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Chapter 2. Central Limit Theorem.

Central limit theorem, or DeMoivre-Laplace Theorem, which also implies the weak law of large
numbers, is the most important theorem in probability theory and statistics. For independent
random variables, Lindeberg-Feller central limit theorem provides the best results. Throughout
this chapter, random variables shall not take values in ∞ or −∞ with positive chance.

§ 2.1. Convergence in distribution and characteristic functions.

Convergence in distribution, which can be generalized slightly to weak convergence of measures,
has been introduced in Section 1.2. This section provides a more detailed description.

(i). Definition, basic properties and examples.

Recall that in Section 1.3, we have already defined convergence in distribution for a sequence of
random variables. Here we present the same definition in terms of weak convergence of their distri-
butions. We first note that a function F is a cdf if and only if it is right continuous, nondecreasing
with F (t) → 1 and 0 when t →∞ and −∞, respectively.

Definition. A sequence of distribution function Fn is called converging to another distribution
function F∞ weakly, if

(1) Fn(t) → F∞(t) for every continuity points of F∞; or

(2), lim infn Fn(B) ≥ F∞(B) for every open set B in (−∞,∞); or

(3) lim supn Fn(C) ≤ F∞(C) for every closed set C in (−∞,∞); or

(4)
∫

g(x)dFn(x) → ∫
g(x)dF∞(x) for every continuous function g.

Here Fn(A) is defined as
∫

A
dFn(x) =

∫
1x∈AdFn(x) for any Borel set A. The above four claims

are equivalent to each other, as proved in Section 1.3.

Remark. If F∞ is continuous, the inequalities in (2) and (3) are actually equalities. On the other
hand, if Xn all takes integer values, then Xn → X in distribution is equivalent to P (Xn = k) →
P (X = k) for all integer values k.

Remark. (Sheffe’s Theorem) Suppose Xn has density function fn(·) and fn(t) → f(t) for every
finite t and f is a density function. Then, Xn → X in distribution, where X has density f . This
can be shown quite straightforwardly as follows:

2 =
∫

lim inf
n

(fn + f − |fn(x)− f(x)|)dx ≤ lim inf
n

∫
(fn(x) + f(x)− |fn(x)− f(x)|)dx

= lim inf
n

(
2−

∫
|fn(x)− f(x)|dx

)
= 2− lim sup

n

∫
|fn(x)− f(x)|dx.

Certainly, for any Borel set B,

P (Xn ∈ B)− P (X ∈ B) =
∫

B

(fn(x)− f(x))dx ≤
∫
|fn(x)− f(x)|dx → 0.

¤ In the above proof, we have used Fatou lemma with Lebesgue measure. In fact, the monotone
convergence theorem, Fatou lemma and dominated convergence theorem that we have established
with probability measure all hold with σ-finite measures, including Lebesgue measure.

Remark. (Slutsky’s Theorem) Suppose Xn → X∞ in distribution and Yn → c in probability.
Then, XnYn → cX∞ in distribution and Xn + Yn → Xn − c in distribution.

We leave the proof as an exercise.

In the following, we provide some classical examples about convergence in distribution, only to show
that there are a variety of important limiting distributions besides the normal distribution as the
limiting distribution in CLT.
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Example 2.1. (Convergence of maxima and extreme value distributions) Let Mn =
max1≤i≤n Xi where Xi are iid r.v.s with c.d.f. F (·). Then,

P (Mn ≤ t) = P (X1 ≤ t)n = F (t)n.

As n → ∞, the limiting distribution of properly scaled Mn, should it converge, should only be
related with the right tail of the distribution of F (·), i.e., the F (x) when x is large. The following
are some examples.

(a). F (x) = 1− x−α for some α > 0 and all large x. Then, for any t > 0,

P (Mn/n1/α < t) = (1− n−1t−α)n → e−t−α

(b). F (x) = 1− |x|β for x ∈ [−1, 0] and some β > 0. Then, for any t < 0,

P (n1/βMn ≤ t) = (1− n−1|t|β)n → e−|t|
β

(c). F (x) = 1− e−x for x > 0, i.e., Xi follows exponential distribution. Then for all t,

P (Mn − log n ≤ t) → e−e−t

These limiting distributions are called extreme value distributions.

Example 2.2. (Birthday problem) Suppose X1, X2, ... are iid with uniform distribution on
the integers {1, 2, ..., N} with n < N and , Let

TN = min{k : there exists a j < k such that {Xj = Xk} }.

Then, for k ≤ N ,

P (TN > k) = P ( X1, ..., Xk all take different values )

=
k∏

j=2

(
1− P ( Xj takes one of the values of X1, .., Xj−1)

)

=
k∏

j=2

(1− j − 1
N

) = exp{
k−1∑

j=1

log(1− j/N)}

Then, for any fixed x > 0, as N →∞,

P (TN/N1/2 > x) = P (TN > N1/2x) ≈ exp{
∑

1≤j<N1/2x

log(1− j/N)}

≈ exp{−
∑

1≤j<N1/2x

j/N} ≈ exp{−(1/N)N1/2x(N1/2x + 1)/2} ≈ exp{−x2/2}

In other words, TN/N1/2 converges in distribution to a distribution F (t) = 1−exp(−t2/2) for t ≥ 0.

Suppose now N = 365. By this approximation, we have P (T365 > 22) ≈ .5153 and P (T365 > 50) ≈
.0326, meaning that, with 22 (50) people there is about half (3%) probability that all of them have
different birthday.

Example 2.3. (Law of rare events) Suppose there are totally n flights worldwide each year,
and each flight has chance pn to have an accident, independent of rest flights. There is on average λ
accidents a year worldwide. The distribution of the number of accidents is B(n, pn) with npn close
to λ. Then this distribution approximates Poisson distribution with mean λ, namely,

Bin(n, pn) → P(λ) if n →∞ and npn → λ > 0.
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Proof. For any fixed k ≥ 0, and n ≥ k

P (Bin(n, pn) = k) =
(

n

k

)
pk

n(1− pn)n−k =
n!

k!(n− k)!
(npn)k

nk

(1− pn)n

(1− pn)k

=
1
k!

n(n− 1) · · · (n− k + 1)
nk

(npn)ken log(1−pn)

(1− pn)k

→ λke−λ

k!
, as n →∞.

¤
Example 2.4. (The secretary/marriage problem) Suppose there are n secretary to be
interviewed one by one and, right after each interview, you must make immediate decision of “hire
or fire” the interviewee. You observe only the relative ranks of the interviewed candidates. What
is the optimal strategy is maximize the chance of hiring the best of the n candidates? (Assume no
ties of performance.)

One type of strategy is to give up the first m candidates, whatever their performance in the interview.
Afterwards, the one that outperforms all previous candidates is hired. In other words, starting from
m+1-th interview, the first candidate that outperforms the first m candidates is hired. Or else you
settle with the last candidate. The chance that the k-th best among all n candidates is hired is

Pk =
n∑

j=m+1

P ( the k-th best is the j-th interviewee and is hired)

=
n∑

j=m+1

1
n

P (the best among first j − 1 appears in the first m,

the j-th candidate is the k-th best, and the k − 1 best all appear after the j-th candidate.)

≈
n∑

j=m+1

m

j − 1
× 1

n
× (

n− j

n
)k−1

Let n → ∞, and m ≈ nc where c is the percentage of the interviews to be given up. Then the
probability of hiring the k-th best

Pk ≈ c

n∑

j=m

1
j
(1− j/n)k−1 ≈ c

∫ 1

c

(1− x)k−1

x
dx = cAk, say.

Since Ak+1 = Ak − (1− c)k/k, for k ≥ 1, and A1 = − log c, it follows that

Pk → c
(
− log c−

k−1∑

j=1

(1− c)j

j

)
, as n →∞.

In particular, P1 → −c log c. The function c log c is maximized at c = 1/e = 0.368. The best
strategy is to give up the first 36.8% of the interviews and then hire the best to date. The chance of
hiring the best overall is also 36.8%. The chance of hiring the last person is also c. This phenomenon
is also called 1/e law. ¤
You might please formulate this problem in terms of a sequence of random variables.

(ii). Some theoretical results about convergence in distribution.

(a). Fatou Lemma Suppose Xn ≥ 0 and Xn → X∞ in distribution. Then E(X∞) ≤
lim infn E(Xn).

Proof. Write

E(X∞) =
∫ ∞

0

P (X∞ ≥ t)dt ≤
∫ ∞

0

lim inf
n

P (Xn ≥ t)dt = lim inf
n

∫ ∞

0

P (Xn ≥ t)dt ≤ lim inf
n

E(Xn).
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¤
The dominated convergence theorem also holds with convergence in distribution, which is left as
an exercise.

(b). Continuous mapping theorem: Xn → X∞ in distribution and g(·) is a continuous function.
Then, g(Xn) → g(X∞) in distribution.

Proof. For any bounded continuous function f , f(g(·)) is still bounded continuous function. Hence
E(f(g(Xn))) → E(f(g(X∞))), proving that g(Xn) → g(X∞) in distribution. ¤
(c). Tightness and convergent subsequences.

In studying the convergence of a sequence of numbers, it is very useful that boundedness of the
sequence, guarantees a convergent subsequence. The same is true for uniformly bounded monotone
functions, such as, for example, distribution functions. This is the following Helly’s Selection
theorem, which is useful in studying weak convergence of distributions.

Helly’s Selection Theorem. A sequence of cumulative distribution functions Fn always con-
tains a subsequence, say Fnk

, that converges to a function, say F∞, which is nondecreasing and
right continuous, at every continuity point of F∞. If F∞(−∞) = 0 and F∞(∞) = 1. Then, F∞ is
a distribution function and Fnk

converges to F weakly.

Proof Let t1, t2, ... be all rational numbers. In the sequence Fn(t1), n ≥ 1, there is always a
convergent subsequence. Denote one of them as, say n

(1)
k , k = 1, 2, .... Among this subsequence there

is again a further subsequence, denoted as n
(2)
k , k = 1, 2, ..., with n

(2)
1 > n

(1)
1 , such that F

n
(2)
k

(t2) is

convergent. Repeat this process of selection infinitely. Let nk = n
(k)
1 be the first element of the k-th

sub-sub-sequence. Then, for any fixed m, {nk : k ≥ m} is always a subsequence of {n(l)
k : k ≥ 1} for

all l ≤ m. Hence Fnk
is convergent on every rational number. Denote the limit as F ∗(tl) on every

rational tl. Monotonicity of Fnk
implies the monotonicity of F ∗ on rational numbers. Define, for all

t, F∞(t) = inf{F ∗(tl) : tl > t, tl are rational}. Than, F∞ is right continuous and non-decreasing.
The right continuity of Fn ensures that, if s is a continuity point of F∞, Fnk

(s) → F∞(s). ¤

Not all sequence of distributions Fn would converge weakly to a distribution function. The easiest
example is Fn({n}) = Fn(n) − Fn(n−) = 1, i.e., P (Xn = n) = 1. Then, Fn(t) → 0 for all
t ∈ (−∞,∞). If Fn all have little probability mass near ∞ or −∞, then the convergence to a
function which is not a distribution function can be avoided. A sequence of distribution functions Fn

is called tight if, for any ε > 0, there exists a M > 0 such that lim supn→∞(1−Fn(M)+Fn(M) < ε;
Or, in other words,

sup
n

(1− Fn(x) + Fn(−x)) → 0 as x →∞.

Proposition. Every tight sequence of distribution functions contains a a subsequence that weakly
converges to a distribution function.

Proof Repeat the proof Helly’s Selection Theorem. The tightness ensures the limit is a distribution
function. ¤

(iii). Characteristic functions.

Characteristic function is one of the most useful tools in developing theory about convergence in
distribution. The technical details of characteristic functions involve some knowledge of complex
analysis. We shall view them as only a tool and try not to elaborate the technicalities.

1◦. Definition and examples.

For a r.v. X with distribution F , its characteristic function is

ψ(t) = E(eitX) = E(cos(tX) + isin(tX)) =
∫

eitxdF (x), t ∈ (−∞,∞)

where i =
√−1.
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Some basic properties are:

ψ(0) = 1; |ψ(·)| ≤ 1; ψ(·) is continuous on (−∞,∞)

If ψ is characteristic function of X, then eitbψ(at) is characteristic function of aX + b.

Product of characteristic functions is still a characteristic function. And the characteristic function
of X1 + ... + Xn is the product of those of X1, ..., Xn.

The following table lists some characteristic functions for some commonly used distributions:

Distribution Density/Probability function characteristic function (of t)
Degenerate P (X = a) = 1 eiat

Binomial Bin(n, p) P (X = k) =
(
n
k

)
pk(1− p)n−k, k = 0, 1, ..., n (peit + 1− p)n

Poisson P(λ): P (X = k) = λke−λ/k!, k = 0, 1, ... exp(λ(eit − 1))
Normal N(µ, σ2): f(x) = e−(x−µ)2/(2σ2)/

√
2πσ2, x ∈ (−∞,∞) eiµt−σ2t2/2

Uniform Unif [0, 1]: f(x) = 1, x ∈ [0, 1] (eit − 1)/(it)
Gamma : f(x) = λαxα−1e−λx/Γ(α), x > 0 (1− it/λ)−α

Cauchy: f(x) = 1/[π(1 + x2)], x ∈ (−∞,∞) e−|t|

2◦. Levy’s inversion formula.

Proposition Suppose X is r.v. with characteristic function ψ(·). Then, for all a < b,

lim
n→∞

1
2π

∫ T

−T

e−ita − e−itb

it
ψ(t)dt = P (a < X < b) +

1
2
(P (X = a) + P (X = b)).

Proof. The proof uses Fubini’s theorem to interchange the the expectation with the integration
and the fact that

∫∞
0

sin(x)/xdx = π/2. We omit the proof.

The above theorem clearly implies that two different distribution cannot have same characteristic
function, as formally presented in the following corollary.

Corollary. There is one-to-one correspondence between distribution functions and characteristic
functions.

3◦. Levy’s continuity theorem.

Theorem 2.1 Levy’s continuity theorem. Let Fn, F∞ be cdf with characteristic function
ψn, ψ∞. Then,

(a). If Fn → F∞ weakly, the ψn(t) → ψ(t) for every t.

(b). If ψn(t) → ψ(t) for every t, and ψ(·) is continuous at 0, then Fn → F weakly, where F is a
cdf with characteristic function ψ.

Proof. Part (a) directly follows from the definition of convergence in distribution since eitx is a
continuous function of x for every t. Proof of part (b) uses the Levy inversion formula. We omit
the details.

Remark. Levy’s continuity theorem enables us to show convergence of distribution through point-
wise convergence of characteristic functions. This shall be our approach to establish the central
limit theorem.

DIY Exercises:

Exercise 2.1. Prove Slutsky’s Theorem.

Exercise 2.2. (Dominated convergence theorem) Suppose Xn → X∞ in distribution and
|Xn| ≤ Y with E(Y ) < ∞. Show that E(Xn) → E(X∞).
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Exercise 2.3. Suppose Xn is independent of Yn, and X is independent of Y . Use characteristic
functions to show that, if Xn converges to X in distribution and Yn converges to Y in distribution
and , then Xn + Yn converges in distribution to X + Y .

Exercise 2.4. Suppose a r.v. X has characteristic function ψ. Show that

P (X = x) = lim
C→∞

∫ C

−C

eitxψ(t)dt.


