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§ 1.8. Large deviation and some exponential inequalities.

Theory of large deviation (Varadhan, 1984), concerning chance of rare events that are usually of
exponential decay, constitutes a major development in probability theory in the past few decades.
Its original idea may be traced back to the Laplace principle in mathematics: for any Borel set
B ∈ Rd and measurable function g(·),

lim
t→∞

1
t

log
∫

B

e−tg(x)dx = −essinfx∈B g(x), lim
t→∞

1
t

log
∫

B

etg(x)dx = esssupx∈B g(x),

should the integral be finite. The classical form of large deviation in terms of iid random variables
is due to Harald Cramer(1938). We present a brief account in the simplest form.

(i). Large deviation for iid r.v.s.

Example 1.12 (Value-at-risk) Suppose a portfolio worths W0 = 1 million dollar at inception.
Assume the returns of the i-th trading period are Xi, which are iid. Then the portfolio worths
Wn =

∏n
i=1 Xi at the end of n-th trading period. The so-called value-at-risk, VaR, as a measurement

of risk of the portfolio is defined as follows: the n trading period p-percentage VaR of the portfolio
is cn > 0 such that

P (W0 −Wn > cn) = P (Wn < 1− cn) = p.

In other words, cn is the amount that the portfolio may lose as much as or more with chance p. In
financial industry, p is commonly set to be small, as for example 5% or 1%.

Consider a standard setup with Xi being log-normal, i.e., log Xi ∼ N(µ, σ2). The critical fact that
we shall use in this example is, for any x < µ such that n(x− µ)2 is large,

1
n

log P
(∑n

i=1 log(Xi)
n

< x
)

=
1
n

log P (N(µ, σ2/n) < x) =
1
n

log Φ(
√

n(x− µ)/σ) ≈ − (x− µ)2

2σ2
,

where Φ(·) and φ(·) are the cdf and density of N(0, 1), since Φ(s) ≈ φ(s)/|s| for s → −∞. Then,
for small p, we have

1
n

log p =
1
n

log P (Wn < 1− cn) =
1
n

log P (log Wn < log(1− cn))

=
1
n

log P
(∑n

i=1 log(Xi)
n

<
log(1− cn)

n

)

≈ − [(1/n) log(1− cn)− µ]2

2σ2

Suppose (1/n) log(1− cn) ≈ a < min(0, µ) with n(a− µ)2 large. Then p ≈ e−nq where

q =
(a− µ)2

2σ2
and a = µ− σ

√
2q < 0.

In other words, the portfolio may shrink at an average compound rate of |a| for n periods with
chance p ≈ e−nq. For example, suppose µ = 0, σ = 1, q = 1/2, n = 6. Then, a = −1, the portfolio
may shrink to e−6 with approximate chance e−3.

We note that (x−µ)2/2σ2 is the so-called rate function, or Cramer or entropy function, for N(µ, σ2).
The above calculation takes advantage of the log-normality assumption. With general population
distribution of Xi, the limiting relation between cn and p is answered by the theorem of large
deviation. ¤

Example 1.13 (Cramer’s actuarial problem) Suppose n clients have each paid a premium
of c dollars for life insurance over a period of time. Assume the claims are iid nonnegative random
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variables X1, ..., Xn. Suppose the total premium nc is all the insurance company has to pay out
the claims. The chance that the insurance company bankrupts is

P (
n∑

i=1

Xi > cn) = P (Sn/n > c) = P (Sn/n− µ > c− µ),

where µ is the common mean of Xi. By weak law of large numbers, the chance is close to 1 if c < µ.
Normally, the insurance company sets the premium c > µ. The chance of bankruptcy is close to 0.
Since bankruptcy is life-and-death issue for the company, it is critical to have a precise estimation
of the chance. By the following Cramer’s theorem (Theorem 1.9), under suitable conditions,

P (
n∑

i=1

Xi > cn) = P (Sn/n > c) ≈ e−nI(c) for c > µ and large n

where I(x) = supt[xt− log ϕ(t)] and ϕ is the moment generating function of Xi defined as follows.
¤

Definition For a r.v. X (or its distribution function), its moment generation function is ϕ(t) =
E(etX), t ∈ (−∞,∞).

Note that ϕ(0) = 1 for any r.v. or distribution but the moment generating functions are not
necessarily finite everywhere. Should ϕ(·) be finite in a neighborhood of 0, the k-th derivative of ϕ
at 0 is the k-th moment of Xi, i.e.,

ϕ(k)(0) = E(Xk),

This explains why it is called moment generating function.

The following are some moment generating functions for commonly used distributions:

Binomial B(n, p): (1− p + pet)n; Normal N(µ, σ2): ϕ(t) = etµ+σ2t2/2;
Poisson P(λ): ϕ(t) = e−λ+λet

; Exponential E(λ): ϕ(t) = λ/(λ− t) for t < λ.

Lemma Suppose a r.v. X has finite moment generating function ϕ(·) on (−∞,∞). Then the rate
function

I(x) = sup
t

(tx− log ϕ(t)), x ∈ (−∞,∞)

is a convex function with minimum 0 at x = E(X).

We omit the proof. The essential part is that tx− log ϕ(t) is concave in t, since log ϕ(·) is convex.

Theorem 1.9 (Cramer’s Theorem) Suppose X,X1, X2, ... are iid with mean µ and finite moment
generating function ϕ(·) on (−∞,∞). Then,

1
n

log P (Sn/n > x) → −I(x) for x > µ; and
1
n

log P (Sn/n < x) → −I(x) for x < µ.

Proof The proof uses the moment generating function and Chebyshev/Markov inequality. First,
for x > µ and t > 0,

P (Sn/n > x) = P (Sn > nx) ≤ e−nxE(etSn) = e−ntxϕ(t)n = e−n(tx−log ϕ(t))

Therefore,

1
n

log P (Sn/n > x) ≤ − sup
t≥0

(tx− log ϕ(t)) = − sup
t∈(−∞,∞)

(tx− log ϕ(t)), for x > µ.

Let F be the common distribution function of Xi. For a fixed t > 0, let X∗
i be iid with common

cdf
F ∗(s) =

1
ϕ(t)

∫ s

−∞
e−tadF (a)
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Then, for any y > x and t > 0,

P (Sn/n > x) ≥ P (ny > Sn > nx) ≥ e−ntyE(etSn1{ny>Sn>nx})

= e−nty

∫
· · ·

∫
1{ny>

∑n
i=1 xi>nx}etx1dF (x1) · · · etxndF (xn)

= e−ntyϕ(t)n

∫
· · ·

∫
1{ny>

∑n
i=1 xi>nx}

etx1

ϕ(t)
dF (x1) · · · e

txn

ϕ(t)
dF (xn)

= e−n(ty−log ϕ(t))

∫
· · ·

∫
1{ny>

∑n
i=1 xi>nx}dF ∗(x1) · · · dF ∗(xn)

= e−n(ty−log ϕ(t))P (y >

n∑

i=1

X∗
i /n > x)

Choose t such that E(X∗
i ) ∈ (x, y). Then, by WLLN,

lim inf
n

1
n

log P (Sn/n > x) ≥ −(ty − log ϕ(t)).

Choose t such that y ↓ x, then t → t0 where t0 is such that t0x − log ϕ(t0) = supt(tx − log ϕ(t)).
As a result,

lim inf
n

1
n

log P (Sn/n > x) ≥ −(t0x− log ϕ(t0)) = − sup
t

(tx− log ϕ(t)) = −I(x).

The first inequality of this theorem is proved. The other inequality for x < µ can be shown
analogously. ¤

(ii) Some exponential inequalities.

The above large deviation results require a common distribution of the r.v.s. If the r.v.s are
independent but not necessarily identically distributed, generalization of large deviation is not that
simple. However, some exponential inequalities, which can be relatively easily derived and be readily
generalized to U -statistics or martingales, are often useful.

Theorem 1.10 (Bernstein’s inequality) Suppose Xn, n ≥ 1, are independent with mean 0
and variance σ2

n, satisfying

E(|Xn|k) ≤ k!
2

σ2
nck−2, k ≥ 2

for some constant c > 0. Then, for all x > 0,

P (Sn/n > x) ≤ e−nx2/[2(s2
n/n+cx)],

where s2
n =

∑n
j=1 σ2

j .

Proof. The proof again uses the moment generating function. Write, for |t| < 1/c,

E(etXn) ≤ 1 + E(tXn) +
∞∑

j=2

E(|tXn|j)/j!

≤ 1 +
t2σ2

n

2
(1 + |t|c + t2c2 + |t|3c3 + · · ·) = 1 +

t2σ2
n

2
1

1− |t|c
≤ et2σ2

n/(2−2c|t|).

Apply Chebyshev’s inequality, for 0 < t < 1/c,

P (Sn/n > x) = P (etSn > etnx) ≤ e−tnxE(etSn) ≤ e−tnx
n∏

i=1

E(etXi)

≤ e−tnxe
∑n

i=1 t2σ2
i /(2−2ct) = e−tnx+t2s2

n/(2−2ct)
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Choose t = nx/(s2
n + cnx). Bernstein’s inequality follows. ¤

Remark. A little sharper inequality, called Bennett’s inequality, can be obtained by choosing t in
the above proof to minimize −tnx + t2s2

n/(2− 2ct):

P (Sn/n > x) ≤ e−nx2/[s2
n/n(1+

√
1+2cx/s2

n)+cx].

Corollary Suppose Xn, n ≥ 1, are independent with mean 0 and P (|Xn| ≤ c) = 1 for c > 0 and
all n ≥ 1. Then, for 0 < x < c,

P (Sn/n > x) ≤ e−nx2/4c2 ≥ P (Sn/n < −x).

The proof of this corollary is straightfoward, by observing that s2
n/n ≤ c.

An important implication of the above corollary is that for uniformly bounded random variables
Xi with mean 0,

lim sup
n

|Sn/n|√
(log n)/n

< ∞ a.s.

This can be proved by citing Borel-Cantelli lemma and choosing, for large n, x = C(log n)δ/n for a
large C in the inequality in the above corollary. Notice that the same convergence was also shown
in Section 1.7 for iid r.v.s.

The above inequality is an essential building block in a technique, called empirical approximation,
to prove uniform convergence of random functions. We illustrate it with the following example.

Example 1.14 Let X1, ..., Xn, ... be iid with common cdf F (·) and empirical distribution Fn(·),
i.e., Fn(t) =

∑n
i=1 1{Xi≤t}/n. Then,

lim sup
n

sup
t

|Fn(t)− F (t)|√
(log n)/n

≤ 4 a.s..

Proof Without loss of generality, assume F (·) is continuous. The above corollary implies, for all
t and n ≥ 1,

P (|Fn(t)− F (t)| > 4
√

(log n)/n) ≤ 2e−4 log n = 2n−4.

Let t0 < t1 < ... < tn2 be such that F (tk)− F (tk−1) = n−2. Then,

∞∑
n=1

P ( sup
1≤j≤n2

|Fn(tj)− F (tj)| > 4
√

(log n)/n)

≤
∞∑

n=1

n2∑

j=1

P (|Fn(tj)− F (tj)| > 4
√

(log n)/n) ≤
∞∑

n=1

2n2n−4 < ∞.

By Borel-Cantelli lemma,

lim sup
n

sup1≤j≤n2 |Fn(tj)− F (tj)|
4
√

(log n)/n
≤ 1 a.s.

It then follows from the monotonicity of Fn(·) and F (·) and the fact F (tk)− F (tk−1) = n−2 that

lim sup
n

supt |Fn(t)− F (t)|√
(log n)/n

≤ 4 a.s.

¤
Remark. The actual convergence rate of this example is still the law of iterated logarithm.


