Final Exam, Math5411

Totally 5 problems.

Must hand-in your exam before or at 12 noon, Dec 19, to Professor Chen in Room 3426 (Phone number 23587425) and sign your name.

Name:

ID Number:

1. Suppose X, X_{1}, X_{2}, \ldots are iid positive random variables and $r>0$. Show that the following statements are equivalent.
(i). $X_{n} / n^{r} \rightarrow 0$ almost surely.
(ii). $E\left(X^{1 / r}\right)<\infty$.
(iii). $\sum_{n=1}^{\infty} P\left(X>n^{r}\right)<\infty$.
2. Let X_{1}, X_{2}, \ldots, be iid random variables symmetric about 0 . Assume $n P\left(|X|>c_{n}\right) \rightarrow 0$ and $n b_{n}^{-2} E\left(X^{2} 1_{\left\{|X| \leq c_{n}\right\}}\right) \rightarrow 0$, where b_{n} and c_{n} are positive constants. Show that

$$
\frac{1}{b_{n}} \sum_{i=1}^{n} X_{i} \rightarrow 0 \quad \text { in probability. }
$$

3. Suppose X_{i} are independent random variables such that $P\left(\left|X_{i}\right| \leq 1\right)=1$ and $E\left(X_{i}\right)=0$. Let a_{i} be positive constants such that $a_{i} \leq 1$ and $\sum_{i=1}^{\infty} a_{i}=\infty$. Prove that

$$
\frac{\sum_{i=1}^{n} a_{i} X_{i}}{\sum_{i=1}^{n} a_{i}} \rightarrow 0, \quad \text { a.s.. }
$$

4. Suppose $X, X_{1}, X_{2} \ldots$, are iid random variables with mean 0 .
(i). Prove that if the distribution of X is symmetric about 0 , then $\sum_{j=1}^{n} X_{j} / j$ converges almost surely.
(ii). Raise an example of the distribution of X (caution: must be mean 0) such that $\sum_{j=1}^{n} X_{j} / j$ does not converge almost surely.
5. Suppose $X_{1}, \ldots, X_{n}, \ldots$ are iid random variables with the exponential distribution with mean 1. Let $G_{n}=\sum_{i=1}^{n} X_{i}^{2}$. Let $\Phi(\cdot)$ be the cumulative distribution function of the standard normal distribution. Prove that $\left.\sqrt{n}\left[\exp \left(G_{n} / n\right)-\exp (2)\right)\right]$ converges in distribution and specify the limiting distribution.
