\S 1.4. Independence, conditional expectation, Borel-Cantelli lemma and Kolmogorov 0-1 laws.

(i). Conditional probability and independence of events.

For any two events, say A and B, the conditional probability of A given B is defined as

$$P(A|B) = P(A \cap B)/P(B)$$
, if $P(B) \neq 0$.

This is the chance of A to happen, given B has happened.

In common sense, the independence between events A and B should be, information about event B happens/or not, does not change the chance of A to happen/or not, and vice versus. In other words, whether B(A) happens or not does not contain any information about whether A(B) happens. Therefore the definition of independence should be P(A|B) = P(A) or P(B|A) = P(B). But to include that case of P(A) = 0 or P(B) = 0, the mathematical definition of independence is $P(A \cap B) = P(A)P(B)$, which is equivalent to $P(A^c \cap B) = P(A^c)P(B)$ or $P(A \cap B^c) = P(A)P(B^c)$ or $P(A^c \cap B^c) = P(A^c)P(B^c)$. The definition is extended in the following to independence between n events.

Definition Events $A_1, ..., A_n$ are called *independent* if $P(\bigcap_{i=1}^n B_i) = \prod_{i=1}^n P(B_i)$ where B_i is A_i or A_i^c . Events $A_1, ..., A_n$ are called *pairwise independent* if any pair of two events are independent.

The above definition implies, if $A_1, ..., A_n$ are independent (pairwise independent), then $A_{i_1}, ..., A_{i_k}$ are independent (pairwise independent). (Please DIY).

The σ -algebra generated by a single set A, denoted as $\sigma(A)$ is $\{\emptyset, A, A^c, \Omega\}$. Independence between $A_1, ..., A_n$ can be interpreted as independence between the σ -algebras: $\sigma(A_i), i = 1, ..., n$.

(ii). Borel-Cantelli Lemma.

The Borel-Contelli Lemma is considered as *sine qua non* of probability theory and is instrumental in proving the law of large numbers. Please note in the proof below the technique of using the indicator functions to handle probability of sets,

Theorem 1.1. (BOREL-CONTELLI LEMMA) For events $A_1, A_2, ...,$

(1)
$$\sum_{n=1}^{\infty} P(A_n) < \infty \Longrightarrow P(A_n, i.o.) = 0;$$

(2) If A_n are independent, $\sum_{n=1}^{\infty} P(A_n) = \infty \Longrightarrow P(A_n, i.o.) = 1$

Here A_n , *i.o.* means A_n happens infinitely often, i.e., $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$. **Proof.** (1): Let 1_{A_n} be the indicator function of A_n . Then, A_n , *i.o.* is the same as $\sum_{n=1}^{\infty} 1_{A_n} = \infty$. Hence,

$$E(\sum_{i=1}^{\infty} 1_{A_n}) = \sum_{n=1}^{\infty} E 1_{A_n} = \sum_{n=1}^{\infty} P(A_n) < \infty.$$

It implies $\sum_{i=1}^{n} 1_{A_n} < \infty$ with probability 1. This is equivalent to $P(A_n, i.o.) = 0$. (2). $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $\prod_{k=n}^{\infty} (1 - P(A_k)) = 0$ since $\log(1 - x) \le -x$ for $x \in [0, 1]$. for all $n \ge 1$. By dominated convergence theorem

$$E(\liminf 1_{A_n^c}) = E(\lim_n \prod_{k=n}^\infty 1_{A_k^c}) = \lim_n E(\prod_{k=n}^\infty 1_{A_k^c}) = \lim_n \prod_{k=n}^\infty (1 - P(A_k)) = 0$$

Then, $P(\liminf_{n \to \infty} A_n^c) = 0$ and hence $P(\limsup_{n \to \infty} A_n) = 1$. As an immediate consequence,

Corollary (BOREL'S 0-1 LAW) If $A_1, ..., A_n, ...$ are independent, then $P(A_n, i.o.) = 1$ or 0 according as $\sum_n P(A_n) = \infty$) or $< \infty$.

Even though the above 0-1 law appears to be simple, its impact and implication is profound. More generally, suppose $A \in \bigcap_{n=1}^{\infty} \sigma(A_j, j \ge n)$, the so-called *tail* σ -algebra. A is called a *tail event*. Then, the independence of $A_1, ..., A_n, ...$ implies P(A) = 0 or 1. The key fact here is that A is independent of A_n for any $n \ge 1$, such as, for example, $\{A_n, i.o.\}$ or $\{\sum_{i=1}^n 1_{A_i} / \log(n) \to \infty\}$. A more general result involving independent random variables to be introduced below is the Kolmogorov's 0-1 law to be introduced later.

The following example can be viewed as a strengthening of the Borel-Cantelli lemma.

EXAMPLE 1.2 Suppose $A_1, ..., A_n, ...$ are independent events with $\sum_n p_n = \infty$ where $p_n = P(A_n)$. Then,

$$X_n \equiv \frac{\sum_{i=1}^n 1_{A_i}}{\sum_{i=1}^n p_i} \to 1 \qquad a.s..$$

Proof Since

$$E(X_n - 1)^2 = \frac{\sum_{i=1}^n p_i(1 - p_i)}{(\sum_{i=1}^n p_i)^2} \le \frac{1}{\sum_{i=1}^n p_i} \to 0,$$

it follows that $X_n \to 1$ in L_2 and therefore also in probability by the Chebyshev inequality:

$$P(|X_n - 1| > \epsilon) \le \frac{E(X_n - 1)^2}{\epsilon^2} \le \frac{1}{\epsilon^2 \sum_{i=1}^n p_i} \to 0.$$

Consider $n_k \uparrow \infty$ as $k \to \infty$, such that

$$\sum_{k=1}^{\infty} \frac{1}{\sum_{i=1}^{n_k} p_i} < \infty \quad \text{and} \quad \frac{\sum_{i=1}^{n_{k+1}} p_i}{\sum_{i=1}^{n_k} p_i} \to 1.$$

Then,

$$\sum_{i=1}^{\infty} P(|X_{n_k} - 1| > \epsilon) < \infty$$

The Borel-Cantelli lemma implies $X_{n_k} \to 1$ a.s.. Observe that, for $n_k \leq n \leq n_{k+1}$,

$$1 \leftarrow \frac{\sum_{i=1}^{n_k} 1_{A_i}}{\sum_{i=1}^{n_{k+1}} p_i} \le X_n = \frac{\sum_{i=1}^n 1_{A_i}}{\sum_{i=1}^n p_i} \le \frac{\sum_{i=1}^{n_{k+1}} 1_{A_i}}{\sum_{i=1}^{n_k} p_i} \to 1, \quad a.s..$$

The desired convergence holds.

Remark. The trick of bracketing X_n by the two quantities in the above inequality is also used in proving the uniform convergence of the empirical distribution to the population distribution:

$$|F_n(x) - F(x)| \to 0, \qquad a.s.,$$

where $F_n(x) = (1/n) \sum_{i=1}^n \mathbb{1}_{\{\xi_i \leq x\}}$ and ξ_i are iid with cdf F. The idea is further elaborated in the context of empirical approximation in terms of bracketing/packing numbers.

EXAMPLE 1.3. Repeatedly toss a coin, which has probability p to be head and q = 1 - p to be tail on each toss. Let $X_n = H$ or T when n-th toss is a head or tail. Let

$$l_n = \max\{m \ge 0 : X_n = H, X_{n+1} = H, ..., X_{n+m-1} = H, X_{n+m} = T\}$$

be the length of run of heads starting from n-th toss. Then,

$$\limsup_{n} l_n / \log n = 1 / \log(1/p)$$

Proof. l_n follows a geometric distribution, i.e.,

$$P(l_n = k) = qp^k$$
, $P(l_n \ge k) = P(X_n = 1, ..., X_{n+k-1} = 1) = p^k$ $k = 0, 1, 2, ...$

$$\sum_{n=1}^{\infty} P\Big(l_n > (1+\epsilon) \frac{\log n}{\log(1/p)}\Big) \le \sum_{n=1}^{\infty} p^{(1+\epsilon) \frac{\log n}{\log(1/p)}} \le \sum_{n=1}^{\infty} e^{-(1+\epsilon) \log n} = \sum_{n=1}^{\infty} n^{-(1+\epsilon)} < \infty$$

By the Borel-Cantelli lemma,

$$\limsup_{n} \frac{l_n}{\log n / \log(1/p)} \le 1$$

We next try to find a subsequence with limit as large as 1. Choose $r_n = n^n$ (we need a sequence going fast to infinity so that the following A_n are independent). Let d_n be the integer part of $\log n / \log(1/p)$ and let

$$A_n = \{X_{r_n} = H, X_{r_n+1} = H, \dots, X_{r_n+d_n-1} = H\}$$

Then $A_n, n \ge 1$ are independent, and

$$P(A_n) = p^{d_n} = e^{d_n \log p} \approx 1/n$$

Therefore, $\sum_{n} P(A_n) = \infty$. It then follows from the Borel Cantelli lemma that $P(A_n, i.o,) = 1$. Since $A_n = \{l_{r_n} \ge d_n\}$, we have

$$\limsup_{n} \frac{l_n}{\log n / \log(1/p)} \ge \limsup_{n} \frac{l_{r_n}}{d_n} \ge 1.$$

Remark. An analogous problem occurs in the setting of Poisson processes. Consider a Poisson process with intensity $\lambda > 0$. The sojourn times (time between two consecutive events) ξ_0, ξ_1, \ldots are iid ~ exponential distribution with mean $1/\lambda$. Then, $\limsup_{x\to\infty} l_x/x = 1/\lambda$, where l_x the time period between x and the time of the event right after x.

(iii). Independence between σ -algebras and between random variables.

Definitions. Let $\mathcal{A}_1, ..., \mathcal{A}_n$ be σ -algebras. They are called independent if $A_1, ..., A_n$ are independent for any $A_j \in \mathcal{A}_j, j = 1, ..., n$. Random variables $X_1, ..., X_n$ are called independent, if the σ -algebras generated by $X_j, 1 \leq j \leq n$, are independent, i.e.,

$$P(\bigcap_{j=1}^{n} X_{j}^{-1}(B_{j})) = \prod_{j=1}^{n} P(X_{j}^{-1}(B_{j})) \quad \text{or} \quad P(X_{1} \in B_{1}, ..., X_{n} \in B_{n}) = \prod_{j=1}^{n} P(X_{j} \in B_{j})$$

for any Borel sets $B_1, ..., B_n$ in $(-\infty, \infty)$.

There are several equivalent definition of the independence of random variables:

Two r.v.s X and Y are called independent, if E(g(X)f(Y)) = E(g(X))E(f(Y)) for all bounded (measurable) functions g and f. or, equivalently, if

$$P(X \le t, \text{ and } Y \le s) = \prod_{i=1}^{n} P(X_j \le t_j) \quad \text{for all } t_j \in (-\infty, \infty), \ j = 1, ..., n.$$

i.e., in terms of cumulative distribution functions.

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$
 for all x, y .

If the joint density exists, This is the same as $f_{X,Y}(x,y) = f_X(x)f_X(y)$.

Roughly speaking, independence between two r.v.s X and Y is interpreted as X taking any value "has nothing to do with" Y taking any value, and vice versus.

(iv). Conditional expectation.

(1). Conditional distribution and conditional expectation with respect to a set A.

Suppose A is a set with P(A) > 0, and X is a random variable. Then, the *conditional expectation* is

$$E(X|A) \equiv E(X1_A)/P(A).$$

The conditional distribution of X given A is

$$P(X \le t|A) = P(\{X \le t\} \cap A)/P(A)$$

Then, $E(X|A) = \int t dP(X \le t|A)$, if exist.

As a simple example, let $X \sim Unif[0, 1]$. Let $A_i = \{i - 1/n < X \le i/n\}$ for i = 1, ..., n.

$$E(X|A_i) \equiv E(X1_{A_i})/P(A_i) = (i - 1/2)/n.$$

Similarly $E(X|A_i^c) \equiv E(X1_{A_i^c})/P(A_i^c)$.

Interpretation: E(X|A) is the weighted "average" (expected value) of X over the set A.

(2). Conditional expectation with respect to a r.v..

For two random variables X, Y, E(X|Y) is a function of Y, i.e., measurable to $\sigma(Y)$, such that, for any $A \in \sigma(Y)$,

$$E(X1_A) = E[E(X|Y)1_A].$$

Interpretation: E(X|Y) is the weighted "average" (expected value) of X over the set $\{Y = y\}$ for all y. It is a function of Y and therefore is a r.v. measurable to $\sigma(Y)$.

If their joint density f(x, y) exists, then the conditional density of X given Y = y is $f_{X|Y}(x|y) \equiv f(x, y)/f_Y(y)$. And

$$E(X|Y=y) \equiv \int x f_{X|Y}(x|y) dx.$$

(3). Conditional expectation with respect to a σ -algebra \mathcal{A} .

Conditional expectation w.r.t. a σ -algebra is the most fundamental concept in probability theory, especially in martingale theory in which the very definition of martingale depends on conditional expectation.

Recall that a random variable, say X, is measurable to a σ -algebra \mathcal{A} is that for any interval (a, b), $\{\omega : X(\omega) \in (a, b)\} \in \mathcal{A}$. In other words, $\sigma(X) \subseteq \mathcal{A}$ is interpreted as all information about X, (which is $\sigma(X)$), is contained in \mathcal{A} .

If $\mathcal{A} = \sigma(A_1, ..., A_n)$ where $A_i \cap A_j = \emptyset$, then X measurable to \mathcal{A} implies X must be constant over each A_i . If \mathcal{A} is generated by a r.v. Y, then X measurable to \mathcal{A} implies ξ must be a function of Y. A heuristic understanding is that if Y is known, then there is no uncertainty of X, or if Y assumes one value, X cannot assume more than one values.

Definition For a random variable X and a completed σ -algebra \mathcal{A} , $E(X|\mathcal{A})$ is defined as an \mathcal{A} measurable random variable such that, for any $A \in \mathcal{A}$,

$$E(X1_A) = E(E(X|\mathcal{A})1_A),$$

i.e. $E(X|A) = E(E(X|\mathcal{A})|A)$ for every $A \in \mathcal{A}$ with P(A) > 0. If $\mathcal{A} = \sigma(A_1, ..., A_n)$ where $A_i \cap A_j = \emptyset$, then

$$E(X|\mathcal{A}) = \sum_{j=1}^{n} E(X|A_i) \mathbf{1}_{A_i},$$

which is a r.v. that, on each A_i , takes the conditional average of X, i.e., $E(X|A_i)$, as its value. Motivated from this simple case, we may obtain an important understanding of the conditional expectation X w.r.t. a σ -algebra A: a new r.v. as the "average" of the r.v. X on each "un-splitable" or "smallest" set of the σ -algebra A.

Conditional mean/expectation with respect to σ algebra shares many properties just like the ordinary expectation.

Properties:

(1). $E(aX + bY|\mathcal{A}) = aE(X|\mathcal{A}) + bE(Y|\mathcal{A})$

- (2). If $X \in \mathcal{A}$, then $E(X|\mathcal{A}) = X$.
- (4). $E(E(X|\mathcal{F})|\mathcal{A}) = E(X|\mathcal{A})$ for two σ -algebras $\mathcal{A} \subseteq \mathcal{F}$.

Further properties, such as the dominated convergence theorem, Fatou's lemma and monotone convergence theorem also hold for conditional mean w.r.t. a σ -algebra. (See DIY exercises.)

(v). Kolmogorov's 0-1 law.

One of the most important theorem in probability theory is the *martingale convergence theorem*. In the following, we provide a simplified version, without a rigorous introduction of martingale and without giving a proof.

Theorem 1.2 (SIMPLIFIED VERSION OF MARTINGALE CONVERGENCE THEOREM) Suppose $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ for $n \geq 1$. Let $\mathcal{F} = \sigma(\bigcup_{n=1}^{\infty} F_n)$. For any random variable X with $E(|X|) < \infty$,

$$E(X|\mathcal{F}_n) \to E(X|\mathcal{F}), \quad a.s.$$

The martingale convergence theorem, even with the simplified version, has broad applications. For example, One of the most basic 0-1 laws: the Kolomogorov 0-1 law, can be established upon it.

Corollary (KOLOMOGOROV 0-1 LAW) Suppose $X_1, ..., X_n, ...$ are a sequence of independent r.v.s. Then all tails events are have probability 0 or 1.

Proof. Suppose A is a tail event. Then A is independent of $X_1, ..., X_n$ for any fixed n. Therefore $E(1_A | \mathcal{F}_n) = P(A)$ where \mathcal{F}_n is the σ -algebra generated by $X_1, ..., X_n$. But, by Theorem 1.2, $E(1_A | \mathcal{F}_n) \to 1_A$ a.s.. Hence $1_A = P(A)$, and A can only be 0 or 1.

A heuristic interpretation of Kolmogorov's 0-1 law could be in the perspective of information. When σ -algebras $\mathcal{A}_1, ..., \mathcal{A}_n, ...$ are independent, the information carried by each \mathcal{A}_i are independent or unrelated or non-overlapping. Then, the information carried by $\mathcal{A}_n, \mathcal{A}_{n+1}, ...$ shall shrink to 0 as $n \to \infty$, as, if otherwise, $\mathcal{A}_n, \mathcal{A}_{n+1}, ...$ would have something in common.

As straightforward applications of Kolmogorov's 0-1 law:

Corollary Suppose $X_1, ..., X_n, ...$ are a sequence of independent random variables. Then,

 $\liminf_{n} X_n, \quad \limsup_{n} X_n, \quad \limsup_{n} S_n/a_n \quad \text{and} \quad \liminf_{n} S_n/a_n$

must be either a constant or ∞ or $-\infty$, a.s., where $S_n = \sum_{i=1}^n X_i$ and $a_n \uparrow \infty$.

Proof. Consider $A = \{\omega : \liminf_n X_n(\omega) > a\}$. Try to show A is a tail event. (DIY).

Remark. Without invoking martingale convergence theorem, Kolmogorov's 0-1 law can be shown through $\pi - \lambda$ theorem, which we do not plan to cover.

DIY EXERCISES.

Exercise 1.13 ****** Suppose X_n are iid random variables. Then $X_n/n^{1/p} \to 0$ a.s. if and only if $E(|X_n|^p) < \infty$ for p > 0. Hint: Borel-Cantelli lemma.

Exercise 1.14 $\star \star \star$ Let X_n be iid r.v.s with $E(X_n) = \infty$. Show that $\limsup_n |S_n|/n = \infty$ a.s. where $S_n = X_1 + \cdots + X_n$.

Exercise 1.15 $\star \star \star$ Suppose X_n are iid nonnegative random variables such that $\sum_{k=1}^{\infty} kP(X_1 > a_k) < \infty$ for $a_k \uparrow \infty$. Show that $\limsup_n \max_{1 \le i \le n} X_i/a_n \le 1$ a.s.

Exercise 1.16 $\star \star \star \star$ (EMPIRICAL APPROXIMATION) For every fixed $t \in [0, 1]$, $S_n(t)$ is a sequence of random variables such that, with probability 1 for some p > 0,

$$|S_n(t) - S_n(s)| \le n|t - s|^p,$$

for all $n \ge 1$ and all $t, s \in [0, 1]$. Suppose for every constant C > 0, there exists an c > 0 such that

$$P(|S_n(t)| > C(n \log n)^{1/2}) \le e^{-cn}$$
 for all $n \ge 1$ and $t \in [0, 1]$.

Show that, for any p > 0,

$$\frac{\max\{|S_n(t)|: t \in [0,1]\}}{(n\log n)^{1/2}} \to 0 \qquad a.s..$$

Hint: Borel-Cantelli lemma.