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Chapter 4.

Portfolio Theory

This chapter of introduces Markowitz’s portfolio theory (Markowitz, 1952) based on the mean
variance principle. Even though the theory is simple and elegant, its implementation can be quite
difficult because of, among others, the statistical estimation risk. In comparison, we also present
some elementary or naive portfolio management methods. These portfolio management methods
can be also be broadly viewed as tools for trading strategies.

4.1. The constant rebalanced portfolio and the naive Talmud strategy

The naive Talmud rule allegedly dates back to 200 years B.C. It is very simple: always keeping the
distribution of portfolio equal weighted. An interesting example is the following. Suppose there
are only two assets A and B. Asset A always stays flat, while asset B doubles on odd days and
decreases by half on even days. Then, buy and hold either A or B will in the long run realize no
significant profit, and it appears that there is no obvious strategy that realizes geometric growth.
But the naive Talmud method can! At the beginning of any day, his portfolio is distributed half
and half in assets A and B. At the end of the odd day after asset B doubled, his wealth increased
by 50%, and he sells 1/4 of his asset B, and use it buy asset A. So in the beginning of the next
day, an even day, his portfolio is till half and half. In the end of this day, after asset B shrank
by half, his portfolio worth is only 75% of the worth in the morning, (decreased by 25%), and he
sells 1/4 of his asset A and use it to buy asset B to keep the balanced half-half asset distribution...
Then, within two consecutive days, the portfolio worth becomes 1.5 ∗ 0.75 = 9/8. In other words,
it increased by 1/8 = 12.5%. Within a year of 250 trading days, the portfolio worth would increase
(9/8)125 = 2477795 times.

In reality, there is no such perfect and deterministic scenario. However, the example serves the
purpose of illustrating the idea behind the constant rebalanced portfolio, which in essense is a mean
reverting strategy, as seen in the above over-simplified example. Even though it is indeed simple
and naive, without optimization and/or risk control, it has been well documented in the modern
finance study that the naive rule, also called the 1/N rule, can compete with the more sophisticated
portfolio management rules (e.g., DeMiguel, Garlappi and Uppal, , 2005). The primary reason is:
rules based on optimization generally involve the estimation risk, while the naive rules do not have
the estimation step.

Suppose there are totally p assets, with prices Pt,1, ..., Pt,p, t = 0, 1, ..., and returns xt = (xt1, ...xtp),
and t = 1, 2, ...,, where xtj = Pt,j/Pt,j−1 − 1. The constant rebalance portfolio extends the naive
1/N rule to a class of portfolios that always holds fixed proportion of each asset. Let the proportion
be denoted by a = (a1, ..., ap) with ai ≥ 0 and

∑
i ai = 1. The vector a can be used to indicate

such a constant rebalanced portfolio. Notice that buy and hold one single asset, say asset i, is a
special case of constant rebalanced portfolios, with a = (0, .., 0, 1, 0..., 0) where the 1 appear in the
i-th entry.

It is natural to narrow the search space of the optimal portfolios to the constant rebalanced portfolios
and try to find the optimal one. The universal portfolio (Cover, 1991) is aimed at this purpose,
with

bt+1 =

∫
B
bWt(b)db∫

B
Wt(b)db

(4.1)

Here Wt(b) =
∏t

j=1 b
T (1 + xj) represent the portfolio worth of the constant rebalanced portfolio

indexed by b, and B = {b ∈ Rp : b ≥ 0,b′1 = 1} refers to the collection of all such indexes.
The universal portfolio places weights on the constant rebalanced portfoio strategy according to
their past performance. Those with better performance receive higher weights. It is mathmatically
proved that in the long run, the universal portfolio can do as well as the best performing single
asset.
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It is intersting to observe that, constant reblanced portfolio is a special case of mean reverting.
While the univeral portfolio’s selection of constant rebalanced portfolio based on past formance
is special case of momentum or trend-following. Therefore it can be viewed as a mixture of mean
reverting and momentum. Moreover, while constant rebalanced portfolio, particularly the 1/N rule,
is regarded as a diversification (without optimization) over the assets, the universal portfolio can
also be regarded as a diversication over a class of portfolio management methods, the constant
reblanced portfolios. This view point and the practical implementation would be quite useful.

4.2. Markowitz’s mean variance portfolio: simple cases.

Markowitz’s mean variance portfolio uses the mean and variance of returns to calibrate the gain
and risk of the assets or portfolios. For ease of presentation, we first consider two risky assets, i.e.,
p = 2. Let

µ =

(
µ1

µ2

)
Σ =

(
σ11 σ12
σ21 σ22

)
be their mean and variances of the returns. Consider a portfolio with weights w = (w, 1 − w)T ,
which places weight w on asset 1 and 1−w on asset 2. Then, the mean and variance of this portfolio
are

µP = wTµ = wµ1 + (1− w)µ2 σ2
P = wT Σw = w2σ11 + 2w(1− w)σ12 + (1− w)2σ22.

Clearly, µP is a linear function of w and σ2
P is a quadratic function of w. Assume there is a risk

free return asset F with risk free rate µf .

σp

µp

0

F

Efficient Frontier R1

R2

Minimum variance portfolio

T

Figure 4.1

The above figure shows in the solide curve the variation of µP and σP along with w. The left
most point of the curve refers to the portfolio with minimum variance, and hence called minimum
variance portfolio. Upper portion of the curve starting from the minimum variance portfolio is
called efficient frontier. Each point on the efficient frontier, called efficient portfolio, is a portfolio
such that, it has higher return than any other portfolio with the same variance, or, in other words,
it has smaller variance than any other portfolio with the same mean. The two ends of the curve
correspond to the portfolios with w = 0 or w = 1, the portfolios with either asset 1 or asset 2. It is
seen that portfolios in the lower part of the curve below minimum variance portfolio is inferior to
the efficient frontier.

With the availability of risk free asset with risk free return rate µf , one can combine the risk free
asset with any portfolio of the two risky assets to form a three assets portfolio. Recall that µP and
σ2
P denote the mean and variance of a portfolio with the two risky assets. Suppose, for the new

portfolio with three assets, the weight on the risk-free asset is w̃ and that on a portfolio of two risky
asset is 1− w̃. Then, the mean and variance of this new portfolio is

w̃µf + (1− w̃)µP (1− w̃)2σ2
P



403

The mean and standard deviation are both linear function of w̃. Their variation along with w̃ is
shown in the dotted straight lines. The end point of line at F is the portfolio entirely on risk free
asset (w̃ = 1), and the other end point of the line at the solid curve is the portfolio with two risky
assets and no risk free asset (w̃ = 0).

The slope of the dotted real line is

w̃µf + (1− w̃)µP − µf√
(1− w̃)2σ2

P

=
µP − µf

σP
.

It measures the amount of excess returns, over the risk free return, per unit risk. Here the risk
is measured by the standard deviation. This quantity is called Sharpe’s ratio. It is natural that
the portfolio with highest Sharpe’s ratio would be regarded as the best. Notice that all portfolios
on each dotted line share the same Sharpe’s ratio. The point on the solid curve with the highest
Sharpe’s ratio is called tangency portfolio, since it corresponds to the dotted line that is tangent to
the curve and with the highest slope.

With these three assets, the efficient portfolio, those with highest Sharpe ratios, must be a com-
bination of the tangency portfolio with the risk free asset. This is because any portfolio must be
on the line connecting a point on the curve with F and its slope, the Sharpe ratio, must be lower
than that of the line connecting the tangency portfolio with F . Again, the efficient portfolio, here
with three assets, mean that, any portfolio with the same risk must have lower mean return, or any
portfolio with same mean return must have higher risk.

That all efficient portfolios must be a combination of the risk free asset with the tangency portfolio
implies that the composition of the risky assets remain the same for all efficient portfolios. The
percentage of the risk free asset, which may vary, adjusts the returns and the risks of the efficient
portfolios. The higher the risk, the higher the return.

4.3. Markowitz’s mean variance portfolio: general cases.

Consider the genearl case with p assets. Let

µ =

µ1

...
µp

 and Σ =

σ11 · · · σ1p
...

...
...

σp1 · · · σpp


be the mean and variance of the p assets. Let w = (w1, ..., wp)T be the weights on the p-assets to
form a portfolio, with wT1 =

∑p
j=1 wj = 1. Then, the mean and variance of this portfolio is wTµ

and wT Σw. Suppose we set a target of mean return µ0 and wish to minimize the risk. It is an
optimization problem:

argminw{wT Σw} subject to wTµ = µ0, and wT1 = 1. (4.2)

A different but equivalent formulation is, we set a target risk of σ2
0 and wish to maximize the mean

return:

argmaxw{wTµ} subject to wT Σw = σ2
0 , and wT1 = 1.

Set λ > 0 as the risk aversion parameter. The larger the λ, the more risk averse. Then, another
equivalent formulation is is

w?(λ) = argmaxw{wTµ− λ

2
wT Σw} subject to wT1 = 1. (4.3)

The solution, corresponding to the effient frontior, is, through Lagrange multiplier,

w?(λ) =
1

λ
Σ−1µ+

λ− d2
λd1

Σ−11, (4.4)
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where d2 = 1T Σ−1µ and d1 = 1T Σ−11. The optimized mean returns and variances are, respectively

d3d1 − d22
λd1

+
d2
d1

and
d3d1 − d22
λ2d1

+
1

d1
(4.5)

where d3 = µT Σ−1µ. It follows from the quadratic optimization that all above three formulation
lead to the same solutions, each depending on µ0, σ0 and λ.

Suppose now in addition to the p risky asset, we also have a risk free asset, asset 0, with risk free
rate µf . Let the portfolio be (w0,w) with w0 + w1 + ... + wp = w0 + wT1 = 1. We can similarly
consider the efficient portfolio as an optimization problem

argmax(w0,w){w0µf + wTµ− λ

2
wT Σw} subject to w0 + wT1 = 1. (4.6)

It can be shown that the efficient portfolio is

w0 = 1 + (1/λ)(µfd1 − d2), w = (1/λ)Σ−1(µ− µf1). (4.7)

Here Σ−1(µ−µf1), with constant rescale, corresponds to the tangency portfolio. It can be computed
that the mean return of the efficient portfolio is

1

λ
(µ− µf1)T Σ−1(µ− µf1) =

1

λ
(d3 − 2µfd2 + µ2

fd1)

and the variance of the efficient portfolio is

1

λ2
(µ− µf1)T Σ−1(µ− µf1) =

1

λ2
(d3 − 2µfd2 + µ2

fd1).

The sharpe’s ratio of the efficient portfolio is then

(1/λ)(d3 − 2µfd2 + µ2
fd1)

{(1/λ2)(d3 − 2µfd2 + µ2
fd1)}1/2

= {(µ− µf1)T Σ−1(µ− µf1)}1/2 = (d3 − 2µfd2 + µ2
fd1)1/2

Note that the Sharpe ratio of all efficient portfolios are irrelevant with the risk aversion parameter
λ. The effect of λ is again adjusting the weight of the risk free asset.

Mathematically, with or without risk-free asset, the efficient portfolio problem can be formulated in
the same way. In the set up of p risky assets, one can simply take the variance of one of the assets,
say the first asset, as tending 0, its correlation with other assets as 0, and its return as the risk free
rate µf . Then σ11 tend to 0 and σ1j = 0 for j 6= 1. Taking limit, one gets exactly the same result.

4.4. Markowitz’s mean variance portfolio with constriants.

The above general case of Markowitz’s mean variance portfolio allows short sell. In other words, the
weights can be negative. In reality, many assets are traded under constraints, typically the no-short-
sell constraint. Under these constriants, the mean variance principle still applies. The associated
optimization problem is with these constraints. In general, the analytic solutions with closed form
are often not available, but with the aid of computer, numerical solutions are straightforward.

With the no-short-sell constriant, the weights must be nonnegative. And the efficient portfolio is
the optimization of

argmaxw{wTµ− λ

2
wT Σw} subject to wT1 = 1 and wi ≥ 0, i = 1, ..., p.

A slightly more general constriant is constraining the short level, say 20%, which can be presented
as

argmaxw{wTµ− λ

2
wT Σw} subject to wT1 = 1 and

n∑
j=1

|wj | ≤ 1.2.
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In other words, with 1000 net asset you are allowed to own 1100 dollar in long position and 100
dollar in short position. The no short sell constraint is the same as

∑p
j=1 |wj | ≤ 1.

Many funds restrict the holding of one single asset in their portfolios to be lower than a given
threshold, say 5%. Then, the efficient portfolio is the optimization of

argmaxw{wTµ− λ

2
wT Σw} subject to wT1 = 1 and 0 ≤ wi ≤ 5%, i = 1, ..., p.

Further restrictions may be possible. For example, restricting the holding of a class of assets, such
as real estate stocks, to be below a threshold, say 5%. This restriction is linear and can be presented
as ∑

j∈A
wj ≤ 5%.

where A is the collection of all real estate stocks. Efficient portfolios under linear constraints can
be solved easily using constrained quadratic optimization.

The no short sell constraint is often imposed by the market for many assets. However, in finance
literature, it has been found that no short sell constraint can actually help to control risk (Jagan-
nathan and Ma, 2003).

4.5. Statistical estimation.

The previous discusion of Markowitz mean variance portfolio is static and theoretical. In reality, the
true population means and variances that we use in deriving the efficient portfolios and unknown.
Worse, they are dynamic and may change with time.

When actually contructing Markowitz’s efficient portfolio in practice, one faces a daunting task of
estimating the future mean and variance of returns of all assets. Not surprisingly, many empirical
studies show that efficient portfolios have poor performance, very often cannot beat even the naive
portfolio. One of the main reason is the difficulty in accurately estimating future mean and variance
of the returns of the assets. Afterall, accurate estimation of few, not all, of the assets would suffice
for a successful portfolio, even without the mean variance optimazation.

The direct and obvious way of estimating the mean and variances of the p assets is using the sample
mean and sample variance of assets in the past period of time, which we may call training period.
Using xj = (xj1, ..., xjp), j = t−1, t−2, ..., t−n as the returns for the past n periods. Assume they
are iid with mean µ and varaince Σ. Then the sample mean is approximately normal with mean µ
and variance Σ/n; and the sample variance also has mean Σ and is close to a Wishart distribution.
Given sufficient sample size, the estimation can be quite accurate, justified easily using statistical
asymptotic theory.

However, the problem in reality is that they are not iid random variables. And direct use of sample
mean and sample variance are not favorable in empirical studies. Some statistical techniques can
be applied to make certain improvements. One typical approach involve Stein’s shrinkage: for
estimating the mean returns of asset j, rather than using sample mean x̄j , one uses

αx̄j + (1− α)x̄,

where x̄ = (1/p)
∑p

j=1 x̄j is the overall sample mean of all assets, and α is the shrinkage factor. The
method can be heuristically understood as a conservative method: all returns are shrunk towards
the overall mean. Higher/lower past return could, at least in part, resulted from certain random
factors, or good/bad luck, that would not sustain in the future. Determining the shrinkage factors
is an important research problem. By the same token, the variance estimator is often also shrunk
towards the identity matrix.

In the literature, resampling methods or Bayesain methods are also applied with the purpose of
improving the estimation of the mean and variance. The bootstrap method (poorman’s Baysian
method) is one of the most popular resampling methods in statistics. The reported results are
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mixed. Here we consider the problem of estimating the Sharpe ratio of the efficient portfolio, for
the purpose to illustrate the method of bootstrap.

Suppose µ̂ and Σ̂ are our estimates of the mean and variance of returns µ and Σ. They are
not necessarily the sample mean and sample variance. Suppose (ŵ0, ŵ) is one estimated efficient
portfolio. That is

(ŵ0, ŵ) = argmax(w0,w){w0µf + wT µ̂− λ

2
wT Σ̂w} subject to w0 + wT1 = 1.

The estimated efficient portfolio is

ŵ0 = 1 + (1/λ)(µf d̂1 − d̂2), ŵ = (1/λ)Σ̂−1(µ̂− µf1).

Here Σ̂−1(µ̂− µf1) corresponds to the estimated tangency portfolio, and d̂1, d̂2 and d̂3 are defined
analogously. The estimated Sharpe’s ratio is

ŵ0µf + ŵT µ̂− µf

{ŵT Σ̂ŵ}1/2.
= (d̂3 − 2µf d̂2 + µ2

f d̂1)1/2.

But the actual Sharpe ratio is

ŵ0µf + ŵTµ− µf

{ŵT Σŵ}1/2.

In order to estimate the estimation error of the Sharpe ratio, one can conduct the boostrap method.
Take, with replacement, n samples from the data {xt−1, ...,xt−n}, denote as {x∗1, ...,x∗n} and com-
pute

s∗1 =
ŵ∗0µf + (ŵ∗)T (µ̂∗ − µf )

{(ŵ∗)T Σ̂∗ŵ∗}1/2
= (d̂∗3 − 2µf d̂

∗
2 + µ2

f d̂
∗
1)1/2

and

s1 =
ŵ∗0µf + (ŵ∗)T (µ̂− µf )

{(ŵ∗)T Σ̂ŵ∗}1/2
.

Repeat this process M times, and obtain s∗2, s2, ...., s
∗
M , sM , with M being large. The distribution

of s∗1 − s1, s∗2 − s2, ..., s∗M − sM is used to approximate the distribution of the estimation error of
Sharpe ratio.

4.6. Examples.

We selected 100 stocks that have been listed in the China A-stock Market since 2001. Their trade
codes are shown in the following table. We will consider three trading frequencies: daily, weekly (5
trading days) and monthly (20 trading days). Two types of transaction costs, 0 and 0.004, will also
be involved in the following examples.

Example 1

In this example, we show the empirical performance of the naive Talmud rule (section 4.1) for
portfolio management. For comparison, we also consider the ruls of follow-the-leader and follow-
the-loser:

• Equal weight: we will adjust portfolio so that every stock has equal weight at the beginning
of each period.

• Follow-the-leader: buy equal weight of the 10% stocks (i.e. 10 stocks) that have the largest
increment in the last period.

• Follow-the-loser: buy equal weight of the 10% stocks (i.e. 10 stocks) that have the largest
decrease in the last observation period.
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600005.SH 600082.SH 600123.SH 000023.SZ 000400.SZ

600006.SH 600084.SH 600125.SH 000027.SZ 000401.SZ

600008.SH 600085.SH 600127.SH 000037.SZ 000408.SZ

600016.SH 600095.SH 600128.SH 000039.SZ 000410.SZ

600019.SH 600097.SH 600130.SH 000040.SZ 000413.SZ

600038.SH 600098.SH 600132.SH 000045.SZ 000416.SZ

600054.SH 600100.SH 600133.SH 000048.SZ 000417.SZ

600056.SH 600103.SH 600135.SH 000058.SZ 000419.SZ

600059.SH 600104.SH 600136.SH 000059.SZ 000420.SZ

600061.SH 600105.SH 600138.SH 000060.SZ 000428.SZ

600063.SH 600106.SH 600145.SH 000061.SZ 000429.SZ

600064.SH 600110.SH 600146.SH 000065.SZ 000488.SZ

600066.SH 600112.SH 000002.SZ 000066.SZ 000505.SZ

600068.SH 600116.SH 000004.SZ 000069.SZ 000509.SZ

600069.SH 600117.SH 000007.SZ 000088.SZ 000511.SZ

600070.SH 600118.SH 000008.SZ 000089.SZ 000513.SZ

600073.SH 600119.SH 000014.SZ 000096.SZ 000514.SZ

600074.SH 600120.SH 000016.SZ 000150.SZ 000516.SZ

600078.SH 600121.SH 000018.SZ 000151.SZ 000519.SZ

600079.SH 600122.SH 000019.SZ 000159.SZ 000521.SZ

Table 1: Stock list

The performance of three portfolio strategies adjusted in the daily basis is shown in the figure
below. Here we assume the initial account balance is 1. The dashed lines show the variation with
transaction cost (for simplicity, we assume that 0.4% will be deducted when buying stocks, no more
cost will be paid when selling stocks).

Figures 2 and 3 show performance with adjustments on the weekly and monthly frequency, respec-
tively. Here are some comments for these plots:

• In the case of adjustment on daily frequency, the naive Talmud rule has s the best performance.
The other two methods seem to be disastrous. This implies that pure momentum or mean-
reverting (in the daily frequency) probably do not work well. Since the best or worst performing
stocks usually change between different trading periods, much more transaction cost is carried
with the follow-the-leader or follow-the-loser methods than with the equal weight method,
which usually only need to tune the portfolio slightly each time.

• In the case of adjustment on weekly frequency, the results are similar to those on daily fre-
quency. But this time follow-the-loser method performs a little better, although after consid-
ering transaction cost, positive returns disappear.

• In the case of adjustment on monthly frequency, follow-the-loser method performs much better
than the other two methods. One possible reason is, in the long run, nearly all stocks have
a trend of increasing. In the dataset, only 1 out of the 100 stocks with current price lower
than 16 years ago. About 2/3 of the stocks have doubled their price during the time period.
Monthly frequency can reflect this trend to some degree. If one stock is lagging behind in
consecutive periods, it is likely to catch up with the market. The effect of transaction cost in
the weekly and monthly transaction cases is lower, since there are fewer portfolio adjustments.
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Figure 1: Naive rule application: daily frequency case

Example 2

Part 1

In this example, the same dataset as in Example 1 is used. We apply Markowitz’s mean-variance
principle to calculate the portfolio weights. Specifically, at each period, we will reweigh portfolios
based on the sample mean and variance in previous 30 periods. Four methods with different
constraints are considered:

• Method 1. Short selling allowed. (Note: to avoid unrealistic results, we constrain the short
level to 20%)

• Method 2. Short selling not allowed.

• Method 3. Same as Method 1, but absolute value of weight for each stock must be less than
5%.

• Method 4. Same as Method 2, but absolute value of weight for each stock must be less than
5%.

Here we will use the function solve.QP in the package quadprog of R language for quadratic programming.
Specifically, the quadratic objective function to be minimized is

1

2
wT (Σ)w − wTµ
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Figure 2: Naive rule application: weekly frequency case

where w is the weight vector for 100 stocks which we want to solve, Σ and µ are the sample
covariance matrix and mean estimated by the training data. The results for daily/weekly/monthly
frequency cases are illustrated in Figure 4, 5 and 6 respectively.

And we have some comments for the above results:

• No short sell constraint does actually help to control risk. For example, method 1 (short selling
allowed) in all three cases perform worst. The account balance shrinks to nearly 0 only after
a few years. Instead, method 2 (short selling not allowed) peforms much better.

• In the monthly frequency adjustments, method 4 (short selling not allowed and max weight is
constrained by 5%) performs best, which implies in the long-term trading, this approach can
also play a role of risk control.

• Again, the effect of transaction cost is significant for the daily frequency case, but nearly
negligible for the monthly frequency case.

Part 2 The analysis in Part 1 is modified with a shrinkage used in estimation. we use shrinkage
factor of α = 1/2 to reweigh the sample means, i.e. for each stock i, we will use the following µ̂i as
the estimation of sample mean in the quadratic programming. Other settings stay the same.

µ̂i =
1

2
µi +

1

2

1

100

100∑
i=1

µi
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Figure 3: Naive rule application: monthly frequency case

The results for the four methods and three trading frequencies are shown in Figures 7, 8 and 9. By
comparing them to Part 1, we found that the effect of shrinkage factor α is not quite significant.

Exercises.

4.1. Does bt+1 belong to the portfolio set B with no short sell.

4.2. Verify that (4.4) is the solution of (4.3).

4.3. Verify (4.5).

4.4. Write the codes of page 297 of RU into your R software and conduct a constrained quadratic
optimization by designing a µ and Σ.
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Figure 4: Markowitz’s mean-variance principle: daily frequency case
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Figure 5: Markowitz’s mean-variance principle: weekly frequency case
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Figure 6: Markowitz’s mean-variance principle: monthly frequency case
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Figure 7: Markowitz’s mean-variance principle: daily frequency case
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Figure 8: Markowitz’s mean-variance principle: weekly frequency case
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Figure 9: Markowitz’s mean-variance principle: monthly frequency case


