Advanced Probability Theory

Math5411

HKUST

Kani Chen (Instructor)

Chapter 1. Law of Large Numbers

\S 1.1. σ-algebra, measure, probability space and random variables.

This section lays the necessary rigorous foundation for probability as a mathematical theory. It begins with sets, relations among sets, measurement of sets and functions defined on the sets.

Example 1.1. (A prototype of probability space.) Drop a needle blindly on the interval $[0,1]$. The needle hits interval $[a, b]$, a sub-interval of $[0,1]$ with chance $b-a$. Suppose A is any subset of $[0,1]$. What's the chance or length of A ?
Here, we might interprete the largest set $\Omega=[0,1]$ as the "universe". Note that not all subsets are "nice" in the sense that their volume/length can be properly assigned. So we first focus our attention on certain class of "nice" subsets.
To begin with, the "Basic" subsets are all the sub-intervals of $[0,1]$, which may be denoted as $[a, b]$, with $0 \leq a \leq b \leq 1$. Denote \mathcal{B} as the collection of all subsets of $[0,1]$, which are generated by all basic sets after finite set operations. \mathcal{B} is called an algebra of Ω.
It can be proved that any set in \mathcal{B} is a finite union of disjoint intervals (closed, open or half-closed).
Still, \mathcal{B} is not rich enough. For example, it does not contain the set of all rational numbers. More importantly, the limits of sets in \mathcal{B} are often not in \mathcal{B}. This is serious restrictions of mathematical analysis.
Let \mathcal{A} be the collection of all subsets of $[0,1]$, which are generated by all "basic" sets after countably many set operations. \mathcal{A} is called Borel σ-algebra of Ω. Sets in \mathcal{A} are called Borel sets. Limits of sets in \mathcal{A} are still in $\mathcal{A} .(\Omega, \mathcal{A})$ is a measurable space.
Borel measure: any set A in \mathcal{A} can be assigned a volume, denoted as $\mu(A)$, such that
(i). $\mu([a, b])=b-a$.
(ii). $\mu(A)=\lim \mu\left(A_{n}\right)$ for any sequence of Borel sets $A_{n} \uparrow A$.

Lebesgue measure (1901): Completion of Borel σ-algebra by adding all subsets of Borel measure 0 sets, denoted as \mathcal{F}. Sets with measure 0 are called null sets.

Why should Borel measure or Lebesgue measure exist in general?
Caratheodory's extension theorem: extending a (σ-finite) measure on an algebra \mathcal{B} to the σ-algebra $\mathcal{A}=\sigma(\mathcal{B})$.
$\Omega=[0,1]$ (the universe).
\mathcal{B} : an algebra (finite set operations) generated by subintervals.
\mathcal{A} : the Borel σ-algebra, is a σ-algebra, generated by subintervals.
\mathcal{F} : completion of \mathcal{A}, a σ-algebra, generated by \mathcal{A} and null sets.
$(\Omega, \mathcal{B}, \mu)$ does not form a probability space,
$(\Omega, \mathcal{A}, \mu)$ forms a probability space.
$(\Omega, \mathcal{F}, \mu)$ forms a probability space.

Sets and set operations:

Consider Ω as the "universe", (Beyond which is nothing.) Write $\Omega=\{\omega\}, \omega$ denotes an member of the set, called element. Let A and B : be two subsets of Ω, called "events".
The set operations are:
intersection: $\cap, A \cap B$: both A and B (happens).
union: $\cup, A \cup B$: either A or B (happens).
complement: $A^{c}=\Omega \backslash A$: everything except for A, or A does not happen.
minus: $A \backslash B=A \cap B^{c}: A$ but not B.
An elementary theorem about set operation is
DeMorgan's identity:

$$
\left(\cup_{j=1}^{\infty} A_{j}\right)^{c}=\cap_{j=1}^{\infty} A_{j}^{c}, \quad\left(\cap_{j=1}^{\infty} A_{j}\right)^{c}=\cup_{j=1}^{\infty} A_{j}^{c}
$$

In particular, $(A \cup B)^{c}=\left(A^{c} \cap B^{c}\right)$, i.e., $(A \cap B)^{c}=\left(A^{c} \cup B^{c}\right)$.
Remark. Intersection can be generated by complement and union; and union can be generated by complement and intersection.

Relation: $A \subset B$, if $\omega \in A$ ensures $\omega \in B$.
A sequence of sets $\left\{A_{n}: n \geq 1\right\}$ is called increasing (decreasing) if $A_{n} \subset A_{n+1}\left(A_{n} \supset A_{n+1}\right.$.) $A=B$ if and only if $A \subset B$ and $B \subset A$.

Indicator functions. (A very useful tool to translate set operation into numerical operation) The relation and operation of sets are equivalent to the indication set functions. For any subset $A \subset \Omega$, define its indicator function as

$$
1_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { Otherwise }\end{cases}
$$

The indicator function is a function defined on Ω.
Set operations vs. function operations:

$$
\begin{aligned}
A \subset B & \Longleftrightarrow 1_{A} \leq 1_{B} . \\
A \cap B & \Longleftrightarrow 1_{A} \times 1_{B}=1_{A \cap B}=\min \left(1_{A}, 1_{B}\right) . \\
A^{c}=\Omega \backslash A & \Longleftrightarrow 1-1_{A}=1_{A^{c}} . \\
A \cup B & \Longleftrightarrow 1_{A \cup B}=1_{A}+1_{B}, \quad \text { if } A \cap B=\emptyset \\
& \Longleftrightarrow 1_{A \cup B}=\max \left(1_{A}, 1_{B}\right) .
\end{aligned}
$$

Set limits.

There are two limits of sets: upper limit and low limit.

$$
\begin{aligned}
& \limsup A_{n} \equiv \cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}=\left\{A_{n} \text { infinitely occurs. }\right\} \\
& 1_{\lim \sup A_{n}}=\lim \sup 1_{A_{n}}
\end{aligned}
$$

$\omega \in \limsup A_{n}$ if and only if ω belongs to infinitely many A_{n}.
Lower limit.

$$
\begin{aligned}
& \liminf A_{n} \equiv \cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k} \\
= & \left\{A_{n} \text { always occurs except for finite number of times. }\right\} \\
& 1_{\liminf A_{n}}=\liminf 1_{A_{n}}
\end{aligned}
$$

$\omega \in \lim \inf A_{n}$ if and only if ω belongs to all but finitely many A_{n}.
We say the set limit of A_{1}, A_{2}, \ldots exists if their lower limit is the same as the upper limit.

Algebra and σ-algebra

\mathcal{A} is a non-empty collection (set) of subsets of Ω.
Definition. \mathcal{A} is called an algebra if
(i). $A^{c} \in \mathcal{A}$ if $A \in \mathcal{A}$;
(ii). $A \cup B \in \mathcal{A}$ if $A, B \in \mathcal{A}$.
\mathcal{A} is called an σ-algebra if, (ii) is strengthened as,
(iii). $\cup_{n=1}^{\infty} A_{n} \in \mathcal{A}$ if $A_{n} \in \mathcal{A}$ for $n \geq 1$.

An algebra is closed for (finite) set operations. $\Omega \in \mathcal{A}$ and $\emptyset \in \mathcal{A}$.
A σ-algebra is closed for countable operations.
(Ω, \mathcal{A}) is called a measurable space, if \mathcal{A} is a σ-algebra of Ω.

Measure, measure space and probability space.

\mathcal{A}, containing \emptyset, is a non-empty collection (set) of subsets of $\Omega . \mu$ is a nonnegative set function on \mathcal{A}.
μ is called a measure, if
(i). $\mu(\emptyset)=0$.
(ii). $\mu(A)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ if A, A_{1}, A_{2}, \ldots are all in \mathcal{A} and A_{1}, A_{2}, \ldots are disjoint.
$(\Omega, \mathcal{A}, \mu)$ is called a measure space, if μ is a measure on \mathcal{A} and \mathcal{A} is a σ-algebra of Ω.
(Ω, \mathcal{A}, P) is called a probability space if (Ω, \mathcal{A}, P) is a measure space and $P(\Omega)=1$.
For probability space $(\Omega, \mathcal{A}, P), \Omega$ is called sample space, every A in \mathcal{A} is an event, and $P(A)$ is the probability of the event, the chance that it happens.

Random variable (r.v.).

Loosely speaking, given a probability space (Ω, \mathcal{F}, P), a random variable (r.v.) X is defined as a real-valued function of Ω, satisfying certain measurability condition. Loosely speaking, viewing $X=X(\omega)$ as a mapping from Ω to R, the real line, then $X^{-1}(B)$ must be in \mathcal{F} for all Borel sets B. (Borel sets on real line are the σ-algebra generated by intervals, i.e., the sets generated by countable operations on intervals).

A random variable X defined on a probability space (Ω, \mathcal{A}, P) is a function defined on Ω, such that $X^{-1}(B) \in \mathcal{A}$ for every interval B on $[-\infty, \infty]$, where $X^{-1}(B)=\{\omega: X(\omega) \in B\}$. (We need to identify its probability.)
$X^{-1}(B)$ is called the inverse image of B.
$X=X(\cdot)$ can be viewed as a map or transformation from (Ω, \mathcal{A}) to (R, \mathcal{B}), where $R=[-\infty, \infty]$ and \mathcal{B} is the σ-algebra generated by the intervals in R.
X is a measurable map/transformation since $X^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{B}$ (DIY.)
Because \mathcal{A} is a σ-algebra, the upper and lower limits of X_{n} is a r.v. if X_{n} are r.v.s., and the algebraic operations:,,$+- \times, /$, of r.v.s are still r.v.s.

Measurable map and random vectors.

$f(\cdot)$ is called a measurable map/transformation/function from a measurable space (Ω, \mathcal{A}) to another measurable space (S, \mathcal{S}), if $f^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{S}$. i.e. $\{w: f(w) \in B\} \in \mathcal{A}$.
X is called a random vector of p dimension if it is a measurable map from a probability space (Ω, \mathcal{A}, P) to $\left(R^{p}, \mathcal{B}^{p}\right)$, where \mathcal{B}^{p} is the Borel σ-algebra in p dimensional real space, $R^{p}=[-\infty, \infty]^{p}$.

Proposition $1.1\left((2.3)\right.$ in the textbook.) If $X=\left(X_{1}, \ldots, X_{p}\right)$ is a random vector of p dimension on a probability space (Ω, \mathcal{A}, P), and $f(\cdot)$ is measurable function from $\left(R^{p}, \mathcal{B}^{p}\right)$ to (R, \mathcal{B}), then $f(X)$ is a random variable.
Proof. For any Borel set $B \in \mathcal{B}$,

$$
\{\omega: f(X(\omega)) \in B\}=\left\{\omega: X(\omega) \in f^{-1}(B)\right\} \in \mathcal{A}
$$

since $f^{-1}(B) \in \mathcal{B}^{p}$.
Proposition 1.2 ((2.5) in the textbook.) If X_{1}, X_{2}, \ldots are r.v.s. So are

$$
\inf _{n} X_{n}, \quad \sup _{n} X_{n} \quad \liminf _{n} X_{n} \quad \text { and } \quad \limsup _{n} X_{n}
$$

Proof. Let the probability space be (Ω, \mathcal{A}, P). For any x,

$$
\begin{aligned}
\left\{\omega: \inf _{n} X_{n}(\omega) \geq x\right\} & =\cap_{n}\left\{\omega: X_{n}(\omega) \geq x\right\} \in \mathcal{A} ; \\
\left\{\omega: \sup _{n} X_{n}(\omega) \leq x\right\} & =\cap_{n}\left\{\omega: X_{n}(\omega) \leq x\right\} \in \mathcal{A} ; \\
\left\{\lim _{n} \inf X_{n}>x\right\} & =\cup_{n}\left\{\inf _{k \geq n} X_{k}>x\right\} \in \mathcal{A} ; \\
\left\{\limsup _{n} X_{n}<x\right\} & =\cup_{n}\left\{\sup _{k \geq n} X_{k}<x\right\} \in \mathcal{A} .
\end{aligned}
$$

Therefore $\inf _{n} X_{n}, \sup _{n} X_{n}, \liminf _{n} X_{n}$ and $\limsup \sup _{n} X_{n}$ are r.v.s.
Proposition 1.3 Suppose X is a map from a measurable space (Ω, \mathcal{A}) to another measurable space $(\mathbf{S}, \mathcal{S})$. If $X^{-1}(C) \in \mathcal{A}$ for every $C \in \mathcal{C}$ and $\mathcal{S}=\sigma(\mathcal{C})$. Then, X is a measurable map, i.e., $X^{-1}(S) \in \mathcal{A}$ for every $S \in \mathcal{S}$. In particular, when $(\mathbf{S}, \mathcal{S})=([-\infty, \infty], \mathcal{B}), X^{-1}([-\infty, x]) \in \mathcal{A}$ for every x is enough to ensure X is a r.v..
Proof. Note that $\sigma(\mathcal{C})$, the σ-algebra generated by \mathcal{C}, is defined mathematically as the smallest σ-algebra containing \mathcal{C}.
Set $\mathcal{B}^{*}=\left\{B \in \mathcal{S}: X^{-1}(B) \in \mathcal{A}\right\}$.
We first show \mathcal{B}^{*} is a σ-algebra. Observe that
(i). for any $B \in \mathcal{B}^{*}, X^{-1}(B) \in \mathcal{A}$ and, therefore, $X^{-1}\left(B^{c}\right)=\left(X^{-1}(B)\right)^{c} \in \mathcal{A}$;
(ii). for any $B_{n} \in \mathcal{B}^{*}, X^{-1}\left(B_{n}\right) \in \mathcal{A}$ and $X^{-1}\left(\cup_{n} B_{n}\right)=\cup_{n} X^{-1}\left(B_{n}\right) \in \mathcal{A}$.

Consequently, \mathcal{B}^{*} is a σ-algebra. Since $\mathcal{C} \subset \mathcal{B}^{*} \subset \mathcal{S}$, it follows that $\mathcal{B}^{*}=\mathcal{S}$.

Summary of Section 1.1

σ-algebra: collection of sets which is closed under countably many set operations.
Probability space: The trio (Ω, \mathcal{A}, P) with \mathcal{A} as a σ-algebra of Ω and P a set function such that
(i) $0 \leq P(A) \leq 1$ for any $A \in \mathcal{A}$ and $P(\Omega)=1$.
(ii). $P\left(\cup_{n} A_{n}\right)=\sum_{n} P\left(A_{n}\right)$ for countable disjoint $A_{n} \in \mathcal{A}$.

A random variable X is a function/map on Ω with value in $[-\infty, \infty]$ such that $\{X \in[-\infty, x]\} \in \mathcal{A}$. $F(x) \equiv P(X \leq x)$ is called (cumulative) distribution function of X.
The moral is to ensure calibration of the distribution of r.v.s and validity of algebraic operation and limits of r.v.s.
indicator function as a useful tool.

DIY Exercises:

Exercise 1.1 Show $1_{\liminf A_{n}}=\liminf 1_{A_{n}}$ and DeMorgen's identity.

EXERCISE 1.2 Show that, the so called "countable additivity" or " σ-additivity", $\left(P\left(\cup_{n} A_{n}\right)=\right.$ $\sum_{n} P\left(A_{n}\right)$ for countable disjoint $\left.A_{n} \in \mathcal{A}\right)$, is equivalent to "finite additivity" plus "continuity" (if $A_{n} \downarrow \emptyset$, then $P\left(A_{n}\right) \rightarrow 0$.)
Exercise 1.3 (Completion of a Probability space) Let (Ω, \mathcal{F}, P) be a probability space. Define

$$
\overline{\mathcal{F}}=\{A: P(A \backslash B)+P(B \backslash A)=0, \text { for some } B \in \mathcal{F}\}
$$

And for each $A \in \overline{\mathcal{F}}, P(A)$ is defined as $P(B)$ for the B given above. Prove that $(\Omega, \overline{\mathcal{F}}, P)$ is also a probability space. (Hint: need to show that \mathcal{F} is a σ-algebra and that P is a probability measure.) Exercise 1.4 If X_{1} and X_{2} are two r.v.s, so is $X_{1}+X_{2}$. (Hint: cite Propositions 1.1 and 1.3)

