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§ 1.5. Weak law of large numbers.

For a sequence of independent r.v.s X1, X2, ..., classical law of large numbers is typically about the
convergence of partial sums

Sn −E(Sn)
n

=
∑n

i=1[Xi − E(Xi)]
n

,

where Sn =
∑n

i=1 Xi here and throughout this Chapter. A more general form is the convergence of

Sn − an

bn

for some constants an and bn. Weak law is convergence in probability and strong law is convergence
a.s..

(i). Weak law of large numbers.

The following proposition may be called L2 weak law of large numbers which implies the weak law
of large numbers.

Proposition Suppose X1, ..., Xn, ... are iid with mean µ and finite variance σ2. Then,

Sn/n → µ in probability and in L2.

Proof. Write
E(Sn/n− µ)2 = (1/n)σ2 → 0.

Therefore L2 convergence holds. And convergence in probability is implied by the Chebyshev
inequality. ¤

The above proposition implies that classical weak law of large numbers holds quite trivially in a
standard setup with the r.v.s being iid with finite variance. In fact, in such a standard setup strong
law of large numbers also holds, as to be shown in Section 1.7. However, the fact that convergence
in probability is implied in L2 convergence plays a central role is establishing weak law of large
numbers. For a example, a straightforward extension of the above proposition can be:

For independent r.v.s X1, ...,, (Sn − E(Sn))/bn → 0 in probability if (1/b2
n)

∑n
i=1 var(Xi) → 0, for

some bn ↑ ∞.

The following theorem about general weak law of large numbers is a combination of the above
extension and the technique of truncation.

Theorem 1.3. Weak Law of Large Numbers Suppose X1, X2, ... are independent. Assume

(1).
∑n

i=1 P (|Xi| > bn) → 0,

(2). b−2
n

∑n
i=1 E(X2

i 1{|Xi|≤bn}) → 0,

where 0 < bn ↑ ∞. Then (Sn − an)/bn → 0 in probability, where an =
∑n

j=1 E(Xi1{|Xi|≤bn}).

Proof. Let Yj = Xj1{|Xj |≤bn}. Consider
∑n

j=1 Yj − an

bn
=

∑n
j=1[Yj − E(Yj)]

bn
,

which is mean 0 and converges to 0 in L2 by (2). Therefore it also converges to 0 in probability.
Notice that

P
(Sn − an

bn
=

∑n
j=1 Yj − an

bn

)
= P (Sn =

n∑

j=1

Yj)
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≥ P (Xj = Yj for all 1 ≤ j ≤ n) =
n∏

j=1

P (Xj = Yj) by independence

=
n∏

j=1

P (|Xj | ≤ bn) =
n∏

j=1

[1− P (|Xj | > bn)] = e
∑n

j=1 log[1−P (|Xj |>bn)]

≈ e−
∑n

j=1 P (|Xj |>bn)

→ 1 by (1).

Hence (Sn − an)/bn → 0 in probability. ¤

Theorem 1.4. Suppose X, X1, X2, ... are iid. Then, Sn/n− µn → 0 in probability for some µn,
if and only if

xP (|X1| > x) → 0 as x →∞.

in which case µn = E(X1{|X|≤n}) + o(1).

Proof. “⇐=” Let an = nµn and bn = n in Theorem 1.3. Condition (1) follows. To check
Condition (2), write, as n →∞,

b−2
n

n∑

i=1

E(X2
i 1{|Xi|≤bn}) =

1
n

E(X21{|X|≤n}) ≤
1
n

E(min(|X|, n)2)

=
1
n

∫ ∞

0

2xP (min(|X|, n) > x)dx =
1
n

∫ n

0

2xP (|X| > x)dx

=
1
n

∫ n

M

2xP (|X| > x)dx + o(1) for any fixed M > 0

=
2
n

∫ n

M

xP (|X| > x)dx + o(1) ≤ 2 sup
x≥M

xP (|X| > x) + o(1),

as n →∞. Since M is arbitray, Condition (2) holds. And the WLLN follows from Theorem 1.3.

“=⇒” Let X∗, X∗
1 , ... be iid following the same distribution of X and are independent of X, X1, ....

Set ξi = Xi −X∗
i (symmetrization) and S̃n =

∑n
i=1 ξi. Then, S̃n/n → 0 in probability. The Levy

inequality in Exercise 1.13 implies max{|S̃j | : 1 ≤ j ≤ n}/n → 0 in probability, which further
ensures max{|ξj | : 1 ≤ j ≤ n}/n → 0 in probability. For any ε > 0,

nP (|X| ≥ nε)P (|X∗| ≤ .5nε) = nP (|X| ≥ nε, |X∗| ≤ .5nε) ≤ nP (|X −X∗| ≥ .5nε)
≈ 1− [1− P (|X −X∗| ≥ .5nε)]n = P ( max

1≤j≤n
|ξj | > .5nε) → 0.

As a result, for any ε > 0,

nP (|X| ≥ nε) ≈ nP (|X| ≥ nε)[1− P (|X| ≥ .5nε)] → 0,

which is equivalent to xP (|X| > x) → 0 as x →∞. ¤

Example 1.4. Suppose X1, X2, ... are i.i.d. with common density f symmetric about 0 and c.d.f
such that 1− F (t) = 1/(t log t), for t > 3. Then, Sn/n → 0 in probability. But Sn/n 9 0, a.s..

The convergence in probability is a consequence of Theorem 1.4 with µn = 0 and checking the
condition xP (|X| > x) → 0 as x → ∞. The convergence a.s. is untrue because Xn/n 9 0 a.s. by
Borel-Cantelli lemma. ¤

Corollary. Suppose X1, ..., Xn, ... are i.i.d. with E(|Xi|) < ∞. Then, Sn/n → E(X1) in probabil-
ity.
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Proof. Since, as x →∞,

xP (|Xi| > x) = o(1)
∫ x

0

P (|Xi| > t)dt = o(1)
∫ ∞

0

P (|Xi| > t)dt = o(1)E(|Xi|),

the WLLN follows from Theorem 1.4. ¤
Example 1.5. The St. Petersberg Paradox. Let X, X1, ..., Xn, ... be iid with P (X = 2k) =
2−k, k = 1, 2, .... Then, E(X) = ∞ and

Sn

n log n
→ 1

log 2
in probability.

Proof. Notice that P (X ≥ 2k) = 2−k+1. Let kn ≈ log log n/ log 2, mn = log n/ log 2 + kn and
bn = 2mn = 2knn ≈ n log n. mn is an integer. Then,

nP (X ≥ bn) = n2−mn+1 ≈ 2n/n · 2−kn → 0.

And

E(X21{|X|≤bn}) =
mn∑

k=1

22k2−k =
mn∑

k=1

2k ≤ 2× 2mn = 2bn.

Then,
nE(X21{|X|≤bn})

b2
n

≤ 2nbn

b2
n

=
2n

bn
=

2n

2mn
=

2n

n2kn
→ 0.

Let an = nE(X1{|X|≤bn}).

an = n

mn∑

k=1

2k2−k = nmn = n log n/ log 2 + nkn ≈ bn log 2.

The desired convergence is implied by Theorem 1.4. ¤
Example 1.6. “Unfair fair game”. You pay one dollar to buy a lottery. The lottery has
infinite number of numbered balls. If number k occurs, you are paid by 2k dollars. The number k
ball occurs with probability

pk ≡ 1
2kk(k + 1)

.

Is this a fair game?

In a sense, it is fair. Let X be gain/loss of the outcome. Then P (X = 2k − 1) = pk, k = 1, 2, ....
and P (X = −1) = 1−∑

k pk. Then E(X) = 0.

If one buys the lottery on daily basis, one time every day. Let Xn be gain/loss of day n and Sn be
the cumulative gain/loss up to day n. Then,

Sn

n/ log n
→ − log 2 in probability,

meaning that in the long time, he/she is nearly certainly in red. ¤

Example 1.7. Compute the limit of
∫ 1

0

· · ·
∫ 1

0

x2
1 + · · ·x2

1+
x1 + · · ·+ xn

dx1 · · · dxn.

Solution. The above integral is the same as

E
(X2

1 + · · ·+ X2
n

X1 + · · ·+ Xn

)
,
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where X1, ..., Xn, ... are iid ∼ Unif [0, 1]. Since, by the WLLN

(1/n)
∑

i=1

X2
i → E(X2

1 ) =
∫ 1

0

x2dx = 1/3 and (1/n)
∑

i=1

Xi → E(X1) = 1/2,

with the convergence being convergence in probability, we have

X2
1 + · · ·+ X2

n

X1 + · · ·+ Xn
→ 2/3 in probability.

The r.v. on the left hand side is bounded by 1. By the dominated convergence, its mean also
converges to 2/3. Then the limit of the integral is 2/3. ¤
Remark. The following WLLN for array of r.v.s. is a slight generalization of Theorem 1.3.

Suppose Xn,1, ..., Xn,n are independent r.v.s. If

n∑

i=1

P (|Xn,i| > bn) → 0 and (1/b2
n)

n∑

i=1

E(X2
n,i1{|Xn,i|≤bn}) → 0,

Then, ∑n
i=1 Xn,i − an

bn
→ 0 in probability

where an =
∑n

i=1 E(Xn,i1{|Xn,i|≤bn}).

DIY Exercises.

Exercise 1.17 (Levy’s Inequality) Suppose X1, X2, ... are independent and symmetric about 0.
Then,

P ( max
1≤j≤n

|Sj | ≥ ε) ≤ 2P (|Sn| ≥ ε)

Exercise 1.18 Show Sn/(n log n) → − log 2 in probability in Example 1.7. Hint: Choose bn = 2mn

with mn = {k : 2−kk−3/2 ≤ 1/n} and proceed as in Example 1.5.

Exercise 1.19 For Example 1.4, prove that Sn/bn → 0 in probability, if bn/(n/ log n) ↑ ∞.

Exercise 1.20 (Marcinkiewicz-Zygmund weak law of large numbers) Suppose xpP (|X| >
x) → 0 as x →∞ for some 0 < p < 2. Prove that

Sn − nE(X1{|X|≤n1/p})
n1/p

→ 0 in probability.


