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Chapter 1. Law of Large Numbers

§ 1.1. σ-algebra, measure, probability space and random variables.

This section lays the necessary rigorous foundation for probability as a mathematical theory. It
begins with sets, relations among sets, measurement of sets and functions defined on the sets.

Example 1.1. (A prototype of probability space.) Drop a needle blindly on the interval
[0, 1]. The needle hits interval [a, b], a sub-interval of [0, 1] with chance b − a. Suppose A is any
subset of [0, 1]. What’s the chance or length of A?

Here, we might interprete the largest set Ω = [0, 1] as the “universe”. Note that not all subsets
are “nice” in the sense that their volume/length can be properly assigned. So we first focus our
attention on certain class of “nice” subsets.

To begin with, the “Basic” subsets are all the sub-intervals of [0, 1], which may be denoted as [a, b],
with 0 ≤ a ≤ b ≤ 1. Denote B as the collection of all subsets of [0, 1], which are generated by all
basic sets after finite set operations. B is called an algebra of Ω.

It can be proved that any set in B is a finite union of disjoint intervals (closed, open or half-closed).

Still, B is not rich enough. For example, it does not contain the set of all rational numbers. More
importantly, the limits of sets in B are often not in B. This is serious restrictions of mathematical
analysis.

Let A be the collection of all subsets of [0, 1], which are generated by all “basic” sets after countably
many set operations. A is called Borel σ-algebra of Ω. Sets in A are called Borel sets. Limits of
sets in A are still in A. (Ω,A) is a measurable space.

Borel measure: any set A in A can be assigned a volume, denoted as µ(A), such that

(i). µ([a, b]) = b− a.

(ii). µ(A) = lim µ(An) for any sequence of Borel sets An ↑ A.

Lebesgue measure (1901): Completion of Borel σ-algebra by adding all subsets of Borel measure
0 sets, denoted as F . Sets with measure 0 are called null sets.

Why should Borel measure or Lebesgue measure exist in general?

Caratheodory’s extension theorem: extending a (σ-finite) measure on an algebra B to the σ-algebra
A = σ(B).

Ω = [0, 1] (the universe).

B: an algebra (finite set operations) generated by subintervals.

A: the Borel σ-algebra, is a σ-algebra, generated by subintervals.

F : completion of A, a σ-algebra, generated by A and null sets.

(Ω,B, µ) does not form a probability space,

(Ω,A, µ) forms a probability space.

(Ω,F , µ) forms a probability space.

Sets and set operations:

Consider Ω as the “universe”, (Beyond which is nothing.) Write Ω = {ω}, ω denotes an member of
the set, called element. Let A and B: be two subsets of Ω, called “events”.

The set operations are:

intersection: ∩, A ∩B: both A and B (happens).

union: ∪, A ∪B: either A or B (happens).



complement: Ac = Ω \A: everything except for A, or A does not happen.

minus: A \B = A ∩Bc: A but not B.

An elementary theorem about set operation is

DeMorgan’s identity:
(
∪∞j=1Aj

)c

= ∩∞j=1A
c
j ,

(
∩∞j=1Aj

)c

= ∪∞j=1A
c
j .

In particular, (A ∪B)c = (Ac ∩Bc), i.e., (A ∩B)c = (Ac ∪Bc).

Remark. Intersection can be generated by complement and union; and union can be generated by
complement and intersection.

Relation: A ⊂ B, if ω ∈ A ensures ω ∈ B.

A sequence of sets {An : n ≥ 1} is called increasing (decreasing) if An ⊂ An+1 (An ⊃ An+1.)

A = B if and only if A ⊂ B and B ⊂ A.

Indicator functions. (A very useful tool to translate set operation into numerical operation)

The relation and operation of sets are equivalent to the indication set functions. For any subset
A ⊂ Ω, define its indicator function as

1A(ω) =
{ 1 if ω ∈ A

0 Otherwise.

The indicator function is a function defined on Ω.

Set operations vs. function operations:

A ⊂ B ⇐⇒ 1A ≤ 1B .

A ∩B ⇐⇒ 1A × 1B = 1A∩B = min(1A, 1B).
Ac = Ω \A ⇐⇒ 1− 1A = 1Ac .

A ∪B ⇐⇒ 1A∪B = 1A + 1B , if A ∩B = ∅
⇐⇒ 1A∪B = max(1A, 1B).

Set limits.

There are two limits of sets: upper limit and low limit.

lim supAn ≡ ∩∞n=1 ∪∞k=n Ak = {An infinitely occurs.}
1lim sup An = lim sup 1An

ω ∈ lim sup An if and only if ω belongs to infinitely many An.

Lower limit.

lim inf An ≡ ∪∞n=1 ∩∞k=n Ak

= {An always occurs except for finite number of times.}
1lim inf An = lim inf 1An

ω ∈ lim inf An if and only if ω belongs to all but finitely many An.

We say the set limit of A1, A2, ... exists if their lower limit is the same as the upper limit.

Algebra and σ-algebra



A is a non-empty collection (set) of subsets of Ω.

Definition. A is called an algebra if

(i). Ac ∈ A if A ∈ A;

(ii). A ∪B ∈ A if A,B ∈ A.

A is called an σ-algebra if, (ii) is strengthened as,

(iii). ∪∞n=1An ∈ A if An ∈ A for n ≥ 1.

An algebra is closed for (finite) set operations. Ω ∈ A and ∅ ∈ A.

A σ-algebra is closed for countable operations.

(Ω,A) is called a measurable space, if A is a σ-algebra of Ω.

Measure, measure space and probability space.

A, containing ∅, is a non-empty collection (set) of subsets of Ω. µ is a nonnegative set function on
A.

µ is called a measure, if

(i). µ(∅) = 0.

(ii). µ(A) =
∑∞

n=1 µ(An) if A,A1, A2, ... are all in A and A1, A2, ... are disjoint.

(Ω,A, µ) is called a measure space, if µ is a measure on A and A is a σ-algebra of Ω.

(Ω,A, P ) is called a probability space if (Ω,A, P ) is a measure space and P (Ω) = 1.

For probability space (Ω,A, P ), Ω is called sample space, every A in A is an event, and P (A) is the
probability of the event, the chance that it happens.

Random variable (r.v.).

Loosely speaking, given a probability space (Ω,F , P ), a random variable (r.v.) X is defined as
a real-valued function of Ω, satisfying certain measurability condition. Loosely speaking, viewing
X = X(ω) as a mapping from Ω to R, the real line, then X−1(B) must be in F for all Borel sets B.
(Borel sets on real line are the σ-algebra generated by intervals, i.e., the sets generated by countable
operations on intervals).

A random variable X defined on a probability space (Ω,A, P ) is a function defined on Ω, such that
X−1(B) ∈ A for every interval B on [−∞,∞], where X−1(B) = {ω : X(ω) ∈ B}. (We need to
identify its probability.)

X−1(B) is called the inverse image of B.

X = X(·) can be viewed as a map or transformation from (Ω,A) to (R,B), where R = [−∞,∞]
and B is the σ-algebra generated by the intervals in R.

X is a measurable map/transformation since X−1(B) ∈ A for every B ∈ B (DIY.)

Because A is a σ-algebra, the upper and lower limits of Xn is a r.v. if Xn are r.v.s., and the
algebraic operations: +,−,×, /, of r.v.s are still r.v.s.

Measurable map and random vectors.

f(·) is called a measurable map/transformation/function from a measurable space (Ω,A) to another
measurable space (S,S), if f−1(B) ∈ A for every B ∈ S. i.e. {w : f(w) ∈ B} ∈ A.

X is called a random vector of p dimension if it is a measurable map from a probability space
(Ω,A, P ) to (Rp,Bp), where Bp is the Borel σ-algebra in p dimensional real space, Rp = [−∞,∞]p.



Proposition 1.1 ((2.3) in the textbook.) If X = (X1, ..., Xp) is a random vector of p dimension on
a probability space (Ω,A, P ), and f(·) is measurable function from (Rp,Bp) to (R,B), then f(X)
is a random variable.

Proof. For any Borel set B ∈ B,

{ω : f(X(ω)) ∈ B} = {ω : X(ω) ∈ f−1(B)} ∈ A

since f−1(B) ∈ Bp. ¤
Proposition 1.2 ((2.5) in the textbook.) If X1, X2, ... are r.v.s. So are

inf
n

Xn, sup
n

Xn lim inf
n

Xn and lim sup
n

Xn.

Proof. Let the probability space be (Ω,A, P ). For any x,

{ω : inf
n

Xn(ω) ≥ x} = ∩n{ω : Xn(ω) ≥ x} ∈ A;

{ω : sup
n

Xn(ω) ≤ x} = ∩n{ω : Xn(ω) ≤ x} ∈ A;

{lim inf
n

Xn > x} = ∪n{ inf
k≥n

Xk > x} ∈ A;

{lim sup
n

Xn < x} = ∪n{sup
k≥n

Xk < x} ∈ A.

Therefore, infn Xn, supn Xn, lim infn Xn and lim supn Xn are r.v.s. ¤
Proposition 1.3 Suppose X is a map from a measurable space (Ω,A) to another measurable
space (S,S). If X−1(C) ∈ A for every C ∈ C and S = σ(C). Then, X is a measurable map, i.e.,
X−1(S) ∈ A for every S ∈ S. In particular, when (S,S) = ([−∞,∞],B), X−1([−∞, x]) ∈ A for
every x is enough to ensure X is a r.v..

Proof. Note that σ(C), the σ-algebra generated by C, is defined mathematically as the smallest
σ-algebra containing C.
Set B∗ = {B ∈ S : X−1(B) ∈ A}.
We first show B∗ is a σ-algebra. Observe that

(i). for any B ∈ B∗, X−1(B) ∈ A and, therefore, X−1(Bc) = (X−1(B))c ∈ A;

(ii). for any Bn ∈ B∗, X−1(Bn) ∈ A and X−1(∪nBn) = ∪nX−1(Bn) ∈ A.

Consequently, B∗ is a σ-algebra. Since C ⊂ B∗ ⊂ S, it follows that B∗ = S. ¤

Summary of Section 1.1

σ-algebra: collection of sets which is closed under countably many set operations.

Probability space: The trio (Ω,A, P ) with A as a σ-algebra of Ω and P a set function such that

(i) 0 ≤ P (A) ≤ 1 for any A ∈ A and P (Ω) = 1.

(ii). P (∪nAn) =
∑

n P (An) for countable disjoint An ∈ A.

A random variable X is a function/map on Ω with value in [−∞,∞] such that {X ∈ [−∞, x]} ∈ A.

F (x) ≡ P (X ≤ x) is called (cumulative) distribution function of X.

The moral is to ensure calibration of the distribution of r.v.s and validity of algebraic operation
and limits of r.v.s.

indicator function as a useful tool.

DIY Exercises:

Exercise 1.1 Show 1lim inf An = lim inf 1An and DeMorgen’s identity.
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Exercise 1.2 Show that, the so called “countable additivity” or “σ-additivity”, (P (∪nAn) =∑
n P (An) for countable disjoint An ∈ A), is equivalent to “finite additivity” plus “continuity” (if

An ↓ ∅, then P (An) → 0.)

Exercise 1.3 (Completion of a Probability space) Let (Ω,F , P ) be a probability space. Define

F̄ = {A : P (A \B) + P (B \A) = 0, for someB ∈ F},

And for each A ∈ F̄ , P (A) is defined as P (B) for the B given above. Prove that (Ω, F̄ , P ) is also a
probability space. (Hint: need to show that F is a σ-algebra and that P is a probability measure.)

Exercise 1.4 If X1 and X2 are two r.v.s, so is X1 + X2. (Hint: cite Propositions 1.1 and 1.3)


