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§ 1.6. Kolmogorov inequality and the convergence of series.

For r.v.s X1, X2, ..., convergence of series means the convergence of its partial sums Sn =
∑n

i=1 Xi,
as n → ∞. We shall denote the convergence of Sn a.s. just as

∑∞
n=1 Xn < ∞ a.s.. The following

Kolmogorov inequality is the key to establishing a.s. convergence of series for independent r.v.s.

(i). Kolmogorov inequality.

Theorem 1.5. Kolmogorov inequality Suppose X1, X2, ..., Xn are independent with E(Xi) =
0 and var(Xi) < ∞. Sj = X1 + ... + Xj. Then,

P ( max
1≤j≤n

|Sj | ≥ ε) =
var(Sn)

ε2
.

Proof. Let T = min{j ≤ n : |Sj | ≥ ε}, with minimum of empty set being ∞, i.e., T = ∞ |Sj | ≤ ε
for all 1 ≤ j ≤ n. Then, {T ≤ j} or {T = j} only depends on X1, ..., Xj. And, as a result,

{T ≥ j} = {T ≤ j − 1}c = {Si ≤ ε, 1 ≤ i ≤ j − 1}

only depends on X1, ..., Xj−1 and therefore is independent of Xj , Xj+1, .... Write

P ( max
1≤j≤n

|Sj | ≥ ε) = P (T ≤ n) ≤ ε−2E(|ST |21{T≤n}) ≤ ε−2E(|ST∧n|2)

= ε−2E(|
T∧n∑

j=1

Xj |2) = ε−2E(|
n∑

j=1

Xj1{T≥j}|2)

= ε−2
{

E(
n∑

j=1

X2
j 1{T≥j}) + 2

n∑

1≤i<j≤n

E(XjXi1{T≥j}1{T≥i}
}

= ε−2
{ n∑

j=1

E(X2
j )P (T ≥ j) + 2

n∑

1≤i<j≤n

E(Xj)E(Xi1{T≥j}1{T≥i})
}

= ε−2
n∑

j=1

E(X2
j )P (T ≥ j) + 0

≤ var(Sn)/ε2.

¤
Example 1.8. (Extension to continuous time process.) Suppose {St : t ∈ [0,∞)} is a process
with increments that are independent, zero mean and finite variance. If the path of St is right
continuous, e.g.

P
(

max
t∈[0,τ ]

|St| > ε
)
≤ var(Sτ )

ε2
.

The examples of such processes are, e.g., compensated Poisson process and Brownian Motion.

Kolmogorov’s inequality will later on be seen as a special case of martingale inequality. In the proof
of Kolmogorov inequality, we have used a stopping time T , which is a r.v. associated with a process
Sn or, more generally, a filtration, such that T = k only depends on past and current values of the
process: S1, ..., Sk. Stopping time is one of the most important concepts and tools in martingale
theory or stochastic processes.

(ii). Khintchine-Kolmogorov convergence theorem.

Theorem 1.6. (Khintchine-Kolmogorov Convergence Theorem) Suppose X1, X2, ... are
independent with mean 0 such that

∑
n var(Xn) < ∞. Then,

∑
n Xn < ∞ a.s., i.e., Sn converges

a.s. as well as in L2 to
∑∞

n=1 Xn.
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Proof. Define Am,ε = {maxj>m |Sj − Sm| ≤ ε}. Then, {∑∞
n=1 Xn < ∞} = ∩ε>0 ∪m Am,ε. By

Kolmogorov’s inequality

P ( max
m<j≤n

|Sj − Sm| > ε) ≤ var(Sn − Sm)
ε2

=
1
ε2

n∑

i=m+1

var(Xi) ≤ 1
ε2

∞∑

i=m+1

var(Xi).

By letting n →∞ first and then m →∞, we have

lim
m→∞

P (max
j>m

|Sj − Sm| > ε) → 0.

Then limm P (Am,ε) → 1. So P (∪m≥1Am,ε) = 1 for every ε > 0. Hence,

P (
∑

n

Xn < ∞) = P (∩ε>0 ∪m Am,ε) = 1.

And a.s. convergence of Sn holds. Denote the a.s. limit as S∞.

To show convergence of Sn in L2, write

E[(Sn − S∞)2] = E[(Sn − lim
k

Sk)2] = E[lim
k

(Sn − Sk)2]

≤ lim inf
k

E[(Sn − Sk)2] by Fatou’s lemma

= = lim inf
k

k∑

j=n

var(Xj) =
∞∑

j=n

var(Xj)

which tends to 0, as n →∞. Therefore convergence in L2 holds. ¤
Example 1.9. Suppose X1, ... are iid with zero mean and finite variance. Then

∑
n anXn < ∞

a.s. if and only if
∑

n a2
n < ∞.

“⇐=” is a direct consequence of Theorem 1.6.. “=⇒” follows from the central limit theorem to be
shown in Chapter 2.

(iii). Kolmogorov three series theorem

For independent random variables, Kolmogorov three series theorem is the ultimate result in pro-
viding sufficient and necessary conditions for the convergence of series a.s..

Theorem 1.7. (Kolmogorov Three Series Theorem) Suppose X1, X2, ... are independent.
Let Yn = Xn1{|Xn|≤1} Then,

∑
n Xn < ∞ a.s. if and only if (1).

∑
n P (|Xn| > 1) < ∞; (2).∑

n E(Yn) < ∞; and (3).
∑

n var(Yn) < ∞.

Proof. “⇐=”: The convergence of
∑

n(Yn −E(Yn)) is implied by (3) and Theorem 1.6. Together
with (2), it ensures

∑
n Yn < ∞ a.s.. On the other hand, Condition (1) and Borel-Cantelli lemma

implies P (Xn 6= Yn, i.o.) = 0. Consequently,
∑

n Xn converges.

“=⇒” (An unconventional proof). It’s straightforward that Condition (1) holds. Then
∑

n Yn < ∞
a.s. since P (Xn 6= Yn, i.o.) = 1. If condition (3) does not hold, by the central limit theorem to be
shown in the next chapter,

1√∑n
i=1 var(Yi)

n∑

i=1

[Yi − E(Yi)] → N(0, 1),

in distribution. Hence P (|∑n
i=1 Yi| > M) → 0 as n → ∞ for any fixed M > 0, which contradicts

with
∑

n Yn < ∞ a.s.. Hence condition (3) holds. Theorem 1.6 then ensures
∑

n(Yn−E(Yn)) < ∞
a.s.. As a result,

∑
n E(Yn) < ∞ and condition (2) also holds. ¤

Remark. Suppose Xn is truncated at any constant ε > 0 rather than 1 in Theorem 1.7, the theorem
still holds.
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Corollary. Suppose X, X1, X2, ... are iid with E(|X|p) < ∞ for some 0 < p < 2. Then,∑∞
n=1[Xn − E(X)]/n1/p < ∞ a.s. for 1 < p < 2; and

∑∞
n=1 Xn/n1/p < ∞ a.s. for 0 < p < 1.

We leave the proof as Exercise 1.22.

DIY Exercises

Exercise 1.21. Suppose S0 ≡ 0, S1, S2, ... form a square integrable martingale, i.e., for k = 0, 1, ..., n,
E(S2

k) < ∞ and E(Sk+1|Fk) = Sk where Fk is the σ-algebra generated by S1, ..., Sk. Show that
Kolmogorov’s inequality still holds.

Exercise 1.22. Prove the Corollary following Theorem 1.6..

Exercise 1.23. For positive independent r.v.s X1, X2, ..., show that the following three statements
are equivalent: (a).

∑
n Xn < ∞ a.s.; (b).

∑
n E(Xn ∧ 1) < ∞; (c).

∑
n E(Xn/(1 + Xn)) < ∞.

Exercise 1.24. Raise a counterexample to show that there exists X1, X2, ... iid with E(X) = 0 but∑
n Xn/n 6< ∞ a.s..


