
801

Chapter 8.

Learning Methods

We review some of the most commonly used learning methods, including k-nearest neighbor (KNN),
decision trees and random forests, support vector machines, neural nets and cluster analysis. The
ensemble methods, also viewed as part of regularization in broad sense, can be very useful in com-
bining weaker methods into a strong method. We shall consider both regresison and classification
problems, with data (yi,xi), i = 1, ..., p, where yi are output and xi are p-dimensional inputs. The
regression model throughout this chapter is

yi = f(xi) + εi, ...i = 1, ..., n.

Unless otherwise stated, the loss function is the square loss. For classification problems, yi = ±1,
representing the two classes: class 1 and class −1. In this section, we will use the terms learners,
predictors and estimators interchangeably.

8.1. K-nearest neighbor (KNN).

K-nearest neighbor is one of the simplest methods. For any x in the p-dimensional real space, let
K(x) denote the indices of the data points that are the K closest to x. In a regression problem, f
is estimated by

f̂(x) =
1

K

∑
i∈K(x)

yi,

which is just the average of the responses of the K data points that are the closest to x. The norm
‖ · ‖ is usually the Euclidean norm. Notice that f̂(x) is a step function of x. In other words, the
entire input space is partitioned into

(
n
K

)
sets, each corresponding to one cluster of K data points.

Arrange the totally
(
n
K

)
such clusters as clusters 1, 2, ...,

(
n
K

)
. The set corresponding to the j-th

cluster are all the points that are closest to cluster j than to any other cluster of data points. Some
of the sets could be empty. Notice that the smaller that K, the larger the model, and the larger
the variance and the smaller the bias. For prediction purpose, the best K are generally determined
by cross-validation.

For classification, simply classify a new observation with input x as from class 1 if f̂(x) > 0 and into
class −1 otherwise. This is a majority vote scheme: classify the observation into the class which is
the majority class among all the K nearest data points.

8.2. Classification and regression trees (CART).

Decision trees are popular nonlinear methods that have proper interpretation. In fact, they may
even have better interpretation than linear regression models. Decision trees can also be viewed as
step function regression. The predicted outputs are constants over specially constructed partitions
of the input value space. In the following, we introduce the classification and regression trees
(CART).

Under squared loss, if f̂ is a constant over a region R, then f̂(x) is the average of all data points xi
in R. Regression trees are greedy algorithms to grow a tree that evenually leads to the partition of
the input space. At every step, the algorithm determines the way to split a given region, according
to the values of one variable. The critical issue is the choice of which variable and which cut point
to split the data. Set R−j,s = {i : xi ∈ R, xij ≤ s} and R+

j,s = {i : xi ∈ R, xij > s}. Then R can

be split into two regions R+
j,s and R−j,s according whether the j-th variable is greater than s or not.

The reduction of the residual sum of squares (RSS) is∑
i∈R

(yi − ȳ)2 −
(∑
i∈R+

j,s

(yi − ȳ+)2 +
∑
i∈R−

j,s

(yi − ȳ−)2
)

802

where ȳ+ and ȳ− are the average of yi for i ∈ R+
j,s and i ∈ R−j,s, respectively. Then, it is natural that

one chooses the variable j and the cutpoint s so that the reduction of RSS is the largest, since the
smaller the RSS, the better the fit. In this way, the method of regression trees defines a recursive
binary split algorithm to partition the space. Specifically, first split the entire input space into two
regions. then, for each of the two regions, perform the split by the same rule. Continue the split
till stop. Every split must be choosing the best variable and best cutpoint to achieve the largest
reduction of RSS. In the end, each partitioned area represents a terminal node, also called leaves,
while every split corresponds to an internal node. The entire process resembles the growth of trees.
One joins a node with the following and the line is viewed as branches. Traditionally, the tree-like
structure of data-split is drawn upside-down. The size of the tree can be conveniently measured by
the number of terminal nodes. A simple tree is shown in the following with three terminal nodes
(leaves) and two internal nodes. The leaves are R1 = {X1 ≤ 0.9}; R2 = {X1 > 0.9, X2 ≥ −0.3}
and R3 = {X1 > 0.9, X2 < −0.3}.

R1

R2 R3

X1 ≤ 0.9 X1 > 0.9

X2 ≥ −0.3 X2 < −0.3

There is a major problem of when to stop the split. One way is to pre-specify a threshold for the
amount reduction of RSS or for the number of data points in the region. A drawback with these
types of stop rules is that they are usually near-sighted as they are based on the current step of
data-split. A commonly adopted strategy is to grow a very large tree, which tends to overfit the
data, and then perform a pruning of the tree. The cost-complexity pruning is the most popular with
computational efficiency. For a large tree, denoted as T0, we consider any of its subtrees T that
are part of T0 by collapsing any number of internal nodes. Consider the common regularization
formula of “Loss + Penalty”

|T |∑
m=1

∑
i∈Rm

(yi − ȳm)2 + α|T |

where |T | denotes the number of the terminal nodes of the subtree T , and Rm and the terminal
nodes and ȳm is the mean outputs of the data points in Rm, and α is tuning parameter. Denote
the minimized subtree as Tα. If α = 0, no penalty the optimal tree is the original T0. If α = ∞,
the tree has no split at all. The predictor is just ȳ. The larger the α, the more penalty for model
complexity. Just like Lasso, there exists efficient computation algorithm to compute the entire path
of Tα for all α. Then we can use the cross-validation method to find the best α to minimize the
test error.

For classification trees, one can follow the same line of procedure as that of regression trees, but
using, instead of RSS, the error measurements that are more proper for classications. For a region
R, let p̂k be the percentage of observations in this region that belong to class k. We introduce an
impurity measuare that corresponds to the RSS in regression. The typical impurity measures are

(a) The classification error rate (for this region R) is

E = 1−maxkp̂k.

803

(b) The Gini index is

G =

K∑
k=1

p̂k(1− p̂k)

(c) The cross-entropy is

D = −
K∑
k=1

p̂k log(p̂k).

If a region R is nearly pure, most of the observations are from one class, then the Gini-index and
cross-entropy would take smaller values than classfication error rate. Gini-index and cross-entropy
are more sentive to node purity. To evaluate the quality of a particluar split, the Gini-index and
cross-entropy are more popularly used as error measurement crietria than classification error rate.
Any of these three approaches might be used when pruning the tree. The classification error rate
is preferable if prediction accuracy of the final pruned tree is the goal.

Large regression trees are known to be of high variance, meaning that given different training data,
the estimates can be quite different. As a result, prediction based on a single large tree can be
unstable and inaccurate. A different way to boost the prediciton accuracy of trees is to grow many
small trees and combine them together. This will be introduced in Section 8.5.

8.3. Support vector machines. (SVM)

Support vector machines are commonly applied to classification problems, though it also has appli-
cation to regression. We consider here the classification problem. Consider a fixed p-dimensional
vector b = (b1, ..., bp). All p-vector x = (x1, ..., xp) can be written as ab+z where z is perpendicular
to b. Consider linear function

g(x) =< b,x >= b1x1 + ...+ bpxp.

Then g(x) = 0 defines a p − 1 dimensional hyperplane, which is perpendicular to the vector b =
(b1, ..., bp)

T and through origin. Denote this hyperplane as A0. And all the points of x satisfying
g(x) = c make a p− 1 dimensional hyperplane that can be expressed as cb/‖b‖2 +A0, denoted as
Ac. Thus a point x satifying g(x)− c > 0 are on one side of Ac along the direction of b, and those
satisfying g(x)− c < 0 are on the other side of Ac. Moreover, (g(x)− c)/‖b‖ is the signed distance
between x and Ac.
Condier first the simple case that the data D = {(yi,xi), i = 1, ..., n}, where yi = ±1, are separated
by a hyperplane

f(x) = β0 + β1x1 + ...+ βpxp,

meaning that, for all data points i in class 1, f(xi) > 0, and they are all on one side of the
hyperplane; and for all i in the other class −1, f(xi) < 0, and they are all on the other the other
side of the hyperplane. It can be equivalently expressed as

yif(xi) > 0, for all i = 1, .., n.

A classification rule would simple classify a subject with input x into class 1 if f(x) > 0 and into
class −1 if f(xi) < 0.

A maximal margin classifier seeks to find the hyperplane such that the minimal distance of all
points to the separating hyperplane is the smallest. This is the following optimization problem:

maximizeβ0,β1,...,βp
M

subject to

p∑
j=1

β2
j = 1,

804

and yi(β0 + β1xi1 + ...+ βpxip) ≥M for all i

where M is the half of the width of the strip that separates the data points in two classes. This
strip is defined by |f(x)| ≤M . The data points in this strip or on the border of the strip is called
support vectors.

In general, the two classes are usually not separable by any hyperplane, and, even if they are, the
max-margin may not be desirable because of its high variance, and thus possible over-fit. The
generalization of the maximal margin classifier to the non-separable case is known as the support
vector classifier, where a soft-margin is used in place of the max margin. It results in greater
robustness to individual observations, and better classification of most of the training observations.
Soft-margin classifer (support vector classifier) allow some violation of the margin: some can be on
the wrong side of the margin (in the river) or even wrong side of the hyperplane. The solution is
the given by the following optimization procedure:

maximizeβ0,β1,...,βp
M

subject to

p∑
j=1

β2
j = 1, and

yi(β0 + β1xi1 + ...+ βpxip) ≥M(1− εi), εi ≥ 0 for all i

and

n∑
i=1

εi ≤ C,

where C is a nonnegative tuning parameter, and εi are the so-called slack variables. The classifica-
tion rule is: classify an observation with input x into class +1 if f(x) > 0; else into −1 class.

To understand the slack variables εi, we note that εi = 0 ⇐⇒ the i-th observation is on the
correct side of the margin; εi > 0 ⇐⇒ the i-th observation is on the wrong side of the margin; and
εi > 1 ⇐⇒ the i-th observation is on the wrong side of the hyperplane. The tuning parameter C
is a budget for the amount that the margin can be violated by the n observations. C = 0 ⇐⇒ no
budget and, as a result, εi = 0 for all i. The classifier is a maximal margin classifier, which exists
only if the two classes are separable by hyperplanes. Larger C implies more tolerance of margin
violation. Note that more than C observations can be on the wrong side of the soft-margin classifier
hyperplane. As C increases, the margin widens and more violations of the margin. Observations
that lie directly on the margin, or on the wrong side of the margin for their class, are known as
support vectors. Only the support vectors affect the support vector classifier. Those strictly on the
correct side of the margin do not, just as outliers do not change the median. Larger C implies more
violations, and more support vectors, and smaller variance and more robust classfier.

In summary, the linear support vector classifier can be represented as

f(x) = β0 +

n∑
i=1

αi < xi,x >

where αi 6= 0 only for all support vectors. Moreover, αi can also be computed based on < xj ,xk >.
Only the inner product of the feature space is relevant in computing the linaer support vector
classfier. The above support vector classifier has a linear boundary, which may not be the “ground
truth” in practice. To cope with more general cases, one can consider to enlarge the feature space.
A straightfoward method is to include the power functions of the inputs. A better approach is the
use of the kernel trick, which gives rise to the suppot vector machines. The support vector machine
actually enlarges the original feature space to a space of kernel functions:

xi → K(·,xi).

The kernel functions are bivariate functions satisfying the property of nonnegative definiteness:∑
i,j aiajK(xi,xj) ≥ 0. The original feature space is the p-dimensional input space. The enlarged

805

feature space is the space of kernel functions, which is in fact of infinite dimension. In actual fitting
of the support vector machine, we only need to compute the K(xi,xj) for all xi,xj in training data.
And the support vector machine classifier can be written as

f(x) = β0 +

n∑
i=1

αiK(x,xi)

The commonly used kernel functions are

(a) linear kernel K(xi,xj) =< xi,xj >= xTi xj .

(b) polynomial kernel of degree d: K(xi,xj) = (1+ < xi,xj >)d.

(c) Gaussian radial kernel: K(xi,xj) = exp(−γ‖xj − xj‖2), γ > 0.

The key point here is that only the inner product of the feature space is relevant in computing the
linear support vector classfier.

Mathematically, the SVM is a result of “hinge loss + ridge penalty”:

n∑
i=1

max[0, 1− yif(xi)] + λ

p∑
j=1

β2
j .

where f(x) = β0 +β1x1 + ...+βxp. The hinge loss function : (1−x)+. In comparison, the classifier
from the logistic regression with l2 penalty is

n∑
i=1

log(1 + e−yif(xi)) + λ

p∑
j=1

β2
j

with the logistic loss function: log(1 + e−x).

8.4. Neural network

Neural network, particular deep learning, has achieved spectalur success in the past decades and
is now one of the most successful learning methods. With deep architecture, the neural network
is a particular kind of machine learning that achieves great power and flexibility by learning to
represent the world as a nested hierarchy of concepts, with each concept defined in relation to
simpler concepts, and more abstract representations computed in terms of less abstract ones. The
main idea is to process, in a layerwise structure, linear combinations of the outputs of the previous
layers by a nonlinear functions. These processors are called neural nets. In the basic feed-forward
neural network, one can understand the network as informatoin flow forwardly from input x to
output ŷ. The following picture shows a schematic of the neural network with three layers: input
layer (bottom), hidden layer (middle) and output layer (top).

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 11

 Y Y Y 21 K

 Z Z Z1 Z2 3 m

 X X

 Z Z1 Z2 3

1 Xp X p-1 X2 X3

M

 X p-13 X2 X1 p

 Z

 Y Y Y

 X

K1 2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

FIGURE 11.2. Schematic of a single hidden layer,
feed-forward neural network.

806

An optimization algorithm called backpropagation greatly reduces the computational complexity.
We note that backpropagation only refers to a computation/optimization procedure on training
data, and in fact, only the derivatives are passed backward. It does not mean the entire learning
algorithm is backward propagation.

For the data with inputs-outputs: (xi, yi) : i = 1, ..., n, we temporarily change the notation to
xi = (1, xi1, ..., xip) by including a constant term. Here we consider the “vanilla” neural nets, with
only one hidden layer. Therefore, there are totally three layers, the input layer, the hidden layer
and the output layer. Let σ be an activation function. The hidden layer is denoted as hi, a vector
of m+ 1 dimension, implying m units in the hidden layer: hi = (1, hi1, ..., him)T , where

hij = σ(wT
j xi); j = 1, ...,m.

wj is the j-th row of W, which is m × (p + 1) matrix. ŷi = g(βThi), with activation function g.
The parameters are θ = (β,W) of m+ 1 +m(p+ 1) dimension.

Consider the least squares loss:

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − g(βThi))
2 =

n∑
i=1

Ri(θ).

The gradient based minimization is to differentiate the loss function, as function of θ, step-by-step,
backwards. The errors from an upper layer is propagated into the next lower layer as in the following
precedure.

(a) Step 1: For top-layer (output layer):

∂Ri(θ)

∂β
= −2(yi − ŷi)ġ(βThi)hi

= δihi, say.

(b) Step 2: For hidden layer:

∂Ri(θ)

∂wj
= −2(yi − ŷi)ġ(βThi)βj

∂hij
∂wj

= −2(yi − ŷi)ġ(βThi)βj σ̇(wT
j xi)xi

= sjixi, say.

Here δi and sji are the “errors” from the current model at the output and the hidden layer units.
The errors satify

sji = σ̇(wT
j xi)δiβj

These are the back-propagation equations, which can be used to fast update the parameters: (with
learning rate γ)

βnew = β − γ
n∑
i=1

∂Ri(θ)

∂β
= βj − γ

n∑
i=1

δihi

wnew
j = wj − γ

n∑
i=1

∂Ri(θ)

∂wj
= wj − γ

n∑
i=1

sjixi.

The back-propagation can be understood as a two pass algorithm. The forward pass is: given the
current parameters (weights), to compute ŷi = g(βThi) = g(βTσ(Wxi)). The backward pass is:
compute the error δi, then use the back-propagation equation to back-propagate it into the errors
sji of the next lower layer, (and continue on if more layers are in the network). All the errors are
then used to update the parameters with a proper choice of the learning rate. The advantages of
the back-propagation are simplicity of computation; the local nature: the local nature: each unit

807

passes and recieves information only to and from those units with connection; the batch learning:
The parameter updates do not have to take place over all training samples, i.e., the summation
could be on a subset (batch) of the training samples. It can even be just one single sample. This
is widely used stochastic gradient descent (SGD).

8.5. Ensemble methods.

Ensemble methods generally have two tasks: 1. build a bank of base learners; 2. combining these
base learners to form a final learner. These base learners are usually weak learners while the
combined one is expected to be a strong learner.

Bagging. Bagging stands for boostrap aggregating. By perturbing the data, one generate many
predictors based on the same model. Bagging perturbs the data by boostrap. Recall that f̂ is
the predictor based on original data D = {(y1, x1), ..., (yn, xn)}). a boostrap sample, denoted as
(y∗1 , x

∗
1), ..., (y∗n, x

∗
n), are a random sample from the original data D, by sampling with replacement.

Based on this boostrap sample, denoted as D∗1 , one can construct a predictor f̂∗1 . Repeat this

process, one can construct many predictors, say, f̂∗2 , ..., f̂
∗
B , where B can be as large as possible.

Then the bagged predictor is

f̂bagging(x) =
1

B

B∑
j=1

f̂∗j (x).

In the case of classification with two classes, 1 or −1, each f̂∗j takes values 1 or −1. Then the
bagged classifier is a majority-vote classifier: it classifies an new/old observation into that class

which receives most “vote” from f̂∗j , j = 1, ..., B.

Associated with bagging, there is an easily available estimate of test error. Let

f̂∗(xi) =

∑B
j=1 f̂

∗
j (xi)I((yi, xi) /∈ D∗j)∑B

j=1 I((yi, xi) /∈ D∗j)

be the average of the boostrap predictors based on the boostrap samples that do not contain the
i-th data point (yi, xi). Then, the OOB (out-of-bag) mean squared error is

n∑
i=1

(yi − f̂∗(xi))2,

which serves as an approriate estimator of the test mean squared error. In the case of classification,
f̂∗(xi) is the class of the majority vote of the OOB bootstrap classifiers. And the OOB classfication
error is

(1/n)

n∑
i=1

(yi 6= f̂∗(xi))

which is the estimator of the test classification error.

Boosting. The basic idea of boosting is sequentially add some base learners to the current learner
in a way to keep improving predictive accuracy of the current learner, and eventually arrive at a
final composite learner. At each step, the added base learner aims at predicting the residuals, the
differences between the responses and the predicted responses from the current model, or predicting
negative gradients of the loss function of the current fit. There exist various boosting methods. The
basic boosting method using residuals can be described as follows. With a learning method, call it
base learner, to produce f̂ based on D = {(yi, xi), i = 1, .., n}. Start with an initial predictor f̂ = 0.
Set ri = yi. Then iterate as follows.

(a) Fit the data (xi, ri), i = 1, .., n, to produce a learner ĝ.

(b) Update f̂ by f̂ + λĝ.

808

(c) Update ri by ri − λĝ(xi).

Continue this iteration till a stop, and output f̂ , which is the sum of λĝ at each step. Here λ is
the learning rate, which is usually chosen to be small. For a learning method that minimizes a loss
function L, the boosting algorithm can be described as the following. Start with f̂0(x) which is a
constant γ such that

∑n
i=1 L(yi, γ) is minimized. For k = 1, 2, ...,K :

f̂k(x) = f̂k−1(x) + λ̂ĝ(x)

where

(λ̂, ĝ(x)) = argming∈G,λ

n∑
i=1

L(yi, f̂k−1(x) + λg(x))

and G refers to the collection of learners for this learning method. For example, for the tree boosting,
G is the collection of trees with certain size. The final output is f̂K . This is the forward stagewise
boosting algorithm. Very often, the λ̂ is not chosen to be the optimal one but a learning rate that
is controled to be small.

The above minimization to obtain g might be computationally difficult. The gradient boosting is a
short-cut to reduce the computational complexity. Set

gik = − ∂

∂z
L(yi, z)|z=f̂k−1(xi)

A base learner, denoted as ĥk, is fit to the data: (gik,xi), i = 1, ..., n. The iteration becomes

f̂k(x) = f̂k−1(x) + λĥk(x)

where λ is the learning rate. For square loss, the gradient boosting and residual boosting are the
same.

Three techniques play important roles in boosting: 1. (shrinkage) the use of small learning rate;
2. Early stop to avoid overfit; 3. random subsampling to construct the base learners. The use
of small learning rate may increase computational workload but the iteration can be more stable.
Without early stopping, too many base learners putting together can cause overfit. The stop of
the boosting iteration is mostly determined by checking the test error through validation or cross
validation. The random subsampling is attempted to lower the correlation between the constructed
base learners.

Tree boosting and random forest The basic form of boosting can be applied to the boosting trees,
either based on residuals or based on gradients. Consider square loss, the the tree boosting algorithm
is:

(a) f̂0(x) = ȳ

(b) For k = 1, ...,K:

i. set ri = yi − f̂k−1(xi), i = 1, ..., n.

ii. fit the data (ri,xi), i = 1, ..., n, with a tree with J terminal nodes, denoted as Rk,j , j =
1, ..., J .

iii. set hk(x) =
∑J
j=1 γk,jI(x ∈ Rk,j) where γk,j is the average of the residuals of data with

inputs in Rk,j . i.e,

γk,j =
1

|Rk,j |
∑

xi∈Rk,j

ri

iv. update f̂k(x) = f̂k−1(x) + λhk(x).

(c) output f̂K .

809

Boosted trees can greatly improve over the prediction of each single tree. In fact, each single tree
in the process of boosting can be of small size, such as stumps. Stumps are trees with only two
leaves.

Random forest is a method of tree boosting by bagging, with an additional element of creating less
correlated trees. The specific procedure is as follows.

(a) For k = 1, ..., B:

i. Draw boostrap sample D∗k = {(x∗1, y1)..., (x∗n, y
∗
n)}

ii. Grow a tree T ∗k based on D∗k in the following fashion. Before every split, select m variables
at random from the p variables, and pick the best variable and cutpoint, among these m
variables to perform the split.

(b) Output f̂(x) = (1/B)
∑B
k=1 T

∗
k (x).

For classification problem, each tree T ∗k provide a class prediction for input x, and the random
forest outputs the majority-vote of them as the predicted class for x. The purpose of the random
subset selection in step (ii) is to create less correlated boostrap trees, so that the bagging would
have effect on variance reduction. A common choise of m is

√
p or smaller, and it can be as small

as 1.

Stacking. Stacking is also called stacked generalization. Suppose we have M models with predictors
f̂1, ..., f̂J based on the training data (yi,xi), i = 1, ..., n. A simple idea is to consider linear combi-
nation of the predictors to hopefully form a predictor of better accuracy. Let w = (w1, ..., wJ)T be
the weights. One might consider

n∑
i=1

(yi −
J∑
j=1

wj f̂j(xi))
2,

and wish to minize this training error to find the optimal weights. In terms of computation, the
minimizer is easily solved and has an expression like the least squares estimator. However, such a
minimization can easily lead to large weights on large models and small weights on small models.
In other words, the model complexity is not considered in the model combination. Stacking deals

with the problem by the leave-one-out-cross-validation (LOOCV). Let f̂
(−i)
j be the estimator of f

based on model j and the data excluding the i-th data point (yi,xi). Let

ŵ = argminw

n∑
i=1

(yi −
J∑
j=1

wj f̂
(−i)
j (xi))

2.

The resulting stacked predictor is
∑n
j=1 ŵj f̂j . Alternatively, one can also restrict ŵj to nonnegative

in the above minimization. It can be proved that, at the population level, the weighted model
averaging with optimal weights produce a model as good as or better than any of the individual
model, in the sense that it has smaller error than any single model.

There exist many other ensemble methods. The richest is the Bayesian model averaging or com-
bination. In broad sense, the regularized regression such as Lasso or ridge regression where there
are tuning parameters can also be viewed as ensemble methods, called Buckets of models. There
is a collection of models, each model indexed by a tuning parameter. Buckets of models method
tries to select the best of them, by using, for example, cross validation. Another method called
bumping also finds a best single model from a bucket of models by boostrap sampling. let the
original prediction based on the training data be f̂ . Draw B sets of boostrap samples, and fit
each boostrap sample to generate boostrap prediction f̂∗j , with j = 1, .., B. Choose the the pre-

diction among f̂ , f̂∗1 ,, f̂
∗
B with the smallest training error over the entire training data, which is∑n

i=1(yi− f̂∗j (xi))
2 for squared loss and prediction f̂∗j . Bumping picks the best prediction in terms

of training error, while bagging uses the average boostrap predictions.

