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Solutions of Homework 1.

1. a). Roll a fair die 2 times, define the probability space (Ω,F , P ).

b). Toss a fair coin infinite number of times, define the probability space (Ω,F , P ). (Hint: finite-
dimensional probability is enough.)

Solution. a). Ω = {(i, j) : 1 ≤ i, j ≤ 6}, where (i, j) represents the outcome of roll is i-dots for the
first roll and j-dots for the second. F is the set of all subsets of Ω. P is such that P ((i, j)) = 1/36.

b). Ω = {ω}, where ω = (w1, w2, ....) with wn = H or T , representing the n-th toss is head or tail.
F is the σ-algebra generated by sets of finite dimensions. e.g., F = σ{(a1, a2, ...) with only finite
number of ai being fixed as either H or T }. P is such that P (wi = ai for i = 1, ..., n) = 2−n where
ai is either H or T . �

2. Suppose X ≥ 0 is a random variable in probability space (Ω,F , P ), and E(X) = c with 0 < c < ∞.
For any set A in F , define P ∗(A) = E(X1A)/c. Show that P ∗ is a probability measure, i.e., it
satisfies Kolmogorov’s axioms of probability.

Solution. (i). For any A ∈ F , P ∗(A) ≥ 0 since X ≥ 0. Also, P ∗ (A) ≤ E(X)/c = 1. (ii).
since 1Ω = 1, P ∗(Ω) = E(X)/c = 1. (iii). Suppose Ai are mutually exclusive. P ∗(∪iAi) =
E(X1∪iAi

)/c =
∑

i E(X1Ai
)/c =

∑

i P ∗(Ai). �

3. Suppose X is a nonnegative random variable.

a). Show that E(X) =
∫ ∞

0
P (X > t)dt.

b). Show that E(X) < ∞ iff
∑∞

n=1
P (X > n) < ∞.

Solution. a). Method 1.

E(X) = E(

∫ ∞

0

1{t≤X}dt) =

∫ ∞

0

E(1{t≤X})dt =

∫ ∞

0

P (X ≥ t)dt.

Method 2. E(X) =
∫ ∞

0
xdF (x) = −

∫ ∞

0
xd(1−F (x)) = − limc→∞

∫ c

0
xd(1−F (x)) = limc→∞[−(1−

F (c))c +
∫ c

0
(1−F (x))dx. If E(X) is finite, then (1−F (c))c → 0 as c → ∞ (why?) and the desired

equality holds. If E(X) = ∞, then
∫ ∞

0
P (X > t)dt = limc→∞

∫ c

0
(1 − F (x))dx ≥ limc→∞[−(1 −

F (c))c +
∫ c

0
(1 − F (x))dx] = limc→∞

∫ c

0
xdF (x) = ∞.

b).
∑∞

n=1
P (X > n) ≤

∑∞
n=1

∫ n

n−1
P (X > t)dt =

∫ ∞

0
P (X > t)dt = E(X). On the other hand,

∑∞
n=1

P (X > n) + 1 ≥
∑∞

n=0

∫ n+1

n
P (X > t)dt =

∫ ∞

0
P (X > t)dt = E(X). �

4. (Poincaré Formula). If A1, ..., An are events of a probability space (Ω,F , P ) and

Tk =
∑

1≤j1<j2<...<jk≤n

P (Aj1Aj2 ...Ajk
),

then

P (∪n
1 Aj) =

n
∑

1

(−1)k−1Tk.

Hint: Use the indicator function.

Solution.

P (∪n
1Aj) = 1 − P (∩n

1Ac
j) = 1 − E(1∩n

1
Ac

j
)

= 1 − E(

n
∏

1

1Ac
j
) = 1 − E(

n
∏

1

(1 − 1Aj
))

= 1 − {1 +

n
∑

k=1

∑

1≤j1<j2<...<jk≤n

(−1)kE(1Aj1
1Aj2

...1Ajk
)}
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=

n
∑

1

(−1)k−1Tk.

�

5. Show E(|X + Y |p) ≤ 2p(E(|X |p) + E(|Y |p)), for p > 0 and any two r.v.s X and Y .

Solution. E(|X + Y |p) ≤ E[(|X | + |Y |)p] ≤ E{[2(|X | ∨ |Y |)]p} ≤ 2pE{(|X | ∨ |Y |)p} ≤ 2pE(|X |p ∨
|Y |p) ≤ 2pE(|X |p + |Y |p). Here ∨ is the maximum of two values. �

Exercises

1. Describe the σ-algebra generated from two nonempty sets A and B, where A 6= B.

Solution. Four mutually exclusive sets: {ABc, BAc, AcBc, AB}. And the σ-algebra are all the
unions of the four sets (totally 11) plus the emtpy set. They are

{

ABc, BAc, AcBc, AB(the four mutually exclusive sets)

A, B, (AB) ∪ (AcBc), (ABc) ∪ (BAc), Bc, Ac, (union of any two of the four sets)

B ∪ Ac, Bc ∪ A, A ∪ B, Ac ∪ Bc, (union of any three of the four sets)

Ω(union of all sets)

∅.
}

The σ-algebra has totally 16 elements. (Here the product of two sets means intersection). �

2. Given an algebra F , show that the following statements are equivalent:

(a). ∪∞
1 An ∈ F , for any An, n ≥ 1 in F.

(b). ∩∞
1 An ∈ F , for any An, n ≥ 1 in F.

(c). lim sup An ∈ F , for any An, n ≥ 1 in F.

(d). lim inf An ∈ F , for any An, n ≥ 1 in F.

Solution. Keep in mind that from the definition of algebra that, for any A and B in F , Ac and Bc

and A ∪ B are in F .

(a) =⇒ (b): ∩nAn = (∪nAc
n)c ∈ F .

(b) =⇒ (a): ∪An = (∩nAc
n)c ∈ F .

(b) (and/or) (a) =⇒ (c): lim sup An = ∩n ∪∞
k=n Ak ∈ F .

(c) =⇒ (d): lim infn An = ∪n ∩∞
k=n Ak = (∩n ∪∞

k=n Ac
k)c = (lim supn Ac

n)c ∈ F .

(d) =⇒ (a): ∪nAn = lim infn ∪n
k=1Ak ∈ F . �

3. Suppose
∑

n P (An) = ∞. Show that lim supn P (∪n
j=1Aj |An+1) = 1.

Solution. Without loss of generality, assume P (An) > 0 for all n > 0. Let an = P (∩n−1
j=1 Ac

jAn).
Notice that that

∞
∑

n=2

an =

∞
∑

n=2

[P (∩n−1
j=1 Ac

j) − P (∩n
j=1A

c
j)] = P (Ac

1) < ∞.

Then,

lim sup
n

P (∪n
j=1Aj |An+1) = lim sup

n

P (∪n
j=1Aj ∩ An+1

P (An+1)

= lim sup
n

P (An+1) − P (∩n
j=1A

c
jAn+1)

P (An+1)
= 1 − lim inf

an+1

P (An+1)
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Suppose lim inf an/P (An) > c > 0. Then, for all large n, an > cP (An). This leads to
∑

n P (An) <
∞, contracting the given condition. Hence lim inf an/P (An) = 0 and lim supn P (∪n

j=1Aj |An+1) = 1.
�

4. Let X be a r.v. and g and h are two increasing functions such that E(g(X)2) < ∞ and E(h(X)2) <
∞, show that corr(g(X), h(X)) ≥ 0. (Hint: Consider the ranges {x : g(x) > 0} and {x : g(x) < 0}).

Solution. Suppose, for simplicity of argument, E(g(X)) = 0. Let a be such that g(x) ≥ 0 for all
x ≥ a, and g(x) ≤ 0 for all x ≤ a. By monotonicity, h(x) ≥ h(a) for x ≥ a and h(x) ≤ a for x ≤ a.
As a result, g(x)(h(x) − a) ≥ 0 for all x. Therefore

E(g(X)h(X)) = E
(

g(X)[h(X) − h(a)]
)

≥ 0.

This implies that corr(g(X), h(X)) is ≥ 0.

If E(g(X)) 6= 0, consider g̃(x) = g(x) − E(g(X)). Then, E(g̃(X)) = 0. So corr(g̃(X), h(X)) is ≥ 0.
But corr(g(X), h(X)) is the same as corr(g̃(X), h(X)).

5. For any r > 0, E(|X |r) < ∞ iff
∑∞

n=1
nr−1P (|X | ≥ n) < ∞.

Solution. Similar to Problem 3, part a).

E(|X |r) =

∫ ∞

0

P (|X |r ≥ t)dt =

∫ ∞

0

P (|X | ≥ t1/r)dt =

∫ ∞

0

P (|X | ≥ s)dsr

= r

∫ ∞

0

P (|X | ≥ s)sr−1ds.

And similar to Problem 3, part b), E(|X |r) < ∞ iff
∑∞

n=1
nr−1P (|X | ≥ n) < ∞.

6. f is a measurable map from a measurable space (Ω,F) to another measurable space (Ω∗,F∗). Let
Ω̃ = f(Ω) and A = {A ∩ Ω̃, A ∈ F∗}. Show that f is a measurable map from (Ω,F) to (Ω̃,A).
(Sorry the original problem is erroneous.)

Solution. First show (Ω̃,A) is a measurable space. For B ∈ A, B = A ∩ Ω̃ for some A ∈ F∗.
Ac ∩ Ω̃ = Ω̃ \ A ∩ Ω̃ = Ω̃ \ B. For Bj ∈ A, Bj = Aj ∩ Ω̃ for some Aj ∈ F∗. ∪∞

j=1Aj ∩ Ω̃ =

∪∞
j=1(Aj ∩ Ω̃) = ∪∞

j=1Bj . Hence, (Ω̃,A) is a measurable space. For any B ∈ A, B = A∩ Ω̃ for some

A ∈ F∗. f−1(B) = f−1(A ∩ Ω̃) = f−1(A) ∈ F . It follows that f is a measurable map from (Ω,F)
to (Ω̃,A).

7. Suppose X1, ..., Xn are independent random variables with c.d.f. F1, ..., Fn. Express the c.d.f of
max{Xi : 1 ≤ i ≤ n} and min{Xi : 1 ≤ i ≤ n} in terms of F1, ..., Fn.

Solution. P (max{Xi : 1 ≤ i ≤ n} ≤ t) = P (Xi ≤ t, 1 ≤ i ≤ n) =
∏

i P (Xi ≤ t) =
∏

i Fi(t).

P (min{Xi : 1 ≤ i ≤ n} ≤ t) = 1 − P (min{Xi : 1 ≤ i ≤ n} > t) = 1 − P (Xi > t, 1 ≤ i ≤ n) =
1 −

∏

i P (Xi > t) = 1 −
∏

i(1 − Fi(t)).

8. Suppose Xn → 0 a.e. Show that P (|Xn| > c, i.o.) = 0 for all constant c > 0.

Solution. Let An = {|Xn| > c}. Then, for every ω ∈ {An, i.o.}, there exists a subsequence
nk → ∞ (depending on ω) such that |Xnk

(ω)| > c. Therefore Xn(ω) 9 0 for all ω ∈ {An, i.o.}.
Hence P ({An, i.o.}) = 0.

9. Solution. (Method 1). For any a > 0, let X∗
n = max(−a, min(Xn, a)) and X∗ = max(−a, min(X, a)).

Then, E(X∗
n) → E(X∗) as n → ∞. supn E|X∗

n − Xn| ≤ supn E(Yn1{Yn≥a}) → 0 as a → ∞. Since
supn E(|X∗

n|) ≤ supnE(Yn) < ∞ for all a > 0, we have supa>0 E(|X∗|) < ∞. Hence E(|X |) < ∞
(Why?). Then, E(|X∗ − X |) → 0 as a → ∞, by dominated convergence theorem. As a result,
E(Xn) → E(X).

(Method 2). For any a > 0, let X∗
n = min(X+

n , a) and X∗ = min(X+, a). Then, E(X∗
n) → E(X∗)

as n → ∞, by the dominated convergence theorem. Observe that supn,a E(X∗
n) ≤ supnE(Yn) < ∞
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Hence, supa E(X∗) < ∞. Therefore E(X+) < ∞ since E(X∗) ↑ E(X+) as a ↑ ∞, by the monotone
convergence theorem. Moreover,

sup
n

E|X+
n − X∗

n| ≤ sup
n

E(|Yn − a|1{Yn>a}) ≤ sup
n

E(Yn1{Yn>a}) → 0

as a → ∞. Then,

|E(X+
n ) − E(X+)| ≤ E|X+

n − X∗
n| + |E(X∗

n − E(X∗)| + |E(X∗) − E(X+)| → 0

as n → ∞ and then a → ∞. Similarly, one can show E(X−
n ) → E(X−). �

10. For events A1, ..., An, set qk =
∑

j1<...<jk
P (Aj1 · · ·Ajk

). For every even positive m ≤ n, show that

m
∑

j=1

(−1)k−1qk ≤ P (∪n
j=1Aj) ≤

m−1
∑

j=1

(−1)k−1qk.

Solution. For any 1 ≤ m ≤ J ,

1 −
m

∑

j=1

(−1)j−1

(

J
j

) {

≤ 0 for odd m;
≥ 0 for even m.

(DIY: Please verify using the fact that
∑J

j=0
(−1)j

(

J
j

)

= 0,
(

J
j

)

=
(

J
J−j

)

and
(

J
j

)

is increasing for

j ≤ J/2.) Write ∪n
j=1Aj = ∪n

k=1Bk where Bk is the set of ω which belongs to exactly k of the sets
A1, ..., An. For ω ∈ BJ ,

m
∑

k=1

(−1)k−1
∑

j1<...<jk

1A1
(ω) · · · 1Ak

(ω) =

{

∑m
k=1

(−1)k−1
(

J
k

)

for m < J
∑J

k=1
(−1)k−1

(

J
k

)

for m ≥ J

=

{

∑m
k=1

(−1)k−1
(

J
k

)

for m < J
1 for m ≥ J

{

≤ 1 if m is even
≥ 1 if m is odd

Let J be 1, 2, ..., n. Then, the above inequality implies for ω ∈ ∪n
J=1BJ = ∪n

j=1Aj

m
∑

k=1

(−1)k−1
∑

j1<...<jk

1A1
(ω) · · · 1Ak

(ω)

{

≤ 1 if m is even
≥ 1 if m is odd

As the left hand side is 0 if ω /∈ ∪n
J=1BJ = ∪n

j=1Aj . We therefore have

summ
k=1(−1)k−1

∑

j1<...<jk

1A1
(ω) · · · 1Ak

(ω)

{

≤ 1∪n
j=1

Aj
if m is even

≥ 1∪n
j=1

Aj
if m is odd.

Taking expectation on both sides, the Bonferroni’s inequality follows. �


