Advanced Probability Theory

Math5411 HKUST

Kani Chen (Instructor)

Chapter 1. Law of Large Numbers

\S 1.1. σ -algebra, measure, probability space and random variables.

This section lays the necessary rigorous foundation for probability as a mathematical theory. It begins with sets, relations among sets, measurement of sets and functions defined on the sets.

Example 1.1. (A PROTOTYPE OF PROBABILITY SPACE.) Drop a needle blindly on the interval [0, 1]. The needle hits interval [a, b], a sub-interval of [0, 1] with chance b - a. Suppose A is any subset of [0, 1]. What's the chance or length of A?

Here, we might interpret the largest set $\Omega = [0, 1]$ as the "universe". Note that not all subsets are "nice" in the sense that their volume/length can be properly assigned. So we first focus our attention on certain class of "nice" subsets.

To begin with, the "Basic" subsets are all the sub-intervals of [0, 1], which may be denoted as [a, b], with $0 \le a \le b \le 1$. Denote \mathcal{B} as the collection of all subsets of [0, 1], which are generated by all basic sets after *finite* set operations. \mathcal{B} is called an *algebra* of Ω .

It can be proved that any set in \mathcal{B} is a finite union of disjoint intervals (closed, open or half-closed).

Still, \mathcal{B} is not rich enough. For example, it does not contain the set of all rational numbers. More importantly, the limits of sets in \mathcal{B} are often not in \mathcal{B} . This is serious restrictions of mathematical analysis.

Let \mathcal{A} be the collection of all subsets of [0, 1], which are generated by all "basic" sets after *countably* many set operations. \mathcal{A} is called Borel σ -algebra of Ω . Sets in \mathcal{A} are called *Borel sets*. Limits of sets in \mathcal{A} are still in \mathcal{A} . (Ω, \mathcal{A}) is a *measurable space*.

Borel measure: any set A in A can be assigned a volume, denoted as $\mu(A)$, such that

(i). $\mu([a,b]) = b - a$.

(ii). $\mu(A) = \lim \mu(A_n)$ for any sequence of Borel sets $A_n \uparrow A$.

Lebesgue measure (1901): Completion of Borel σ -algebra by adding all subsets of Borel measure 0 sets, denoted as \mathcal{F} . Sets with measure 0 are called null sets.

Why should Borel measure or Lebesgue measure exist in general?

Caratheodory's extension theorem: extending a (σ -finite) measure on an algebra \mathcal{B} to the σ -algebra $\mathcal{A} = \sigma(\mathcal{B})$.

 $\Omega = [0, 1]$ (the universe).

 \mathcal{B} : an algebra (finite set operations) generated by subintervals.

 \mathcal{A} : the Borel σ -algebra, is a σ -algebra, generated by subintervals.

 \mathcal{F} : completion of \mathcal{A} , a σ -algebra, generated by \mathcal{A} and null sets.

 $(\Omega, \mathcal{B}, \mu)$ does not form a probability space,

- $(\Omega, \mathcal{A}, \mu)$ forms a probability space.
- $(\Omega, \mathcal{F}, \mu)$ forms a probability space.

Sets and set operations:

Consider Ω as the "universe", (*Beyond which is nothing.*) Write $\Omega = \{\omega\}, \omega$ denotes an member of the set, called *element*. Let A and B: be two subsets of Ω , called "events".

The set operations are:

intersection: \cap , $A \cap B$: both A and B (happens).

union: \cup , $A \cup B$: either A or B (happens).

complement: $A^c = \Omega \setminus A$: everything except for A, or A does not happen. minus: $A \setminus B = A \cap B^c$: A but not B.

An elementary theorem about set operation is

DeMorgan's identity:

$$\left(\cup_{j=1}^{\infty}A_{j}\right)^{c} = \bigcap_{j=1}^{\infty}A_{j}^{c}, \qquad \left(\bigcap_{j=1}^{\infty}A_{j}\right)^{c} = \bigcup_{j=1}^{\infty}A_{j}^{c}.$$

In particular, $(A \cup B)^c = (A^c \cap B^c)$, i.e., $(A \cap B)^c = (A^c \cup B^c)$.

Remark. Intersection can be generated by complement and union; and union can be generated by complement and intersection.

Relation: $A \subset B$, if $\omega \in A$ ensures $\omega \in B$. A sequence of sets $\{A_n : n \ge 1\}$ is called *increasing (decreasing)* if $A_n \subset A_{n+1}$ $(A_n \supset A_{n+1})$. A = B if and only if $A \subset B$ and $B \subset A$.

Indicator functions. (A very useful tool to translate set operation into numerical operation) The relation and operation of sets are equivalent to the indication set functions. For any subset $A \subset \Omega$, define its indicator function as

$$1_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{Otherwise.} \end{cases}$$

The indicator function is a function defined on $\Omega.$

Set operations vs. function operations:

$$A \subset B \iff 1_A \leq 1_B.$$

$$A \cap B \iff 1_A \times 1_B = 1_{A \cap B} = \min(1_A, 1_B).$$

$$A^c = \Omega \setminus A \iff 1 - 1_A = 1_{A^c}.$$

$$A \cup B \iff 1_{A \cup B} = 1_A + 1_B, \quad \text{if } A \cap B = \emptyset$$

$$\iff 1_{A \cup B} = \max(1_A, 1_B).$$

Set limits.

There are two limits of sets: upper limit and low limit.

$$\limsup A_n \equiv \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \{A_n \text{ infinitely occurs.}\}$$

$$1_{\limsup A_n} = \limsup 1_{A_n}$$

 $\omega \in \limsup A_n$ if and only if ω belongs to infinitely many A_n . Lower limit.

$$\liminf A_n \equiv \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$
$$= \{A_n \text{ always occurs except for finite number of times.}\}$$
$$1_{\liminf A_n} = \liminf 1_{A_n}$$

 $\omega \in \liminf A_n$ if and only if ω belongs to all but finitely many A_n . We say the set limit of A_1, A_2, \dots exists if their lower limit is the same as the upper limit.

Algebra and σ -algebra

 \mathcal{A} is a non-empty collection (set) of subsets of Ω .

Definition. \mathcal{A} is called an *algebra* if

(i). $A^c \in \mathcal{A}$ if $A \in \mathcal{A}$;

(ii). $A \cup B \in \mathcal{A}$ if $A, B \in \mathcal{A}$.

 \mathcal{A} is called an σ -algebra if, (ii) is strengthened as,

(iii). $\cup_{n=1}^{\infty} A_n \in \mathcal{A} \text{ if } A_n \in \mathcal{A} \text{ for } n \geq 1.$

An algebra is closed for (finite) set operations. $\Omega \in \mathcal{A}$ and $\emptyset \in \mathcal{A}$.

A σ -algebra is closed for *countable* operations.

 (Ω, \mathcal{A}) is called a measurable space, if \mathcal{A} is a σ -algebra of Ω .

Measure, measure space and probability space.

 \mathcal{A} , containing \emptyset , is a non-empty collection (set) of subsets of Ω . μ is a nonnegative set function on \mathcal{A} .

 μ is called a measure, if

(i). $\mu(\emptyset) = 0$.

(ii). $\mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$ if A, A_1, A_2, \dots are all in \mathcal{A} and A_1, A_2, \dots are disjoint.

 $(\Omega, \mathcal{A}, \mu)$ is called a measure space, if μ is a measure on \mathcal{A} and \mathcal{A} is a σ -algebra of Ω .

 (Ω, \mathcal{A}, P) is called a probability space if (Ω, \mathcal{A}, P) is a measure space and $P(\Omega) = 1$.

For probability space (Ω, \mathcal{A}, P) , Ω is called sample space, every A in \mathcal{A} is an event, and P(A) is the probability of the event, the chance that it happens.

Random variable (r.v.).

Loosely speaking, given a probability space (Ω, \mathcal{F}, P) , a random variable (r.v.) X is defined as a real-valued function of Ω , satisfying certain measurability condition. Loosely speaking, viewing $X = X(\omega)$ as a mapping from Ω to R, the real line, then $X^{-1}(B)$ must be in \mathcal{F} for all Borel sets B. (Borel sets on real line are the σ -algebra generated by intervals, i.e., the sets generated by countable operations on intervals).

A random variable X defined on a probability space (Ω, \mathcal{A}, P) is a function defined on Ω , such that $X^{-1}(B) \in \mathcal{A}$ for every interval B on $[-\infty, \infty]$, where $X^{-1}(B) = \{\omega : X(\omega) \in B\}$. (We need to identify its probability.)

 $X^{-1}(B)$ is called the inverse image of B.

 $X = X(\cdot)$ can be viewed as a map or transformation from (Ω, \mathcal{A}) to (R, \mathcal{B}) , where $R = [-\infty, \infty]$ and \mathcal{B} is the σ -algebra generated by the intervals in R.

X is a measurable map/transformation since $X^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{B}$ (DIY.)

Because \mathcal{A} is a σ -algebra, the upper and lower limits of X_n is a r.v. if X_n are r.v.s., and the algebraic operations: $+, -, \times, /$, of r.v.s are still r.v.s.

Measurable map and random vectors.

 $f(\cdot)$ is called a *measurable map/transformation/function* from a measurable space (Ω, \mathcal{A}) to another measurable space (S, \mathcal{S}) , if $f^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{S}$. i.e. $\{w : f(w) \in B\} \in \mathcal{A}$.

X is called a random vector of p dimension if it is a measurable map from a probability space (Ω, \mathcal{A}, P) to $(\mathbb{R}^p, \mathcal{B}^p)$, where \mathcal{B}^p is the Borel σ -algebra in p dimensional real space, $\mathbb{R}^p = [-\infty, \infty]^p$.

Proposition 1.1 ((2.3) in the textbook.) If $X = (X_1, ..., X_p)$ is a random vector of p dimension on a probability space (Ω, \mathcal{A}, P) , and $f(\cdot)$ is measurable function from $(\mathbb{R}^p, \mathcal{B}^p)$ to $(\mathbb{R}, \mathcal{B})$, then f(X) is a random variable.

Proof. For any Borel set $B \in \mathcal{B}$,

$$\{\omega: f(X(\omega)) \in B\} = \{\omega: X(\omega) \in f^{-1}(B)\} \in \mathcal{A}$$

since $f^{-1}(B) \in \mathcal{B}^p$.

Proposition 1.2 ((2.5) in the textbook.) If X_1, X_2, \dots are r.v.s. So are

$$\inf_{n} X_{n}, \quad \sup_{n} X_{n} \quad \liminf_{n} X_{n} \quad \text{and} \quad \limsup_{n} X_{n}.$$

Proof. Let the probability space be (Ω, \mathcal{A}, P) . For any x,

$$\{\omega : \inf_{n} X_{n}(\omega) \ge x\} = \bigcap_{n} \{\omega : X_{n}(\omega) \ge x\} \in \mathcal{A}$$
$$\{\omega : \sup_{n} X_{n}(\omega) \le x\} = \bigcap_{n} \{\omega : X_{n}(\omega) \le x\} \in \mathcal{A}$$
$$\{\liminf_{n} \inf X_{n} > x\} = \bigcup_{n} \{\inf_{k \ge n} X_{k} > x\} \in \mathcal{A};$$
$$\{\limsup_{n} X_{n} < x\} = \bigcup_{n} \{\sup_{k \ge n} X_{k} < x\} \in \mathcal{A}.$$

Therefore, $\inf_n X_n$, $\sup_n X_n$, $\liminf_n X_n$ and $\limsup_n X_n$ are r.v.s.

Proposition 1.3 Suppose X is a map from a measurable space (Ω, \mathcal{A}) to another measurable space $(\mathbf{S}, \mathcal{S})$. If $X^{-1}(C) \in \mathcal{A}$ for every $C \in \mathcal{C}$ and $\mathcal{S} = \sigma(\mathcal{C})$. Then, X is a measurable map, i.e., $X^{-1}(S) \in \mathcal{A}$ for every $S \in \mathcal{S}$. In particular, when $(\mathbf{S}, \mathcal{S}) = ([-\infty, \infty], \mathcal{B}), X^{-1}([-\infty, x]) \in \mathcal{A}$ for every x is enough to ensure X is a r.v..

Proof. Note that $\sigma(\mathcal{C})$, the σ -algebra generated by \mathcal{C} , is defined mathematically as the smallest σ -algebra containing \mathcal{C} .

Set $\mathcal{B}^* = \{ B \in \mathcal{S} : X^{-1}(B) \in \mathcal{A} \}.$

We first show \mathcal{B}^* is a σ -algebra. Observe that

(i). for any $B \in \mathcal{B}^*$, $X^{-1}(B) \in \mathcal{A}$ and, therefore, $X^{-1}(B^c) = (X^{-1}(B))^c \in \mathcal{A}$;

(ii). for any $B_n \in \mathcal{B}^*$, $X^{-1}(B_n) \in \mathcal{A}$ and $X^{-1}(\cup_n B_n) = \cup_n X^{-1}(B_n) \in \mathcal{A}$.

Consequently, \mathcal{B}^* is a σ -algebra. Since $\mathcal{C} \subset \mathcal{B}^* \subset \mathcal{S}$, it follows that $\mathcal{B}^* = \mathcal{S}$.

Summary of Section 1.1

 σ -algebra: collection of sets which is closed under countably many set operations.

Probability space: The trio (Ω, \mathcal{A}, P) with \mathcal{A} as a σ -algebra of Ω and P a set function such that (i) $0 \leq P(\mathcal{A}) \leq 1$ for any $\mathcal{A} \in \mathcal{A}$ and $P(\Omega) = 1$.

(ii). $P(\bigcup_n A_n) = \sum_n P(A_n)$ for countable disjoint $A_n \in \mathcal{A}$.

A random variable X is a function/map on Ω with value in $[-\infty, \infty]$ such that $\{X \in [-\infty, x]\} \in \mathcal{A}$. $F(x) \equiv P(X \leq x)$ is called (cumulative) distribution function of X.

The moral is to ensure calibration of the distribution of r.v.s and validity of algebraic operation and limits of r.v.s.

indicator function as a useful tool.

DIY Exercises:

EXERCISE 1.1 Show $1_{\liminf A_n} = \liminf 1_{A_n}$ and DeMorgen's identity.

EXERCISE 1.2 Show that, the so called "countable additivity" or " σ -additivity", $(P(\cup_n A_n) = \sum_n P(A_n)$ for countable disjoint $A_n \in \mathcal{A}$), is equivalent to "finite additivity" plus "continuity" (if $A_n \downarrow \emptyset$, then $P(A_n) \to 0$.)

EXERCISE 1.3 (Completion of a Probability space) Let (Ω, \mathcal{F}, P) be a probability space. Define

$$\bar{\mathcal{F}} = \{A : P(A \setminus B) + P(B \setminus A) = 0, \text{ for some} B \in \mathcal{F}\},\$$

And for each $A \in \overline{\mathcal{F}}$, P(A) is defined as P(B) for the *B* given above. Prove that $(\Omega, \overline{\mathcal{F}}, P)$ is also a probability space. (Hint: need to show that \mathcal{F} is a σ -algebra and that *P* is a probability measure.) EXERCISE 1.4 If X_1 and X_2 are two r.v.s, so is $X_1 + X_2$. (Hint: cite Propositions 1.1 and 1.3)