Supplement: Symmetric and Hermitian Matrices

A Bunch of Definitions

Definition: A real $n \times n$ matrix A is called symmetric if $A^T = A$.

Definition: A complex $n \times n$ matrix A is called Hermitian if $A^* = A$, where $A^* = \overline{A^T}$, the conjugate transpose.

Definition: A complex $n \times n$ matrix A is called normal if $A^* A = AA^*$, i.e. commutes with its conjugate transpose.

It is quite a surprising result that these three kinds of matrices are always diagonalizable; and moreover, one can construct an orthonormal basis (in standard inner product) for $\mathbb{R}^n/\mathbb{C}^n$, consisting of eigenvectors of A. Hence the matrix P that gives diagonalization $A = PDP^{-1}$ will be orthogonal/unitary, namely:

Definition: An $n \times n$ real matrix P is called orthogonal if $P^TP = I_n$, i.e. $P^{-1} = P^T$.

Definition: An $n \times n$ complex matrix P is called unitary if $P^*P = I_n$, i.e. $P^{-1} = P^*$.

Diagonalization using these special kinds of P will have special names:

Definition: A matrix A is called orthogonally diagonalizable if A is similar to a diagonal matrix D with an orthogonal matrix P, i.e. $A = PDP^T$.

A matrix A is called unitarily diagonalizable if A is similar to a diagonal matrix D with a unitary matrix P, i.e. $A = PDP^*$.

Then we have the following big theorems:

Theorem: Every real $n \times n$ symmetric matrix A is orthogonally diagonalizable.

Theorem: Every complex $n \times n$ Hermitian matrix A is unitarily diagonalizable.

Theorem: Every complex $n \times n$ normal matrix A is unitarily diagonalizable.

To prove the above results, it is convenient to introduce the concept of adjoint operator, which allows us to discuss effectively the “transpose” operation in a general inner product space.

The Adjoint Operator

Let V be an n-dimensional inner product space and let $T : V \to V$ be a linear operator. We find out that under the inner product operation, the action of $T : v \mapsto T(v)$ can be replaced/represented by another inner product action using a suitably chosen vector.

Lemma 1: Let $w \in V$ be a given vector. Then there is a unique vector $w^* \in V$ such that:

$$<T(v), w> = <v, w^*>, \quad \text{for every } v \in V. \quad (*)$$

Proof: Let $\{u_1, \ldots, u_n\}$ be an orthonormal basis for V. The following w^* is what we want:

$$w^* = <T(u_1), w> u_1 + \ldots + <T(u_p), w> u_p = \sum_{i=1}^n <T(u_i), w> u_i.$$
Now, for \(j = 1, \ldots, n \), we check (*) for basis vector \(u_j \) first:

\[
< u_j, w^* > = < u_j, \sum_{i=1}^{n} < T(u_i), w > u_i > = \sum_{i=1}^{n} < T(u_i), w > < u_j, u_i > \\
= < T(u_j), w > < u_j, u_j > = < T(u_j), w > .
\]

So, for a general \(v \in V \), by expressing \(v = c_1 u_1 + \ldots + c_n u_n = \sum_{j=1}^{n} c_j u_j \), we have:

\[
< T(v), w > = < \sum_{j=1}^{n} c_j T(u_j), w > = \sum_{j=1}^{n} c_j < T(u_j), w > \\
= \sum_{j=1}^{n} c_j < u_j, w^* > = \sum_{j=1}^{n} c_j u_j, w^* = < v, w^* > .
\]

For the uniqueness of \(w^* \), let \(w' \in V \) be another vector with the same property, namely:

\[
< T(v), w > = < v, w^* > = < v, w' >, \quad \text{for every } v \in V.
\]

Then we take difference:

\[
< v, w^* - w' > = 0, \quad \text{for every } v \in V.
\]

In particular, this equality should be valid for \(v = w^* - w' \in V \). Thus we have:

\[
< w^* - w', w^* - w' > = 0 \quad \Rightarrow \quad || w^* - w' || = 0 \quad \Rightarrow \quad w^* = w' \quad \square
\]

Definition: Let \(T : V \to V \) be a linear operator. For each \(w \in V \), we define \(T^*(w) := w^* \), where \(w^* \) is the unique vector obtained in Lemma 1. This \(T^* \) is called the **adjoint** of \(T \).

Lemma 2: The adjoint operator \(T^* : V \to V \) is linear.

Proof: Straightforward checking. Let \(w_1, w_2 \in V \) and \(c, d \in \mathbb{C} \). Then for every \(v \in V \), first by definition of \(T^* \) we have:

\[
< T(v), (cw_1 + dw_2) > = < v, T^*(cw_1 + dw_2) > .
\]

But on the other hand:

\[
< T(v), (cw_1 + dw_2) > = \bar{c} < T(v), w_1 > + \bar{d} < T(v), w_2 > \\
= \bar{c} < v, T^*(w_1) > + \bar{d} < v, T^*(w_2) > \\
= < v, c T^*(w_1) + d T^*(w_2) >
\]

The above two equalities are valid for every \(v \in V \). So by the same uniqueness proof as in Lemma 1, we obtain:

\[
T^*(cw_1 + dw_2) = c T^*(w_1) + d T^*(w_2),
\]

and thus \(T^* \) is linear. \(\square \)
Theorem 1: Let T, U be linear operators on V and $k \in \mathbb{C}$. Then:

(i) $(T + U)^* = T^* + U^*$;

(ii) $(kT)^* = \bar{k}T^*$;

(iii) $(U \circ T)^* = T^* \circ U^*$;

(iv) $(T^*)^* = T$.

Proof: Directly from definitions. For example, the checking for (iv):

Let $v \in V$ be any vector. Then by definition:

$$<(T^*)^*(v), u> = <v, T^* (u)> = <T(v), u>,$$

for every $u \in V$.

Hence $(T^*)^*(v) = T(v)$ for any $v \in V$ and thus $(T^*)^* = T$. □

This adjoint operator T^*, when using matrix representation with an orthonormal basis B, has a simple relationship with the original linear operator T.

Theorem 2: Let $B = \{u_1, \ldots, u_p\}$ be an orthonormal basis of V, and let T be a linear operator in V. Then the matrix representations of T and T^* relative to the orthonormal basis B are given by:

$$[T]_B = \begin{bmatrix} <T(u_j), u_i> \end{bmatrix} \quad \text{and} \quad [T^*]_B = [T]^*_B.$$

Remark: B must be orthonormal!

Proof: First we consider the j-th column of $[T]_B$, i.e. $[T(u_j)]_B$. Its entries are the B-coordinates of $T(u_j)$, which are exactly the coefficients in the linear combination:

$$T(u_j) = a_{1j}u_1 + \ldots + a_{nj}u_j.$$

Since B is orthonormal, the i-th coefficient in the above linear combination can be computed effectively as:

$$<T(u_j), u_i> = a_{1j} <u_i, u_i> + \ldots + a_{nj} <u_n, u_i> = a_{ij}.$$

Thus the (i, j)-th entry of $[T]_B$ is given by $a_{ij} = <T(u_j), u_i>$.

Similarly the (i, j)-th entry of $[T^*]_B$ is given by $<T^*(u_j), u_i>$. Using the definition of adjoint operator, we have:

$$<T^*(u_j), u_i> = \overline{<u_i, T(u_j)>>} = \overline{<T(u_i), u_j>} = \bar{a}_{ji}.$$

So $[T^*]_B = [T]_B^*$ □

Definition: A linear operator $T : V \to V$ is called **self-adjoint** if $T^* = T$.

Thus, by Theorem 2, matrix transformation given by a symmetric/Hermitian matrix will be a self-adjoint operator on $\mathbb{R}^n/\mathbb{C}^n$, using the standard inner product.

Next we need to setup some technical lemmas for the proof of the main theorem.
Lemma 3: Let T be a self-adjoint operator on V. Then every eigenvalue of T must be real.

Proof: Let $v \neq 0$ be an eigenvector of T corresponding to eigenvalue λ. We consider:

$$<T(v),v> = <\lambda v, v> = \lambda <v, v>.$$

On the other hand, since $T^* = T$, we also have:

$$<T(v),v> = <v, T^*(v)> = <v, T(v)> = <v, \lambda v> = \bar{\lambda} <v, v>.$$

As $<v, v> \neq 0$, we must have $\lambda = \bar{\lambda}$, i.e. λ is real. \qed

Lemma 4: Every self-adjoint operator on V has an eigenvector.

Proof: Take an orthonormal basis B of V. Then we get a symmetric/Hermitian matrix $A = [T]_B$. By the fundamental theorem of algebra, A must have an eigenvalue $\lambda \in \mathbb{C}$, and hence a corresponding eigenvector $x \in \mathbb{C}^n$. In complex case we just send this $x \in \mathbb{C}^n$ back to $v \in V$ by inverse B-coordinate mapping, then we will get $T(v) = \lambda v$. In real case, we apply Lemma 3 to know that this λ must be real. Hence $x \in \mathbb{R}^n$ and we can send it back to $v \in V$ to get $T(v) = \lambda v$ again. \qed

Lemma 5: Let W be a subspace of V such that $T(W) \subseteq W$, i.e. $T(w) \in W$ for every $w \in W$. Then $T^*(W^\perp) \subseteq W^\perp$.

Proof: Let $z \in W^\perp$. Then for $w \in W$:

$$<w, T^*(z)> = <T(w), z> = 0 \quad \text{as} \quad T(w) \in W \text{ and } z \in W^\perp.$$

Since the above is valid for every $w \in W$, we should have $T^*(z) \in W^\perp$. \qed

Lemma 6: Let W be a subspace of an n-dimensional inner product space V. Then:

$$\dim W + \dim W^\perp = n = \dim V.$$

Proof: Let $\{w_1, \ldots, w_k\}$ and $\{z_1, \ldots, z_{\ell}\}$ be orthogonal bases of W and W^\perp respectively. The lemma is proved if we can show that $S = \{w_1, \ldots, w_k, z_1, \ldots, z_{\ell}\}$ forms a basis for V.

Spanning V: For every $v \in V$, we have the orthogonal decomposition of v w.r.t. W:

$$v = \text{proj}_W v + (v - \text{proj}_W v), \quad \text{where} \quad \text{proj}_W v \in W \text{ and } (v - \text{proj}_W v) \in W^\perp.$$

Use the bases of W and W^\perp to express $\text{proj}_W v = \sum_{i=1}^k c_i w_i$ and $(v - \text{proj}_W v) = \sum_{j=1}^\ell d_j z_j$. Hence v can be expressed as a linear combination of vectors in S.

Linearly independent: Consider the vector equation:

$$c_1 w_1 + \ldots + c_k w_k + d_1 z_1 + \ldots + d_\ell z_\ell = 0.$$

Take inner product with w_i. As $\{w_1, \ldots, w_k\}$ is an orthogonal set, we have $<w_i, w_1> = 0$ for $i \neq 1$. On the other hand, since $w_1 \in W$ and all $z_j \in W^\perp$, we get $<z_j, w_1> = 0$ for all $1 \leq j \leq \ell$. So the above vector equation will become:

$$c_1 ||w_1||^2 + 0 + \ldots + 0 = <0, w_1> = 0.$$

As $w_1 \neq 0$, we get $c_1 = 0$. Similarly for other c_i and d_j and they are all zeros. Thus S is also linearly independent. \qed
Now we are ready to prove the main theorem.

Diagonalizability of Symmetric and Hermitian Matrices

Main Theorem: Let \(T^* = T \) be a self-adjoint linear operator on \(V \). Then \(V \) has an orthonormal basis consisting of eigenvectors of \(T \).

Proof: We use induction on \(n = \dim V \).

\(n = 1 \): Any non-zero vector \(v_1 \) will be an eigenvector of \(T \) since \(V = \text{Span} \{ v_1 \} \). After normalization, \(u_1 = \frac{v_1}{||v_1||} \), we obtain an orthonormal basis \(\{ u_1 \} \) of \(V \) consisting of eigenvector of \(T \).

Now, assume the statement is true for \(\dim V = k \). Next consider \(\dim V = k + 1 \).

By Lemma 4, \(T \) has an eigenvector \(u_1 \) (may assume \(||u_1|| = 1 \)) corresponding to eigenvalue \(\lambda_1 \). Let \(W = \text{Span} \{ u_1 \} \). Note that \(T(W) = W \).

By Lemma 5, we have \(T^*(W^\perp) \subseteq W^\perp \). Since \(T^* = T \), this gives \(T(W^\perp) \subseteq W^\perp \). In other words, we can regard \(T \) as a linear operator defined on \(W^\perp \). Note that Lemma 6 says that \(\dim W^\perp = \dim V - \dim W = k \), so by induction hypothesis, there is an orthonormal basis of \(W^\perp \) consisting of eigenvectors of \(T \), say \(\{ u_2, \ldots, u_{k+1} \} \).

Since \(u_1 \in W \), \(||u_1|| = 1 \), and \(\{ u_2, \ldots, u_{k+1} \} \) \(\subseteq W^\perp \), the combined set \(\{ u_1, u_2, \ldots, u_{k+1} \} \) is again orthonormal. This will be an orthonormal basis of \(V \) consisting of eigenvectors of \(T \).

In the case of symmetric (or Hermitian) matrix transformation, by using such an orthonormal basis of eigenvectors to construct the matrix \(P \), we will have the diagonalization \(A = PDP^{-1} \) with \(P^{-1} = P^T \) (or \(P^{-1} = P^* \)).

Remark: To find this \(P \), we have a more efficient method than the inductive construction in the proof of main theorem.

Lemma 7: Let \(T^* = T \). Then eigenvectors of \(T \) corresponding to distinct eigenvalues are orthogonal to each other.

Proof: Let \(T(v_1) = \lambda_1 v_1 \) and \(T(v_2) = \lambda_2 v_2 \) with \(\lambda_1 \neq \lambda_2 \). Consider on the one hand:

\[<T(v_1), v_2> = <\lambda_1 v_1, v_2> = \lambda_1 <v_1, v_2>, \]

and on the other hand:

\[<T(v_1), v_2> = <v_1, T^*(v_2)> = <v_1, T(v_2)> = <v_1, \lambda_2 v_2> = \lambda_2 <v_1, v_2>. \]

Since \(T \) is self-adjoint, \(\lambda_2 \) must be real, so we obtain:

\[\lambda_1 <v_1, v_2> = \lambda_2 <v_1, v_2>. \]

As \(\lambda_1 \neq \lambda_2 \), we must have \(<v_1, v_2> = 0 \). \(\square \)

Corollary: Let \(T^* = T \) and let \(\{ v_{i_1} \}, \ldots, \{ v_{i_p} \} \) be orthogonal sets of eigenvectors corresponding to distinct eigenvalues \(\lambda_1, \ldots, \lambda_p \) of \(T \). Then the total collection of eigenvectors \(\{ v_{ji}; 1 \leq i \leq p \} \) is again orthogonal.

Proof: Exercise.
With Lemma 7 and its corollary, we only need to produce orthonormal basis for each eigenspace, which can be done by a Gram-Schmidt process. Then the total collection will be automatically orthonormal. And it is guaranteed by the main theorem that A must be diagonalizable.

Remark: If v_1, v_2 are eigenvectors of A corresponding to distinct eigenvalues, we know that $v_1 + v_2$ can never be an eigenvector of A. So Gram-Schmidt process should not be applied across bases for different eigenspaces.

Example: Orthogonally diagonalize the following symmetric matrix:

$$A = \begin{bmatrix} 1 & 2 & -4 \\ 2 & -2 & -2 \\ -4 & -2 & 1 \end{bmatrix}.$$

Solution: The characteristic equation of A is:

$$\det(A - \lambda I) = -\lambda^3 + 27\lambda + 54 = -(\lambda + 3)^2(\lambda - 6) = 0.$$

So the eigenvalues are $-3, -3, 6$.

For the eigenvalue $\lambda = -3$, we solve for $\text{Nul}(A + 3I)$:

$$A + 3I = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1}{2} & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

So $\text{Nul}(A + 3I)$ has a basis $\{[1 \ 0 \ 1]^T, [-\frac{1}{2} \ 1 \ 0]^T\}$. By Gram-Schmidt process, we obtain an orthonormal basis for $\text{Nul}(A + 3I)$:

$$\left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} -\frac{1}{\sqrt{18}} \\ \frac{1}{\sqrt{18}} \\ \frac{1}{\sqrt{18}} \end{bmatrix} \right\}.$$

For the eigenvalue $\lambda = 6$, we solve for $\text{Nul}(A - 6I)$:

$$A - 6I = \begin{bmatrix} -5 & 2 & -4 \\ 2 & -8 & -2 \\ -4 & -2 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}.$$

So $\text{Nul}(A - 6I)$ has a basis $\{[-1 \ -\frac{1}{2} \ 1]^T\}$ and we obtain an orthonormal basis for $\text{Nul}(A - 6I)$:

$$\left\{ \begin{bmatrix} -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{3}} \end{bmatrix} \right\}.$$

We construct the orthogonal matrix P and diagonal matrix D as:

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & -\frac{2}{3} \\ 0 & \frac{4}{\sqrt{18}} & -\frac{1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3} \end{bmatrix}, \quad D = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 6 \end{bmatrix}.$$

Then one can check that $A = PDP^T$.

6
Note: The diagonalization $A = PDP^T$ is not unique, as one can have different choices of orthonormal bases for those eigenspaces with dimension greater than one. For example, the above A also allows an orthogonal diagonalization $A = QDQ^T$ with:

$$Q = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

Diagonalization of Complex Normal Matrices

Definition: A linear operator T on V is called normal if $T \circ T^* = T^* \circ T$.

To make the proof of main theorem also work for normal operator, we need the following technical lemma.

Lemma 8: Let T be a normal operator on V. Then:

(i) v is an eigenvector of T corresponding to eigenvalue λ
 \Leftrightarrow v is an eigenvector of T^* corresponding to eigenvalue $\bar{\lambda}$.

(ii) Eigenvectors corresponding to distinct eigenvalues of T are orthogonal to each other.

Proof: (i) First we claim that $\|T(v)\| = \|T^*(v)\|$.

$$\|T(v)\|^2 = \langle T(v), T(v) \rangle = \langle v, TT^*(v) \rangle = \langle v, T^*T(v) \rangle = \langle v, T^*(v) \rangle = \|T^*(v)\|^2.$$

Then for any scalar λ, note that the operator $U = T - \lambda I$ is also normal with $U^* = T^* - \bar{\lambda} I$, so we have:

$$\|(T - \lambda I)(v)\| = \|(T^* - \bar{\lambda} I)(v)\|. \quad (\ast)$$

Hence:

v is an eigenvector of T corresponding to eigenvalue λ

$\Leftrightarrow (T - \lambda I)(v) = 0$

$\Leftrightarrow (T^* - \bar{\lambda} I)(v) = 0 \quad (\text{by } (\ast))$

$\Leftrightarrow v$ is an eigenvector of T^* corresponding to eigenvalue $\bar{\lambda}$

(ii) Now let v_1, v_2 be eigenvectors of T, corresponding to distinct eigenvalues $\lambda_1 \neq \lambda_2$ respectively. Consider on the one hand:

$$\langle T(v_1), v_2 \rangle = \langle \lambda_1 v_1, v_2 \rangle = \lambda_1 \langle v_1, v_2 \rangle;$$

and on the other hand:

$$\langle T(v_1), v_2 \rangle = \langle v_1, T^*(v_2) \rangle = \langle v_1, \bar{\lambda}_2 v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle.$$

So we again obtain:

$$\lambda_1 \langle v_1, v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle.$$

As $\lambda_1 \neq \lambda_2$, we must have $\langle v_1, v_2 \rangle = 0$. □
Now, we give the proof of main theorem for normal operators.

Main Theorem: Let T be a normal operator on a complex inner product space V. Then V has an orthonormal basis consisting of eigenvectors of T.

Proof: We use induction on $n = \dim V$.

$n = 1$: Same as before.

Now, assume the statement is true for $\dim V = k$. Next consider $\dim V = k + 1$.

Since V is a complex inner product space, T will have an eigenvector u_1 (may assume $\|u_1\| = 1$) corresponding to eigenvalue λ_1. (*For real inner product space we might get stuck at this point.*)

By Lemma 8(i), u_1 is also an eigenvector of T^*. So if we set $W = \text{Span} \{u_1\}$, we have $T^*(W) \subseteq W$.

By Lemma 5, we have $(T^*)(W^\perp) \subseteq W^\perp$. As $(T^*)^* = T$, this means $T(W^\perp) \subseteq W^\perp$. Then we can continue the inductive argument as in the previous proof of Main Theorem.

\square