
14

§ 1.4. Independence, conditional expectation, Borel-Cantelli lemma and
Kolmogorov 0-1 laws.

(i). Conditional probability and independence of events.

For any two events, say A and B, the conditional probability of A given B is defined as

P (A|B) = P (A ∩B)/P (B), if P (B) 6= 0.

This is the chance of A to happen, given B has happened.

In common sense, the independence between events A and B should be, information about event
B happens/or not, does not change the chance of A to happen/or not, and vice versus. In other
words, whether B (A) happens or not does not contain any information about whether A (B)
happens. Therefore the definition of independence should be P (A|B) = P (A) or P (B|A) = P (B).
But to include that case of P (A) = 0 or P (B) = 0, the mathematical definition of independence is
P (A∩B) = P (A)P (B), which is equivalent to P (Ac∩B) = P (Ac)P (B) or P (A∩Bc) = P (A)P (Bc)
or P (Ac∩Bc) = P (Ac)P (Bc). The definition is extended in the following to independence between
n events.

Definition Events A1, ..., An are called independent if P (∩n
i=1Bi) =

∏n
i=1 P (Bi) where Bi is Ai

or Ac
i . Events A1, ..., An are called pairwise independent if any pair of two events are independent.

The above definition implies, if A1, ..., An are independent (pairwise independent), then Ai1 , ..., Aik

are independent (pairwise independent). (Please DIY).

The σ-algebra generated by a single set A, denoted as σ(A) is {∅, A, Ac, Ω}. Independence between
A1, ..., An can be interpreted as independence between the σ-algebras: σ(Ai), i = 1, ..., n.

(ii). Borel-Cantelli Lemma.

The Borel-Contelli Lemma is considered as sine qua non of probability theory and is instrumental
in proving the law of large numbers. Please note in the proof below the technique of using the
indicator functions to handle probability of sets,

Theorem 1.1. (Borel-Contelli Lemma) For events A1, A2, ...,

(1)

∞
∑

n=1

P (An) <∞ =⇒ P (An, i.o.) = 0;

(2) If An are independent,
∞
∑

n=1

P (An) =∞ =⇒ P (An, i.o.) = 1.

Here An, i.o. means An happens infinitely often, i.e., ∩∞n=1 ∪
∞
k=n Ak.

Proof. (1): Let 1An be the indicator function of An. Then, An, i.o. is the same as
∑∞

n=1 1An =∞.
Hence,

E(

∞
∑

i=1

1An) =

∞
∑

n=1

E1An =

∞
∑

n=1

P (An) <∞.

It implies
∑n

i=1 1An <∞ with probability 1. This is equivalent to P (An, i.o.) = 0.

(2).
∑∞

n=1 P (An) = ∞ implies
∏∞

k=n(1 − P (Ak)) = 0 since log(1 − x) ≤ −x for x ∈ [0, 1]. for all
n ≥ 1. By dominated convergence theorem

E(lim inf 1Ac
n
) = E(lim

n

∞
∏

k=n

1Ac
k
) = lim

n
E(

∞
∏

k=n

1Ac
k
) = lim

n

∞
∏

k=n

(1− P (Ak)) = 0.

Then, P (lim infn Ac
n) = 0 and hence P (lim supAn) = 1. �

As an immediate consequence,
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Corollary (Borel’s 0-1 law) If A1, ..., An, ... are independent, then P (An, i.o.) = 1 or 0 according
as

∑

n P (An) =∞) or <∞.

Even though the above 0-1 law appears to be simple, its impact and implication is profound. More
generally, suppose A ∈ ∩∞n=1σ(Aj , j ≥ n), the so-called tail σ-algebra. A is called a tail event. Then,
the independence of A1, ..., An, ... implies P (A) = 0 or 1. The key fact here is that A is independent
of An for any n ≥ 1, such as, for example, {An, i.o.} or {

∑n
i=1 1Ai/ log(n) →∞}. A more general

result involving independent random variables to be introduced below is the Kolmogorov’s 0-1 law
to be introduced later.

The following example can be viewed as a strengthening of the Borel-Cantelli lemma.

Example 1.2 Suppose A1, ..., An, ... are independent events with
∑

n pn =∞ where pn = P (An).
Then,

Xn ≡

∑n
i=1 1Ai

∑n
i=1 pi

→ 1 a.s..

Proof Since

E(Xn − 1)2 =

∑n
i=1 pi(1− pi)

(
∑n

i=1 pi)2
≤

1
∑n

i=1 pi
→ 0,

it follows that Xn → 1 in L2 and therefore also in probability by the Chebyshev inequality:

P (|Xn − 1| > ǫ) ≤
E(Xn − 1)2

ǫ2
≤

1

ǫ2
∑n

i=1 pi
→ 0.

Consider nk ↑ ∞ as k →∞, such that

∞
∑

k=1

1
∑nk

i=1 pi
<∞ and

∑nk+1

i=1 pi
∑nk

i=1 pi
→ 1.

Then,
∞
∑

i=1

P (|Xnk
− 1| > ǫ) <∞.

The Borel-Cantelli lemma implies Xnk
→ 1 a.s.. Observe that, for nk ≤ n ≤ nk+1,

1←

∑nk

i=1 1Ai
∑nk+1

i=1 pi
≤ Xn =

∑n
i=1 1Ai

∑n
i=1 pi

≤

∑nk+1

i=1 1Ai
∑nk

i=1 pi
→ 1, a.s..

The desired convergence holds. �

Remark. The trick of bracketing Xn by the two quantities in the above inequality is also used in
proving the uniform convergence of the empirical distribution to the population distribution:

|Fn(x) − F (x)| → 0, a.s.,

where Fn(x) = (1/n)
∑n

i=1 1{ξi≤x} and ξi are iid with cdf F . The idea is further elaborated in the
context of empirical approximation in terms of bracketing/packing numbers.

Example 1.3. Repeatedly toss a coin, which has probability p to be head and q = 1− p to be tail
on each toss. Let Xn = H or T when n-th toss is a head or tail. Let

ln = max{m ≥ 0 : Xn = H, Xn+1 = H, ..., Xn+m−1 = H, Xn+m = T }

be the length of run of heads starting from n-th toss. Then,

lim sup
n

ln/ logn = 1/ log(1/p).

Proof. ln follows a geometric distribution, i.e.,

P (ln = k) = qpk, P (ln ≥ k) = P (Xn = 1, ..., Xn+k−1 = 1) = pk k = 0, 1, 2, ...
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For any ǫ > 0,

∞
∑

n=1

P
(

ln > (1 + ǫ)
log n

log(1/p)

)

≤
∞
∑

n=1

p(1+ǫ) log n
log(1/p) ≤

∞
∑

n=1

e−(1+ǫ) log n =

∞
∑

n=1

n−(1+ǫ) <∞

By the Borel-Cantelli lemma,

lim sup
n

ln
log n/ log(1/p)

≤ 1.

We next try to find a subsequence with limit as large as 1. Choose rn = nn (we need a sequence
going fast to infinity so that the following An are independent). Let dn be the integer part of
log n/ log(1/p) and let

An = {Xrn = H, Xrn+1 = H, ..., Xrn+dn−1 = H}

Then An, n ≥ 1 are independent, and

P (An) = pdn = edn log p ≈ 1/n

Therefore,
∑

n P (An) = ∞. It then follows from the Borel Cantelli lemma that P (An, i.o, ) = 1.
Since An = {lrn ≥ dn}, we have

lim sup
n

ln
log n/ log(1/p)

≥ lim sup
n

lrn

dn
≥ 1.

�

Remark. An analogous problem occurs in the setting of Poisson processes. Consider a Poisson
process with intensity λ > 0. The sojourn times (time between two consecutive events) ξ0, ξ1, ... are
iid ∼ exponential distribution with mean 1/λ. Then, lim supx→∞ lx/x = 1/λ, where lx the time
period between x and the time of the event right after x.

(iii). Independence between σ-algebras and between random variables.

Definitions. Let A1, ...,An be σ-algebras. They are called independent if A1, ..., An are independent
for any Aj ∈ Aj , j = 1, ..., n. Random variables X1, ..., Xn are called independent, if the σ-algebras
generated by Xj , 1 ≤ j ≤ n, are independent, i.e.,

P (∩n
j=1X

−1
j (Bj)) =

n
∏

j=1

P (X−1
j (Bj)) or P (X1 ∈ B1, ..., Xn ∈ Bn) =

n
∏

j=1

P (Xj ∈ Bj)

for any Borel sets B1, ..., Bn in (−∞,∞).

There are several equivalent definition of the independence of random variables:

Two r.v.s X and Y are called independent, if E(g(X)f(Y )) = E(g(X))E(f(Y )) for all bounded
(measurable) functions g and f . or, equivalently, if

P (X ≤ t, and Y ≤ s) =
n

∏

i=1

P (Xj ≤ tj) for all tj ∈ (−∞,∞), j = 1, ..., n.

i.e., in terms of cumulative distribution functions.

FX,Y (x, y) = FX(x)FY (y) for all x, y.

If the joint density exists, This is the same as fX,Y (x, y) = fX(x)fX(y).

Roughly speaking, independence between two r.v.s X and Y is interpreted as X taking any value
“has nothing to do with” Y taking any value, and vice versus.
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(iv). Conditional expectation.

(1). Conditional distribution and conditional expectation with respect to a set A.

Suppose A is a set with P (A) > 0, and X is a random variable. Then, the conditional expectation
is

E(X |A) ≡ E(X1A)/P (A).

The conditional distribution of X given A is

P (X ≤ t|A) = P ({X ≤ t} ∩A)/P (A)

Then, E(X |A) =
∫

tdP (X ≤ t|A), if exist.

As a simple example, let X ∼ Unif [0, 1]. Let Ai = {i− 1/n < X ≤ i/n} for i = 1, ..., n.

E(X |Ai) ≡ E(X1Ai)/P (Ai) = (i− 1/2)/n.

Similarly E(X |Ac
i) ≡ E(X1Ac

i
)/P (Ac

i ).

Interpretation: E(X |A) is the weighted “average” (expected value) of X over the set A.

(2). Conditional expectation with respect to a r.v..

For two random variables X, Y , E(X |Y ) is a function of Y , i.e., measurable to σ(Y ), such that, for
any A ∈ σ(Y ),

E(X1A) = E[E(X |Y )1A].

Interpretation: E(X |Y ) is the weighted “average” (expected value) of X over the set {Y = y} for
all y. It is a function of Y and therefore is a r.v. measurable to σ(Y ).

If their joint density f(x, y) exists, then the conditional density of X given Y = y is fX|Y (x|y) ≡
f(x, y)/fY (y). And

E(X |Y = y) ≡

∫

xfX|Y (x|y)dx.

(3). Conditional expectation with respect to a σ-algebra A.

Conditional expectation w.r.t. a σ-algebra is the most fundamental concept in probability theory,
especially in martingale theory in which the very definition of martingale depends on conditional
expectation.

Recall that a random variable, say X , is measurable to a σ-algebra A is that for any interval (a, b),
{ω : X(ω) ∈ (a, b)} ∈ A. In other words, σ(X) ⊆ A is interpreted as all information about X ,
(which is σ(X)), is contained in A.

If A = σ(A1, ..., An) where Ai ∩Aj = ∅, then X measurable to A implies X must be constant over
each Ai. If A is generated by a r.v. Y , then X measurable to A implies ξ must be a function of Y .
A heuristic understanding is that if Y is known, then there is no uncertainty of X , or if Y assumes
one value, X cannot assume more than one values.

Definition For a random variable X and a completed σ-algebra A, E(X |A) is defined as an A-
measurable random variable such that, for any A ∈ A,

E(X1A) = E(E(X |A)1A),

i.e. E(X |A) = E(E(X |A)|A) for every A ∈ A with P (A) > 0.

If A = σ(A1, ..., An) where Ai ∩Aj = ∅, then

E(X |A) =

n
∑

j=1

E(X |Ai)1Ai ,

which is a r.v. that, on each Ai, takes the conditional average of X , i.e., E(X |Ai), as its value.
Motivated from this simple case, we may obtain an important understanding of the conditional
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expectation X w.r.t. a σ-algebra A: a new r.v. as the “average” of the r.v. X on each “un-
splitable” or “smallest” set of the σ-algebra A.

Conditional mean/expectation with respect to σ algebra shares many properties just like the ordi-
nary expectation.

Properties:

(1). E(aX + bY |A) = aE(X |A) + bE(Y |A)

(2). If X ∈ A, then E(X |A) = X .

(4). E(E(X |F)|A) = E(X |A) for two σ-algebras A ⊆ F .

Further properties, such as the dominated convergence theorem, Fatou’s lemma and monotone
convergence theorem also hold for conditional mean w.r.t. a σ-algebra. (See DIY exercises.)

(v). Kolmogorov’s 0-1 law.

One of the most important theorem in probability theory is the martingale convergence theorem.
In the following, we provide a simplified version, without a rigorous introduction of martingale and
without giving a proof.

Theorem 1.2 (simplified version of martingale convergence theorem) Suppose Fn ⊆
Fn+1 for n ≥ 1. Let F = σ(∪∞n=1Fn). For any random variable X with E(|X |) <∞,

E(X |Fn)→ E(X |F), a.s.

The martingale convergence theorem, even with the simplified version, has broad applications. For
example, One of the most basic 0-1 laws: the Kolomogorov 0-1 law, can be established upon it.

Corollary (Kolomogorov 0-1 law) Suppose X1, ..., Xn, ... are a sequence of independent r.v.s.
Then all tails events are have probability 0 or 1.

Proof. Suppose A is a tail event. Then A is independent of X1, ..., Xn for any fixed n. Therefore
E(1A|Fn) = P (A) where Fn is the σ-algebra generated by X1, ..., Xn. But, by Theorem 1.2,
E(1A|Fn)→ 1A a.s.. Hence 1A = P (A), and A can only be 0 or 1. �

A heuristic interpretation of Kolmogorov’s 0-1 law could be in the perspective of information. When
σ-algebras A1, ...,An, ... are independent, the information carried by each Ai are independent or
unrelated or non-overlapping. Then, the information carried by An,An+1, ... shall shrink to 0 as
n→∞, as, if otherwise, An,An+1, ... would have something in common.

As straightforward applications of Kolmogorov’s 0-1 law:

Corollary Suppose X1, ..., Xn, ... are a sequence of independent random variables. Then,

lim inf
n

Xn, lim sup
n

Xn, lim sup
n

Sn/an and lim inf
n

Sn/an

must be either a constant or ∞ or −∞, a.s., where Sn =
∑n

i=1 Xi and an ↑ ∞.

Proof. Consider A = {ω : lim infn Xn(ω) > a}. Try to show A is a tail event. (DIY). �

Remark. Without invoking martingale convergence theorem, Kolmogorov’s 0-1 law can be shown
through π − λ theorem, which we do not plan to cover.

DIY Exercises.

Exercise 1.13 ⋆⋆ Suppose Xn are iid random variables. Then Xn/n1/p → 0 a.s. if and only if
E(|Xn|

p) <∞ for p > 0. Hint: Borel-Cantelli lemma.

Exercise 1.14 ⋆ ⋆ ⋆ Let Xn be iid r.v.s with E(Xn) = ∞. Show that lim supn |Sn|/n = ∞ a.s.
where Sn = X1 + · · ·+ Xn.

Exercise 1.15 ⋆ ⋆ ⋆ Suppose Xn are iid nonnegative random variables such that
∑∞

k=1 kP (X1 >
ak) <∞ for ak ↑ ∞. Show that lim supn max1≤i≤n Xi/an ≤ 1 a.s.
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Exercise 1.16 ⋆ ⋆ ⋆⋆ (Empirical Approximation) For every fixed t ∈ [0, 1], Sn(t) is a sequence
of random variables such that, with probability 1 for some p > 0,

|Sn(t)− Sn(s)| ≤ n|t− s|p,

for all n ≥ 1 and all t, s ∈ [0, 1]. Suppose for every constant C > 0, there exists an c > 0 such that

P (|Sn(t)| > C(n log n)1/2) ≤ e−cn for all n ≥ 1 and t ∈ [0, 1].

Show that, for any p > 0,
max{|Sn(t)| : t ∈ [0, 1]}

(n log n)1/2
→ 0 a.s..

Hint: Borel-Cantelli lemma.


