§ 1.5. Weak law of large numbers.

For a sequence of independent r.v.s X_{1}, X_{2}, \ldots, classical law of large numbers is typically about the convergence of partial sums

$$
\frac{S_{n}-E\left(S_{n}\right)}{n}=\frac{\sum_{i=1}^{n}\left[X_{i}-E\left(X_{i}\right)\right]}{n}
$$

where $S_{n}=\sum_{i=1}^{n} X_{i}$ here and throughout this Chapter. A more general form is the convergence of

$$
\frac{S_{n}-a_{n}}{b_{n}}
$$

for some constants a_{n} and b_{n}. Weak law is convergence in probability and strong law is convergence a.s..
(i). Weak law of large numbers.

The following proposition may be called L^{2} weak law of large numbers which implies the weak law of large numbers.
Proposition Suppose $X_{1}, \ldots, X_{n}, \ldots$ are iid with mean μ and finite variance σ^{2}. Then,

$$
S_{n} / n \rightarrow \mu \quad \text { in probability and in } L^{2} .
$$

Proof. Write

$$
E\left(S_{n} / n-\mu\right)^{2}=(1 / n) \sigma^{2} \rightarrow 0
$$

Therefore L^{2} convergence holds. And convergence in probability is implied by the Chebyshev inequality.

The above proposition implies that classical weak law of large numbers holds quite trivially in a standard setup with the r.v.s being iid with finite variance. In fact, in such a standard setup strong law of large numbers also holds, as to be shown in Section 1.7. However, the fact that convergence in probability is implied in L^{2} convergence plays a central role is establishing weak law of large numbers. For a example, a straightforward extension of the above proposition can be:
For independent r.v.s $X_{1}, \ldots,,\left(S_{n}-E\left(S_{n}\right)\right) / b_{n} \rightarrow 0$ in probability if $\left(1 / b_{n}^{2}\right) \sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right) \rightarrow 0$, for some $b_{n} \uparrow \infty$.
The following theorem about general weak law of large numbers is a combination of the above extension and the technique of truncation.

Theorem 1.3. Weak Law of Large Numbers Suppose X_{1}, X_{2}, \ldots are independent. Assume
(1). $\sum_{i=1}^{n} P\left(\left|X_{i}\right|>b_{n}\right) \rightarrow 0$,
(2). $b_{n}^{-2} \sum_{i=1}^{n} E\left(X_{i}^{2} 1_{\left\{\left|X_{i}\right| \leq b_{n}\right\}}\right) \rightarrow 0$,
where $0<b_{n} \uparrow \infty$. Then $\left(S_{n}-a_{n}\right) / b_{n} \rightarrow 0$ in probability, where $a_{n}=\sum_{j=1}^{n} E\left(X_{i} 1_{\left\{\left|X_{i}\right| \leq b_{n}\right\}}\right)$.
Proof. Let $Y_{j}=X_{j} 1_{\left\{\left|X_{j}\right| \leq b_{n}\right\}}$. Consider

$$
\frac{\sum_{j=1}^{n} Y_{j}-a_{n}}{b_{n}}=\frac{\sum_{j=1}^{n}\left[Y_{j}-E\left(Y_{j}\right)\right]}{b_{n}}
$$

which is mean 0 and converges to 0 in L^{2} by (2). Therefore it also converges to 0 in probability. Notice that

$$
P\left(\frac{S_{n}-a_{n}}{b_{n}}=\frac{\sum_{j=1}^{n} Y_{j}-a_{n}}{b_{n}}\right)=P\left(S_{n}=\sum_{j=1}^{n} Y_{j}\right)
$$

$$
\begin{aligned}
& \geq P\left(X_{j}=Y_{j} \text { for all } 1 \leq j \leq n\right)=\prod_{j=1}^{n} P\left(X_{j}=Y_{j}\right) \quad \text { by independence } \\
& =\prod_{j=1}^{n} P\left(\left|X_{j}\right| \leq b_{n}\right)=\prod_{j=1}^{n}\left[1-P\left(\left|X_{j}\right|>b_{n}\right)\right]=e^{\sum_{j=1}^{n} \log \left[1-P\left(\left|X_{j}\right|>b_{n}\right)\right]} \\
& \approx e^{-\sum_{j=1}^{n} P\left(\left|X_{j}\right|>b_{n}\right)} \\
& \rightarrow 1 \quad \text { by }(1) .
\end{aligned}
$$

Hence $\left(S_{n}-a_{n}\right) / b_{n} \rightarrow 0$ in probability.

Theorem 1.4. Suppose X, X_{1}, X_{2}, \ldots are iid. Then, $S_{n} / n-\mu_{n} \rightarrow 0$ in probability for some μ_{n}, if and only if

$$
x P\left(\left|X_{1}\right|>x\right) \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

in which case $\mu_{n}=E\left(X 1_{\{|X| \leq n\}}\right)+o(1)$.
Proof. " " Let $a_{n}=n \mu_{n}$ and $b_{n}=n$ in Theorem 1.3. Condition (1) follows. To check Condition (2), write, as $n \rightarrow \infty$,

$$
\begin{aligned}
& b_{n}^{-2} \sum_{i=1}^{n} E\left(X_{i}^{2} 1_{\left\{\left|X_{i}\right| \leq b_{n}\right\}}\right)=\frac{1}{n} E\left(X^{2} 1_{\{|X| \leq n\}}\right) \leq \frac{1}{n} E\left(\min (|X|, n)^{2}\right) \\
= & \frac{1}{n} \int_{0}^{\infty} 2 x P(\min (|X|, n)>x) d x=\frac{1}{n} \int_{0}^{n} 2 x P(|X|>x) d x \\
= & \frac{1}{n} \int_{M}^{n} 2 x P(|X|>x) d x+o(1) \quad \text { for any fixed } M>0 \\
= & \frac{2}{n} \int_{M}^{n} x P(|X|>x) d x+o(1) \leq 2 \sup _{x \geq M} x P(|X|>x)+o(1),
\end{aligned}
$$

as $n \rightarrow \infty$. Since M is arbitray, Condition (2) holds. And the WLLN follows from Theorem 1.3. $" \Longrightarrow$ " Let X^{*}, X_{1}^{*}, \ldots be iid following the same distribution of X and are independent of X, X_{1}, \ldots Set $\xi_{i}=X_{i}-X_{i}^{*}$ (symmetrization) and $\tilde{S}_{n}=\sum_{i=1}^{n} \xi_{i}$. Then, $\tilde{S}_{n} / n \rightarrow 0$ in probability. The Levy inequality in Exercise 1.13 implies $\max \left\{\left|\tilde{S}_{j}\right|: 1 \leq j \leq n\right\} / n \rightarrow 0$ in probability, which further ensures $\max \left\{\left|\xi_{j}\right|: 1 \leq j \leq n\right\} / n \rightarrow 0$ in probability. For any $\epsilon>0$,

$$
\begin{aligned}
& n P(|X| \geq n \epsilon) P\left(\left|X^{*}\right| \leq .5 n \epsilon\right)=n P\left(|X| \geq n \epsilon,\left|X^{*}\right| \leq .5 n \epsilon\right) \leq n P\left(\left|X-X^{*}\right| \geq .5 n \epsilon\right) \\
\approx & 1-\left[1-P\left(\left|X-X^{*}\right| \geq .5 n \epsilon\right)\right]^{n}=P\left(\max _{1 \leq j \leq n}\left|\xi_{j}\right|>.5 n \epsilon\right) \rightarrow 0 .
\end{aligned}
$$

As a result, for any $\epsilon>0$,

$$
n P(|X| \geq n \epsilon) \approx n P(|X| \geq n \epsilon)[1-P(|X| \geq .5 n \epsilon)] \rightarrow 0
$$

which is equivalent to $x P(|X|>x) \rightarrow 0$ as $x \rightarrow \infty$.

Example 1.4. Suppose X_{1}, X_{2}, \ldots are i.i.d. with common density f symmetric about 0 and c.d.f such that $1-F(t)=1 /(t \log t)$, for $t>3$. Then, $S_{n} / n \rightarrow 0$ in probability. But $S_{n} / n \nrightarrow 0$, a.s..
The convergence in probability is a consequence of Theorem 1.4 with $\mu_{n}=0$ and checking the condition $x P(|X|>x) \rightarrow 0$ as $x \rightarrow \infty$. The convergence a.s. is untrue because $X_{n} / n \rightarrow 0$ a.s. by Borel-Cantelli lemma.

Corollary. Suppose $X_{1}, \ldots, X_{n}, \ldots$ are i.i.d. with $E\left(\left|X_{i}\right|\right)<\infty$. Then, $S_{n} / n \rightarrow E\left(X_{1}\right)$ in probability.

Proof. Since, as $x \rightarrow \infty$,

$$
x P\left(\left|X_{i}\right|>x\right)=o(1) \int_{0}^{x} P\left(\left|X_{i}\right|>t\right) d t=o(1) \int_{0}^{\infty} P\left(\left|X_{i}\right|>t\right) d t=o(1) E\left(\left|X_{i}\right|\right)
$$

the WLLN follows from Theorem 1.4.
Example 1.5. The St. Petersberg Paradox. Let $X, X_{1}, \ldots, X_{n}, \ldots$ be iid with $P\left(X=2^{k}\right)=$ $2^{-k}, k=1,2, \ldots$ Then, $E(X)=\infty$ and

$$
\frac{S_{n}}{n \log n} \rightarrow \frac{1}{\log 2} \quad \text { in probability. }
$$

Proof. Notice that $P\left(X \geq 2^{k}\right)=2^{-k+1}$. Let $k_{n} \approx \log \log n / \log 2, m_{n}=\log n / \log 2+k_{n}$ and $b_{n}=2^{m_{n}}=2^{k_{n}} n \approx n \log n . m_{n}$ is an integer. Then,

$$
n P\left(X \geq b_{n}\right)=n 2^{-m_{n}+1} \approx 2 n / n \cdot 2^{-k_{n}} \rightarrow 0
$$

And

$$
E\left(X^{2} 1_{\left\{|X| \leq b_{n}\right\}}\right)=\sum_{k=1}^{m_{n}} 2^{2 k} 2^{-k}=\sum_{k=1}^{m_{n}} 2^{k} \leq 2 \times 2^{m_{n}}=2 b_{n}
$$

Then,

$$
\frac{n E\left(X^{2} 1_{\left\{|X| \leq b_{n}\right\}}\right)}{b_{n}^{2}} \leq \frac{2 n b_{n}}{b_{n}^{2}}=\frac{2 n}{b_{n}}=\frac{2 n}{2^{m_{n}}}=\frac{2 n}{n 2^{k_{n}}} \rightarrow 0
$$

Let $a_{n}=n E\left(X 1_{\left\{|X| \leq b_{n}\right\}}\right)$.

$$
a_{n}=n \sum_{k=1}^{m_{n}} 2^{k} 2^{-k}=n m_{n}=n \log n / \log 2+n k_{n} \approx b_{n} \log 2 .
$$

The desired convergence is implied by Theorem 1.4.
Example 1.6. "Unfair fair game". You pay one dollar to buy a lottery. The lottery has infinite number of numbered balls. If number k occurs, you are paid by 2^{k} dollars. The number k ball occurs with probability

$$
p_{k} \equiv \frac{1}{2^{k} k(k+1)} .
$$

Is this a fair game?
In a sense, it is fair. Let X be gain/loss of the outcome. Then $P\left(X=2^{k}-1\right)=p_{k}, k=1,2, \ldots$. and $P(X=-1)=1-\sum_{k} p_{k}$. Then $E(X)=0$.
If one buys the lottery on daily basis, one time every day. Let X_{n} be gain/loss of day n and S_{n} be the cumulative gain/loss up to day n. Then,

$$
\frac{S_{n}}{n / \log n} \rightarrow-\log 2 \quad \text { in probability, }
$$

meaning that in the long time, he/she is nearly certainly in red.
Example 1.7. Compute the limit of

$$
\int_{0}^{1} \cdots \int_{0}^{1} \frac{x_{1}^{2}+\cdots x_{1}^{2}+}{x_{1}+\cdots+x_{n}} d x_{1} \cdots d x_{n}
$$

Solution. The above integral is the same as

$$
E\left(\frac{X_{1}^{2}+\cdots+X_{n}^{2}}{X_{1}+\cdots+X_{n}}\right)
$$

where $X_{1}, \ldots, X_{n}, \ldots$ are iid $\sim U n i f[0,1]$. Since, by the WLLN

$$
(1 / n) \sum_{i=1} X_{i}^{2} \rightarrow E\left(X_{1}^{2}\right)=\int_{0}^{1} x^{2} d x=1 / 3 \quad \text { and } \quad(1 / n) \sum_{i=1} X_{i} \rightarrow E\left(X_{1}\right)=1 / 2
$$

with the convergence being convergence in probability, we have

$$
\frac{X_{1}^{2}+\cdots+X_{n}^{2}}{X_{1}+\cdots+X_{n}} \rightarrow 2 / 3 \quad \text { in probability. }
$$

The r.v. on the left hand side is bounded by 1. By the dominated convergence, its mean also converges to $2 / 3$. Then the limit of the integral is $2 / 3$.
Remark. The following WLLN for array of r.v.s. is a slight generalization of Theorem 1.3.
Suppose $X_{n, 1}, \ldots, X_{n, n}$ are independent r.v.s. If

$$
\sum_{i=1}^{n} P\left(\left|X_{n, i}\right|>b_{n}\right) \rightarrow 0 \quad \text { and } \quad\left(1 / b_{n}^{2}\right) \sum_{i=1}^{n} E\left(X_{n, i}^{2} 1_{\left\{\left|X_{n, i}\right| \leq b_{n}\right\}}\right) \rightarrow 0
$$

Then,

$$
\frac{\sum_{i=1}^{n} X_{n, i}-a_{n}}{b_{n}} \rightarrow 0 \quad \text { in probability }
$$

where $a_{n}=\sum_{i=1}^{n} E\left(X_{n, i} 1_{\left\{\left|X_{n, i}\right| \leq b_{n}\right\}}\right)$.

DIY Exercises.

Exercise 1.17 (Levy's Inequality) Suppose X_{1}, X_{2}, \ldots are independent and symmetric about 0 . Then,

$$
P\left(\max _{1 \leq j \leq n}\left|S_{j}\right| \geq \epsilon\right) \leq 2 P\left(\left|S_{n}\right| \geq \epsilon\right)
$$

Exercise 1.18 Show $S_{n} /(n \log n) \rightarrow-\log 2$ in probability in Example 1.7. Hint: Choose $b_{n}=2^{m_{n}}$ with $m_{n}=\left\{k: 2^{-k} k^{-3 / 2} \leq 1 / n\right\}$ and proceed as in Example 1.5.
Exercise 1.19 For Example 1.4, prove that $S_{n} / b_{n} \rightarrow 0$ in probability, if $b_{n} /(n / \log n) \uparrow \infty$.
Exercise 1.20 (Marcinkiewicz-Zygmund weak law of large numbers) Suppose $x^{p} P(|X|>$ $x) \rightarrow 0$ as $x \rightarrow \infty$ for some $0<p<2$. Prove that

$$
\frac{S_{n}-n E\left(X 1_{\left\{|X| \leq n^{1 / p}\right\}}\right)}{n^{1 / p}} \rightarrow 0 \quad \text { in probability. }
$$

