixi is exactly the k-th component of the matrix-
vector product Ax. Hence the first vector equation of (∗) exactly says that Ax = λx, and
the second vector equation of (∗) says x 6= 0.

Hence an extremal point of Q(x) restricted to ||x|| = 1 should be an eigenvector of A.
�

Corollary: An extremal value of the restriction of Q(x) on the unit sphere ||x|| = 1 is an
eigenvalue of A.

Proof: By Theorem 6, an extremal value of Q(x) on ||x|| = 1 should be attained at an
eigenvector v (with ||v|| = 1) of A. Let λ be the corresponding eigenvalue. Then:

Q(v) = vTAv = vT (λv) = λvTv = λ||v||2 = λ.

So the corresponding extremal value is simply the eigenvalue λ. �
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Positive-Definite Quadratic Forms

Definition (P.437): A quadratic form Q is called:

a. positive definite if Q(x) > 0 for all x 6= 0,

b. negative definite if Q(x) < 0 for all x 6= 0,

c. indefinite if Q(x) assumes both positive and negative values.

An n × n symmetric matrix A is called positive-definite (negative-definite or indefinite) if
the associated quadratic form xTAx is a positive-definite (negative-definite or indefinite)
quadratic form.

Remark: Sometimes we will say that a quadratic form Q is positive semi-definite if Q(x) ≥ 0
for every x. Similarly, Q is said to be negative semi-definite if Q(x) ≤ 0 for every x.

Intuitively speaking, when all the extremal values are positive (thus the minimal one is
also positive), a multivariable function should remain positive over its domain. The following
theorem verifies this claim.

Theorem 5 (P.437): Let A be an n×n symmetric matrix. Then a quadratic form xTAx is:

a. positive definite if and only if the eigenvalues of A are all positive,

b. negative definite if and only if the eigenvalues of A are all negative,

c. indefinite if and only if A has both positive and negative eigenvalues.

Proof: As A is a symmetric matrix, we have an orthogonal diagonalization A = PDP T , i.e.
D = P TAP . Let y = P Tx, thus x = Py. Then the quadratic form Q(x) = xTAx can be
expressed as:

Q(x) = xTAx = (Py)TA(Py) = yT (P TAP )y = yTDy

= λ1y
2
1 + . . .+ λny

2
n.

Now, since P is invertible, x 6= 0 if and only if y 6= 0, so the results of the theorem can be
concluded easily by the simple expression of Q(x) in terms of the coordinates of y. �

The same proof will also shows that:

Corollary: Let A be an n× n symmetric matrix. Then a quadratic form xTAx is:

a. positive semi-definite if and only if the eigenvalues of A are all non-negative,

b. negative semi-definite if and only if the eigenvalues of A are all non-positive.

The above change of variable x = Py actually proves the following result:

Theorem 4 (Principal Axes Theorem, P.435): Let A be an n× n symmetric matrix. Then
there is an orthogonal change of variable, x = Py, that transforms the quadratic form xTAx
into a quadratic form yTDy with no cross-product term.
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Example: Let f(x, y) = x3 + 3xy2 − y3 − 75x. By direct computations, we have:

∂f

∂x
= 3x2 + 3y2 − 75,

∂f

∂y
= 6xy − 3y2,

∂2f

∂x2
= 6x,

∂2f

∂x∂y
= 6y,

∂2f

∂y2
= 6x− 6y.

So the critical points of f are (−
√

5,−2
√

5), (
√

5, 2
√

5), (−5, 0) and (5, 0). At these critical

points, the corresponding matrices
(

∂2f
∂xj∂xi

)
are:[

−6
√

5 −12
√

5

−12
√

5 6
√

5

]
,

[
6
√

5 12
√

5

12
√

5 −6
√

5

]
,

[
−30 0

0 −30

]
,

[
30 0
0 30

]
,

which have eigenvalues (−30, 30), (−30, 30), (−30,−30) and (30, 30) respectively.

The corresponding quadratic forms will be indefinite, indefinite, negative-definite, and
positive-definite respectively. Using continuity argument, we can show that the behavior of
quadratic forms will be the same in nearby points. So f has saddle points at (−

√
5,−2

√
5)

and (
√

5, 2
√

5), a local maximum point at (−5, 0), and a local minimum point at (5, 0).
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