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§ 2.3. Ramification, extension and application.

We examine various types of CLT, beginning with the most original of all, de Moivre’s calculation
of binomial probabilities. The rates of convergence of CLT is discussed in the form of universal
bound and local approximations. We show some application of CLT in statistical analysis, where
it plays a fundamental role. The exposition of this section only serves the purpose of introducing
related result without attempting to produce proofs.

(i). Miscellaneous central limit theorems.

Theorem 2.6 (De Moivre-Laplace local CLT) Suppose X, X1, ..., Xn, ... are iid Bernoulli
r.v.s, i.e., P (X = 1) = p = 1− q = 1− P (X = 0). Let Sn =

∑n
i=1 Xi (as always) and x = xn,k =

(k − np)/
√

npq = o(n1/6). Then,

P (Sn = k) =
φ(x)√
npq

(1 + an(x))

where
|an(x)| ≤ A√

n

( 1√
n

+ |x|+ |x|3
)

for some constant A.

Remark. Notice that rate of convergence is about 1/
√

n. The proof can be carried out by brute
force calculation without appealing to characteristic functions. As

P (Sn = k) = P (Bin(n, p) = k) =
n!

k!(n− k)!
pk(1− p)n−k,

it is not difficult to see that the key is the approximation of factorials, which is, via Sterling’s
formula:

n! =
√

2π
√

n
(n

e

)n

eεn , with
1

12n + 1
< εn <

1
12n

.

(Actually the formula was first outlined in De Moivre’s Doctrine of Chances with constant coefficient
c and Sterling (1730) identified c as

√
2π.)

The above local CLT leads to the (global) De Moivre-Laplace CLT

Theorem 2.7 (De Moivre-Laplace CLT) Suppose X,X1, ..., Xn, ... are iid with Bernoulli
r.v.s, i.e., P (X = 1) = p = 1 − q = 1 − P (X = 0). Then, for any two integers xn ≤ yn such that
xn = np + o(n2/3) and yn = np + o(n2/3).

P (xn ≤ Sn ≤ yn) ≈ Φ
(yn − np + 1/2√

npq

)
− Φ

(xn − np + 1/2√
npq

)
(2.7)

As a result,
Sn − np√

npq
→ N(0, 1). (2.8)

(2.7) provides theoretical support of normal approximation of binomial distribution with continuity
correction. (2.8) is the standard CLT for binomial random variables.

Theorem 2.8 (CLT for U-statistics) Suppose X,X1, ..., Xn, ... are iid r.v.s. Suppose g is
a bivariate symmetric function (e.g. g(x, y) = min(x, y)) such that g(X1, X2) has mean 0 and
b(X1) ≡ E(g(X1, X2)|X1) has positive variance σ2. Let

Un =
2

n(n− 1)

∑

1≤i<j≤n

g(Xi, Xj)
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be the so-called U -statistic. Then,
n1/2Un

2σ
→ N(0, 1).

U-statistic is common and has broad applications in statistical analysis. Decompose the U -statistic
into

U =
2
n

n∑

j=1

b(Xj) +
2

n(n− 1)

∑

1≤i<j≤n

{g(Xi, Xj)− b(Xi)− b(Xj)} (2.9)

The second term on the left hand side is a degenerate U-statistic, which converges to 0 at a faster
rate than n−1/2. Then the CLT follows from the standard CLT for iid r.v.s. The decomposition
(2.9) is the most useful when dealing with U-statistics.

Theorem 2.9 (CLT for martingales) Suppose (Xn,Fn), n ≥ 1 is a sequence of martingales
with mean 0 and variance σ2

n, n ≥ 1. F0 is the trivial σ-algebra. Suppose Lindeberg condition holds
and, moreover,

1
s2

n

n∑

j=1

E|E(X2
j |Fj−1)− σ2

j | → 0. (2.10)

Then, Sn/sn → N(0, 1).

The proof is actually analogous to the proof of Lindeberg-Feller CLT. The only difference is that
Xis are now not independent. Therefore E(eitSn/sn) 6= ∏n

j=1 E(eitXj/sn). However,

E(eitSn/sn) = E
( n∏

j=1

E(eitXj/sn |Fj−1)
)
.

Then, the fact that E(Xj |Fj−1) = 0 and that var(Xj |Fj−1) are close enough to σ2
j by (2.10) ensure

the proof goes through.

Theorem 2.10 (Hall-Heyde CLT for arrays ) Suppose (Xn,j ,Fn,j), 1 ≤ j ≤ n is a sequence
of r.v.s with finite positive variances and Xn,j ∈ Fn,j and Fn,j ⊆ Fn,j+1. Let Zn = max{Xn,j : 1 ≤
j ≤ n}. If

n∑

j=1

X2
n,j → a2 > 0, Zn → 0, in probability, sup

n≥1
E(Z2

n) < ∞, (2.11)

n∑

j=1

E(Xn,j |Fn,j−1) → 0 and
n∑

j=1

{E(Xn,j |Fn,j−1)}2 → 0, in probability

Then, Sn/a ≡ ∑n
j=1 Xn,j/a → N(0, 1).

Condition (2.11) can be replaced by a Lindeberg condition with condition expectation:

n∑

j=1

E(X2
n,j1{|Xn,j |>ε}|Fn,j−1) → 0 in probability

plus
n∑

j=1

var(Xn,j |Fn,j−1) → a2 in probability.

And the central limit theorem still hold.

(ii). Rates of convergence

So far, CLTs (except for De Moivre-Laplace local CLT) only claims the limit is normal distribution.
Berry-Esseen bound claims the rate is about 1/

√
n, under ideal circumstances.
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Theorem 2.11 (Berry (1941)-Esseen (1942)) Suppose X1, X2, ... are independent with mean
0 and variance σ2

n > 0. Let 2 < δ ≤ 3. Then, there exists a universal constant Cδ such that

sup
x
|P (Sn/sn < x)− Φ(x)| ≤ Cδ

∑n
j=1 E(|Xj |δ)

sδ
n

In particular,

sup
x
|P (Sn/sn < x)− Φ(x)| ≤ C3

∑n
j=1 E|Xi|3

s3
n

.

If X,X1, X2, ... are iid with mean 0 and variance σ2 > 0. Then, there exists a universal constant
cδ such that

sup
x
|P (Sn/

√
nσ2 < x)− Φ(x)| ≤ cδ

nδ/2

E(|X|δ)
σδ

,

and, in particular,

sup
x
|P (Sn/

√
nσ2 < x)− Φ(x)| ≤ c3

n1/2

E(|X|3)
σ3

.

Note that all the above inequalities hold for all n, (not in the sense of taking limit), and that
the universality of the constants means they are all all distributions of X. The proofs generally
involve characteristic function and can be rather technical. The above theorem implies CLT when∑n

j=1 E(|Xj |δ)/sδ
n → 0. It is the most useful when the δ = 3, as it specifies the the fastest rate of

convergence. One of the highly attractive problems in probability theory is to find the best possible
Cδ and cδ. Esseen (1945) proves 0.4097 ≤ c3 ≤ 7.5, and c3 ≤ 0.7975 (Van Beek, 1972), 0.7655
(Shiganov, 1986) and the best thus far, 0.7056 (Shevtsova, 2007).

Berry-Esseen bound is a rate of uniform convergence. Another similar type of approximation,
called Edgeworth expansion, confines on the rate of convergence at a fixed x but provides explicit
expression of the coefficients at all orders.

Theorem 2.12 (Edgeworth expansion) Suppose X, X1, ... are iid with mean 0 and positive
variance σ2, satisfying the Cramer condition (nonlattice distribution of X). Then,

P (Sn/
√

nσ2 < x) = Φ(x) +
κ3

6
√

n
Φ(3)(x) + O(1/n).

where κ3 = E(X3)/σ3 is the skewness of X.

The above theorem is a simplified form of Edgeworth expansion, which can be of arbitrary order of
the series. We provide a heuristic understanding as follows. For simplicity, assume X has density
f , cdf F , mean 0 and variance 1 and all finite moments. Then, its characteristic function is

ψ(t) = E(eitX) = elog E(eitX) = e
∑∞

j=1 κj(it)
j/j!

where κj is the j-th derivative of log E(eitX) at t = 0, which is called j-th cumulants of X.
κ1 = E(X) = 0, κ2 = var(X) = σ2 = 1 and κ3 = E(X3),... Let fn be the density of Sn/

√
n. The

characteristic function of Sn/
√

n is
∫

eitxfn(x)dx = E(eitSn/
√

n) = ψ(t/
√

n)n = en log ψ(t/
√

n) = en
∑∞

j=2 κj(it/
√

n)j/j!

= e−t2/2en
∑∞

j=3 κj(it/
√

n)j/j! = e−t2/2(eκ3(it)
3/6n−1/2+O(1/n))

= e−t2/2(1 + κ3(it)3/6n−1/2 + O(1/n))

=
∫

eitxφ(x)dx +
κ3

6
√

n

∫
eitx(−1)3

d3

dx3
φ(x)dx + O(1/n),

since (it)k
∫

eitxf(x)dx =
∫

eitx(−1)mf (m)(x)dx. As a result, it should hold that

fn(x) ≈ φ(x)− κ3

6
√

n
φ(3)(x) + O(1/n).
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And through integration,

P (Sn/
√

n < x) = Φ(x)− κ3

6
√

n
(x2 − 1)φ(x) + O(1/n).

(iii). CLT for processes.

Suppose we have random processes or functions {ξn(t) : t ∈ [0, 1]}. The weak convergence of r.v.s
or their distributions or measures can be extended to the define weak convergence of processes or
their measures, with finite dimensional convergence plus certain tightness condition on processes
(stochastic equi-continuity). We skip the details.

Theorem 2.13. (Donsker’s invariance principle, 1951) Suppose X1, X2, ... are iid with mean
0 and variance σ2 > 0. Define S0 = 0 and St = S[t] + (t − [t])X[t]+1 for t ≥ 0. Here [] means the
integer part. Then,

{ Snt√
nσ

: t ∈ [0, 1]} → {Bt : t ∈ [0, 1]}

“in distribution” or weakly, where Bt : t ≥ 0 is Brownian motion.

For fixed t, the classical CLT implies Snt/
√

nσ2 converges to N(0, t). It is not hard to generalize it
to convergence of finite dimension.

Brownian motion on [0,∞) is can be regarded as r.v.s with taking values of continuous functions
on [0,∞). It induces a probability measure on the space of continuous functions on [0,∞), which
is often called Wiener measure.

Theorem 2.14. Weak convergence of empirical distribution Suppose X1, ..., Xn, ... are
iid with continuous cdf F . Let Fn(t) = (1/n)

∑n
j=1 1{Xi≤t} be the empirical distribution. Then,

{√n(Fn(t)− F (t)) : t ∈ (−∞,∞)} → {(1− F (t))BF (t)/{1−F (t)} : t ∈ (−∞,∞)}
which is a so-called Brownian bridge.

As one application of this theorem,
√

n sup
x
|Fn(x)− F (x)| → maxt∈[0,1](1− t)|Bt/(1−t)| in distribution.

Observe that supx |Fn(x)− F (x)| is the Kolmogorov-Smirnov statistic.

(iii). Some applications.

Example 2.8 Asymptotic normality of quantile estimation Suppose X1, ...Xn are iid
with positive density f(t) at p-th quantile F−1(p). Let X(1) < X(2) < ... < X(n) be the order
statistics. Suppose k = kn is such that k/n → p. Then,

√
n(X(k) − F−1(k/n)) → N(0, σ2),

where σ2 = p(1− p)/f2(F−1(p)).

Proof. Let tn = σt/
√

n + F−1(k/n). Then, F (tn) ≈ k/n ≈ p and

k − nF (tn) ≈ k − n(k/n + f(F−1(p))σt/
√

n) ≈ −√nf(F−1(p))σt

Write

P (
√

n(X(k) − F−1(k/n))
σ

≤ t) = P (X(k) ≤ σt/
√

n + F−1(k/n)) = P (
n∑

j=1

1{Xj≤tn} ≥ k)

= P
(∑n

j=1 1{Xj≤tn} − nF (tn)√
nF (tn)(1− F (tn))

≥ k − nF (tn)√
nF (tn)(1− F (tn))

)

≈ 1− Φ
( k − nF (tn)√

nF (tn)(1− F (tn))

)
≈ 1− Φ

(−√nf(F−1(p))σt√
np(1− p)

)
≈ Φ(t).
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Example 2.9. Renewal processes Suppose X, X1, X2, ... are iid positive random variables
with mean µ and variance σ2 > 0. Let Nt = max{n : Sn ≤ t}, which is called renewal process.
Then, as t →∞,

µNt − t

σ
√

t/µ
→ N(0, 1).

Notice that {Nt < k} is the same as Sk > t. Then,

P
(µNt − t

σ
√

t/µ
< x

)
= P (Nt < xσ

√
t/µ3 + t/µ)

= P (Sk > t) k is the integer part of xσ
√

t/µ3 + t/µ

= P (
Sk − kµ√

kσ2
>

t− kµ√
kσ2

) ≈ 1− Φ
( t− kµ√

kσ2

)
≈ Φ(x).

Example 2.10. Estimating functions. Suppose X1, ..., Xn are iid following a distribution
with density f(x; θ) with the parameter θ. Let g(Xi; θ) be such that E(g(Xi; θ)) = 0. An estimator
of θ based on observed values of X1, ..., Xn, denoted as θ̂n, can be defined as the root of

n∑

j=1

g(Xj ; θ) = 0.

Under regularity conditions, √
n(θ̂n − θ) → N(0, σ2)

where σ2 can be estimated by the so-called sandwich formula:

(1/n)
n∑

j=1

ġ(Xj ; θ̂)
n∑

j=1

g2(Xj ; θ̂)
n∑

j=1

ġ(Xj ; θ̂).

where ġ is derivative of g with respect to θ.

When g(x; θ) = ḟ(x; θ)/f(x; θ), the estimator θ̂ is the maximum likelihood estimator. And
√

n(θ̂ − θ) → N(0, I−1(θ))

where

I(θ) = −E(
∂2

∂θ2
log f(X; θ)) = E{( ∂

∂θ
log f(X; θ))2}

is the Fisher information. As an application, one might use the Wald test statistic

(θ̂ − θ0)2/v̂ar(θ̂) ∼ χ2
1, approximately,

to test the hypothesis of θ = θ0, where v̂ar(θ̂) is the estimator of the variance of θ̂.

(v) Stable laws

When the r.v.s are iid but do not have finite second moment, the partial sum after proper normal-
ization may still converge in distribution, but the limiting distribution can be very different from
normal distribution.

Theorem 2.15 Suppose X,X1, ... are iid such that the limit of P (X > x)/P (|X| > x) as
x → ∞ exists and P (|X| > x) = x−αL(x) with 0 < α < 2, where L satisfies L(tx)/L(x) →
1 as x → ∞ for all fixed t > 0, and is called a slowly varying function. Then, (Sn − bn)/an

converges to a nondegenerate distribution called stable law, where bn = nE(X1{|X|≤an}) and an =
inf x : P (|X| > x) ≤ 1/n.

A typical example is that X follows Cauchy distribution, corresponding to α = 1. The limiting
distribution is still Cauchy, which is one of the stable laws. (Normal distribution is also a stable
law with α = 2.)


