
10

§ 1.3. Convergence modes.

Unlike convergence of a sequence of numbers, the convergence of a sequence of r.v.s at least has
four commonly used modes: almost sure convergence, in probability convergence, Lp convergence
and in distribution convergence. The first is sometimes called convergence almost everywhere or
almost certain and the last convergence in law.

(i). Definitions

In what follows, we give definitions. Suppose X1, X2, ... are a sequence of r.v.s.

Xn → X almost surely, (a.s.) if P ({ω : Xn(ω) → X(ω)}) = P (Xn → X) = 1. Namely, a.s.

convergence is a point-wise convergence “everywhere” except for a null set.

Xn → X in probability, if P (|Xn −X | > ǫ)→ 0 for any ǫ > 0.

Xn → X in Lp, if E(|Xn −X |p)→ 0.

Xn → X in distribution. There are four equivalent definitions:

1). For every continuity point t of F , Fn(t)→ F (t), where Fn and F are c.d.f of Xn and X .

2). For every closed set B, lim supn P (Xn ∈ B) ≤ P (X ∈ B).

3). For every open set B, lim infn P (Xn ∈ B) ≥ P (X ∈ B).

4). For every continuous bounded function g(·), E(g(Xn))→ E(g(X)).

Remark. The Lp convergence preclude the limit X taking values of infinity with positive chances.
Sometimes in some textbooks, a sequence of numbers going to infinity is called convergence to
infinity rather than divergence to infinity. If this is the case, the limit X can be ∞ or −∞, for a.s.
convergence and, by slightly modifying the definition, for in probability convergence. For example,
Xn → ∞ in probability is naturally defined as, for any M > 0, P (Xn > M)→ 1. Convergence in
distribution only has to do with distributions.

(ii). Convergence theorems.

The following three theorems/lemma, tantamount to their analogues in real analysis, play important
role in the technical development of probability theory.

(1). Monotone convergence theorem. If Xn ≥ 0, and Xn ↑ X , then E(Xn) ↑ E(X).

Proof. E(Xn) ≤ E(X). For any a < E(X), there exists a N and m such that
∑N

i=0

i
2m P

(

i
2m <

X(w) ≤ i+1

2m

)

> a. But P
(

i
2m < Xn(w) ≤ i+1

2m

)

→ P
(

i
2m < X(w) ≤ i+1

2m

)

(why?). Therefore,

limE(Xn) ≥ a. Hence, E(Xn)→ E(X). �

(2). Fatou’s lemma. If Xn ≥ 0, a.s., then

E(lim inf Xn) ≤ lim inf E(Xn)

Proof. Let X∗
n = inf(Xk : k ≥ n), then X∗

n ↑ lim inf Xn, so the Monotone convergence theo-
rem, E(X∗

n) ↑ E(lim inf Xn). On the other hand, X∗
n ≤ Xn so, E(X∗

n) ≤ E(Xn). As a result,
E(lim inf Xn) ≤ lim inf E(Xn). �

(3). Dominated convergence theorem. If |Xn| ≤ Y , E(Y ) < ∞, and Xn → X a.s., then E(Xn) →
E(X).

Proof. Observe that Y −Xn ≥ 0 ≤ Y +Xn. By Fatou’s lemma, E(Y − limXn) ≤ lim inf E(Y −Xn),
leading to E(X) ≥ lim sup E(Xn). Likewise E(Y + lim Xn) ≤ lim inf E(Y + Xn), leading to
E(X) ≤ lim inf E(Xn). Consequently, E(Xn)→ E(X). �
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The essence of the above convergence theorems is to use a bound, upper or lower, to ensure the
desired convergence in expectation. These bounds, lower bounds as 0 in the monotone convergence
theorem and the Fatou lemma, and both lower and upper bounds in the dominated convergence
theorem, can actually be relaxed; see DIY exercises. The most general extension is through the
concept of uniform integral r.v.s, which shall be introduced later if necessary.

(iii). Relations between convergence modes.

The relations are partly illustrated in the following diagram:

a.s. conv.

in.prob. conv. in.dist. conv.

Lp conv.

†

‡

‡

†: exist a subsequence that converges a.s. ‡: if |Xn| ≤ Y where Y ∈ Lp.

(iv) Some examples.

We use following examples to clarify the above diagram.

a). in prob. conv. but not a.e. conv.

Let ξ ∼ Unif [0, 1]. Set X2j+k = 1 if ξ ∈ [k/2j, (k+1)/2j] and 0 otherwise, for all 0 ≤ k ≤ 2j−1 and
j = 0, 1, 2, .... Then, Xn → 0 in probability as n→∞, but Xn 9 0, a.e.. In fact, P (Xn → 0) = 0.

Let ξn be i.i.d ∼ Unif [0, 1]. Let Xn = 1 if ξn ≤ 1/n and 0 otherwise. Then Xn → 0 in probability,
but Xn 9 0, a.e. by Borel-Contelli lemma.

b). in distribution conv. but not in probability conv..

This is in fact quite trivial. Any sequence of (non-constant) i.i.d. random variables converge in
distribution, but not in probability. Observe that convergence in distribution only concerns the
distribution. The variables even do not have to be in the same probability space.

c). a.s. but not Lp conv.

Let ξ ∼ Unif [0, 1]. Let Xn = en if ξ ≤ 1/n and 0 otherwise. Then Xn → 0 a.s. but E(|Xn|
p|) =

enp/n→∞.

(v). Technical proofs.

1 . a.s. convergence =⇒ in probability convergence.

Proof. Let An = {|Xn − X | > ǫ}. a.s. convergence implies P (An, i.o.) = 0. But {An, i.o.} =
∩∞n=1 ∪

∞
k=n Ak. So 0 = P (An, i.o.) = limn P (∪∞k=nAk) ≥ lim supn P (An).

2 . Lp convergence =⇒ in prob convergence.

Proof. 0← E(|Xn −X |p) ≥ E(|Xn −X |p1{|Xn−X|>ǫ}) ≥ ǫpP (|Xn −X | > ǫ).

3 . in prob convergence =⇒ in distribution convergence.

Proof. For any t, and any ǫ > 0, lim supP (Xn ≤ t) ≤ lim sup P ({Xn ≤ t} ∩ {X ≤ Xn + ǫ}) ≤
P (X ≤ t + ǫ). Let ǫ ↓ 0, we have lim sup P (Xn ≤ t) ≤ P (X ≤ t). Likewise lim sup P (−Xn ≤ −t) ≤
P (−X ≤ −t). (Why?) Then lim inf P (Xn < t) ≥ P (X < t). Suppose now, t is a continuity point
of X . Then P (X < t) = P (X ≤ t). As a result, limn P (Xn ≤ t) = P (X ≤ t).
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4 . in prob convergence =⇒ existence of a subsequence that converges a.s.

Proof. Let ǫk ↓ 0. Since P (|Xn − X | > ǫk) → 0 as n → ∞, there exists an nk such that
P (|Xnk

−X | > ǫk) < 2−k. Therefore
∑∞

k=1
P (|Xnk

−X | > ǫk) < ∞, which implies by the Borel-
Contelli lemma, which is introduced in the next section, that P (|Xnk

− X | > ǫk, i.o.) = 0. This
means that, with probability 1, |Xnk

− X | ≤ ǫk for all large k. This is tantamount to Xnk
→ X

a.s..

5 . Lp convergence =⇒ Lq convergence for p > q > 0.

Proof. Let Yn = |Xn −X |. For any ǫ > 0, E(Y q
n ) ≤ ǫ + E(Y q

n 1{Yn≥ǫ}) ≤ ǫ + E(Y q
n 1{Yn≥1} + P (ǫ ≤

Yn ≤ 1) ≤ ǫ + E(Y p
n 1{Yn≥1} + P (ǫ ≤ Yn) → ǫ as n → ∞. Since ǫ > 0 is arbitrary, it follows that

Xn → X in Lq.

6 . Suppose |Xn| ≤ c > 0 a.s., then, in probability convergence ⇐⇒ Lp convergence for all (any)
p > 0.

Proof. ⇐= follows from 2 . And =⇒ follows from the dominated convergence theorem.

7 . The four equivalent definitions of in distribution convergence.

Proof. 2) ⇐⇒ 3). The complement of any closed set is open. Likewise, the complement of any
closed set is open.

1) =⇒ 3). Continuity points of F are dense (why?). Consider interval (−∞, t), there exists conti-
nuity points tk ↑ t. Then,

lim inf
n

P (Xn ∈ (−∞, t)) ≥ lim inf
n

P (Xn ∈ (−∞, tk]) = P (X ∈ (−∞, tk])→ P (X ∈ (−∞, t)).

The result can be extended for general open sets. We omit the proof.

3) =⇒ 1). Suppose t is a continuity point. Then lim supn Fn(t) ≤ F (t) by 2) and the equivalency
of 2) and 3). lim infn Fn(t) ≥ lim infn P (Xn < t) ≥ P (X < t) = F (t) as t is a continuity point. So
1) follows.

4) =⇒ 1). Let t be a continuity point of F . For any small ǫ > 0, choose a non-increasing continuous
function f of x which is 1 for x < t, and is 0 for x > t + ǫ. Then, P (Xn ≤ t) ≤ E(f(Xn)) →
E(f(X)) ≤ P (X ≤ t + ǫ). Therefore the lim supP (Xn ≤ t) ≤ P (X ≤ t). Likewise (how?), one can
show lim inf P (Xn ≤ t) ≥ P (X ≤ t). The desired convergence follows.

1) =⇒ 4). Continuity points of the cdf of X are dense (why?). Suppose |f(t)| < c. Choose
continuity points −∞ = t0 < t1, ... < tK < tK+1 = ∞ such that F (t1) < ǫ > 1 − F (tK), and
|f(t)− f(s)| < ǫ for any t, s ∈ [tj , tj+1] for j = 1, ..., K − 1. Then,

|E(f(Xn))− E(f(X))| = |

∫

f(t)dFn(t)−

∫

f(t)dF (t)|

≤

K
∑

j=0

|

∫ tj+1

tj

f(t)[dFn(t)− dF (t)]|

≤ 2cǫ +
K−1
∑

j=1

|

∫ tj+1

tj

f(t)[dFn(t)− dF (t)]|

≤ 2cǫ + +

K−1
∑

j=1

|

∫ tj+1

tj

f(tj)[dFn(t)− dF (t)]|

+

K−1
∑

j=1

|

∫ tj+1

tj

[f(t)− f(tj)][dFn(t)− dF (t)]|
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≤ 2cǫ +
K−1
∑

j=1

c|

∫ tj+1

tj

[dFn(t)− dF (t)]| +
K−1
∑

j=1

ǫ

∫ tj+1

tj

[dFn(t) + dF (t)]

→ 2cǫ + 2ǫ

∫ tK

t1

dF (t) as n→∞.

≤ (2c + 1)ǫ,

which can be arbitrarily small.

DIY Exercises.

Exercise 1.9 ⋆⋆ Suppose Xn ≥ η, with E(η−) <∞. Show E(lim inf Xn) ≤ lim inf E(Xn).

Exercise 1.10 ⋆⋆ Show the dominated convergence theorem still holds if Xn → X in probability
or in distribution.

Exercise 1.11 ⋆ ⋆ ⋆ Let Sn =
∑n

i=1
Xi. Raise a counter-example to show Sn/n 6→ 0 in probability

but Xn → 0 in probability.

Exercise 1.12 ⋆ ⋆ ⋆ Let Sn =
∑n

i=1
Xi. Show that Sn/n → 0 a.s. if Xn → 0 a.s., and Sn/n → 0

in Lp if Xn → 0 in Lp for p ≥ 1.


