Math 3043 Honors Real Analysis

Final Examination, Fall 2015

8:30-11:30, December 10, 2013

Instructions: This is an open book exam. You can use the textbook "Principles of Mathematical Analysis" by Walter Rudin and the Lecture Notes, but you cannot use any other materials, including the solutions of the exercises.

1. (25 Marks) Show that a bounded set A is Lebesgue measurable if and only if for every $\varepsilon>0$, there are open sets G_{1} and G_{2} such that $A \subset G_{1}$, $A^{c} \subset G_{2}$ and $\mu\left(G_{1} \cap G_{2}\right)<\varepsilon$.
2. (25 Marks) Show that if f is continuous on $[a, b]$, then $\{x \in[a, b] \mid f(x)>$ $c\}$ is measurable for any c. This implies that continuous functions are measurable.
3. (25 Marks) Suppose $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are two sequences of measurable functions on the measure space (X, Σ, μ) such that

$$
\left|f_{n}(x)\right| \leq g_{n}(x), \quad \text { for any } x \in X
$$

Assume that for any $x \in X$,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \lim _{n \rightarrow \infty} g_{n}(x)=g(x)
$$

Prove that if

$$
\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu=\int_{X} g d \mu<\infty
$$

then

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Hint: Apply Fatou's Lemma.

SOLUTION

1. (25 Marks) Show that a bounded set A is Lebesgue measurable if and only if for every $\varepsilon>0$, there are open sets G_{1} and G_{2} such that $A \subset G_{1}$, $A^{c} \subset G_{2}$ and $\mu\left(G_{1} \cap G_{2}\right)<\varepsilon$.
Solution Let $\varepsilon>0$ be given.
" \Leftarrow ": Suppose that there are open sets G_{1} and G_{2} such that $A \subset G_{1}$, $A^{c} \subset G_{2}$ and $\mu\left(G_{1} \cap G_{2}\right)<\varepsilon$. Denote $K=G_{2}^{c}$. Then K is closed. It is obvious that

$$
A^{c} \subset G_{2} \Longleftrightarrow K=G_{2}^{c} \subset A
$$

Since $A \subset G_{1}$ and G_{1} is open, we have

$$
\mu^{*}\left(G_{1}-A\right) \leq \mu\left(G_{1}-K\right)=\mu\left(G_{1} \cap K^{c}\right)=\mu\left(G_{1} \cap G_{2}\right)<\varepsilon
$$

By Exercise 3, A is Lebsegue measurable.
$" \Rightarrow$ ": Suppose A is Lebesgue measurable. By Exercise 3, there are open set U with $A \subset U$ and closed set K with $K \subset A$, such that

$$
\mu(U-A)<\frac{\varepsilon}{2}, \quad \mu(A-K)<\frac{\varepsilon}{2} .
$$

Let $G_{1}=U$ and $G_{2}=K^{c}$. Then G_{1} and G_{2} are open such that $A \subset G_{1}$, $A^{c} \subset G_{2}$ and

$$
\begin{aligned}
\mu\left(G_{1} \cap G_{2}\right) & =\mu\left(U \cap K^{c}\right)=\mu(U-K) \\
& =\mu((U-A) \cup(A-K)) \\
& =\mu(U-A)+\mu(A-K)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

2. (25 Marks) Show that if f is continuous on $[a, b]$, then $\{x \in[a, b] \mid f(x)>c\}$ is measurable for any c. This implies that continuous functions are measurable.
Solution In fact, if $x_{0} \in A$, since f is continuous, there is $\delta\left(x_{0}\right)>0$, such that whenever $x \in B\left(x_{0} ; \delta\left(x_{0}\right)\right) \cap[a, b]$,

$$
f(x)>c .
$$

This means that

$$
B\left(x_{0} ; \delta\left(x_{0}\right)\right) \cap[a, b] \subset A
$$

Thus, A is an open set and

$$
\begin{aligned}
A=\{x \in[a, b] \mid f(x)>c\} & =\bigcup_{x_{0} \in\{x \in[a, b] \mid f(x)>c\}}\left(B\left(x_{0} ; \delta\left(x_{0}\right)\right) \cap[a, b]\right) \\
& =\left(\bigcup_{x_{0} \in\{x \in[a, b] \mid f(x)>c\}} B\left(x_{0} ; \delta\left(x_{0}\right)\right) \cap[a, b] .\right.
\end{aligned}
$$

This expression implies that A is Lebesgue measurable.
3. (25 Marks) Suppose $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are two sequences of measurable functions on the measure space (X, Σ, μ) such that

$$
\left|f_{n}(x)\right| \leq g_{n}(x), \quad \text { for any } x \in X
$$

Assume that for any $x \in X$,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \lim _{n \rightarrow \infty} g_{n}(x)=g(x)
$$

Prove that if

$$
\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu=\int_{X} g d \mu<\infty
$$

then

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Hint: Apply Fatou's Lemma.
Solution Since f_{n} and g_{n} are measurable, and

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \lim _{n \rightarrow \infty} g_{n}(x)=g(x),
$$

we know that $f, g, g_{n}-f_{n}, g_{n}+f_{n}$ are all measurable. By the hypothesis that $\left|f_{n}\right| \leq g_{n}$ on X, we know that $-g_{n} \leq f_{n} \leq g_{n}$, so that $g_{n}-f_{n}$ and $g_{n}+f_{n}$ are nonnegative on X. Because $\int_{X} g d \mu<\infty$, we have

$$
\begin{aligned}
0 \leq \int_{X} \inf \left(g_{n}-f_{n}\right) d \mu & \leq \int_{X}\left(g_{n}-f_{n}\right) d \mu \\
& \leq \int_{X} g_{n} d \mu+\int_{X}\left|f_{n}\right| d \mu \\
& \leq 2 \int_{X} g_{n} d \mu<\infty
\end{aligned}
$$

for sufficiently large n, so that $\int_{X} \inf \left(g_{n}-f_{n}\right) d \mu$ is finite for sufficiently large n. Similarly, we know that $\int_{X} \inf \left(g_{n}+f_{n}\right) d \mu$ is finite for sufficiently large n.

By Fatou's Lemma, we have

$$
\begin{aligned}
\int_{X}(g-f) d \mu & =\int_{X} \lim _{n \rightarrow \infty}\left(g_{n}-f_{n}\right) d \mu=\int_{X} \underline{\lim _{n \rightarrow \infty}}\left(g_{n}-f_{n}\right) d \mu \\
& \leq \underline{\lim _{n \rightarrow \infty}} \int_{X}\left(g_{n}-f_{n}\right) d \mu=\underline{\lim }_{n \rightarrow \infty}\left(\int_{X} g_{n}-\int_{X} f_{n} d \mu\right) \\
& =\int_{X} g d \mu-\varlimsup_{n \rightarrow \infty} \int_{X} f_{n} d \mu, \\
\int_{X}(g+f) d \mu & =\int_{X} \lim _{n \rightarrow \infty}\left(g_{n}+f_{n}\right) d \mu=\int_{X} \underline{\lim }_{n \rightarrow \infty}\left(g_{n}+f_{n}\right) d \mu \\
& \leq \underline{\lim _{n \rightarrow \infty}} \int_{X}\left(g_{n}+f_{n}\right) d \mu=\underline{\lim }_{n \rightarrow \infty}\left(\int_{X} g_{n}+\int_{X} f_{n} d \mu\right) \\
& =\int_{X} g d \mu+\underline{\lim }_{n \rightarrow \infty} \int_{X} f_{n} d \mu .
\end{aligned}
$$

These give

$$
\int_{X} f d \mu \geq \varlimsup_{n \rightarrow \infty} \int_{X} f_{n} d \mu \geq \underline{\lim }_{n \rightarrow \infty} \int_{X} f_{n} d \mu \geq \int_{X} f d \mu
$$

so that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

