Solutions of Homework 1.

1. a). Roll a fair die 2 times, define the probability space (Ω, \mathcal{F}, P).
b). Toss a fair coin infinite number of times, define the probability space (Ω, \mathcal{F}, P). (Hint: finitedimensional probability is enough.)
Solution. a). $\Omega=\{(i, j): 1 \leq i, j \leq 6\}$, where (i, j) represents the outcome of roll is i-dots for the first roll and j-dots for the second. \mathcal{F} is the set of all subsets of Ω. P is such that $P((i, j))=1 / 36$. b). $\Omega=\{\omega\}$, where $\omega=\left(w_{1}, w_{2}, \ldots.\right)$ with $w_{n}=H$ or T, representing the n-th toss is head or tail. \mathcal{F} is the σ-algebra generated by sets of finite dimensions. e.g., $\mathcal{F}=\sigma\left\{\left(a_{1}, a_{2}, \ldots\right)\right.$ with only finite number of a_{i} being fixed as either H or $\left.T\right\} . P$ is such that $P\left(w_{i}=a_{i}\right.$ for $\left.i=1, \ldots, n\right)=2^{-n}$ where a_{i} is either H or T.
2. Suppose $X \geq 0$ is a random variable in probability space (Ω, \mathcal{F}, P), and $E(X)=c$ with $0<c<\infty$. For any set A in \mathcal{F}, define $P^{*}(A)=E\left(X 1_{A}\right) / c$. Show that P^{*} is a probability measure, i.e., it satisfies Kolmogorov's axioms of probability.
Solution. (i). For any $A \in \mathcal{F}, P^{*}(A) \geq 0$ since $X \geq 0$. Also, $P *(A) \leq E(X) / c=1$. (ii). since $1_{\Omega}=1, P^{*}(\Omega)=E(X) / c=1$. (iii). Suppose A_{i} are mutually exclusive. $P^{*}\left(\cup_{i} A_{i}\right)=$ $E\left(X 1_{\cup_{i} A_{i}}\right) / c=\sum_{i} E\left(X 1_{A_{i}}\right) / c=\sum_{i} P^{*}\left(A_{i}\right)$.
3. Suppose X is a nonnegative random variable.
a). Show that $E(X)=\int_{0}^{\infty} P(X>t) d t$.
b). Show that $E(X)<\infty$ iff $\sum_{n=1}^{\infty} P(X>n)<\infty$.

Solution. a). Method 1.

$$
E(X)=E\left(\int_{0}^{\infty} 1_{\{t \leq X\}} d t\right)=\int_{0}^{\infty} E\left(1_{\{t \leq X\}}\right) d t=\int_{0}^{\infty} P(X \geq t) d t
$$

Method 2. $E(X)=\int_{0}^{\infty} x d F(x)=-\int_{0}^{\infty} x d(1-F(x))=-\lim _{c \rightarrow \infty} \int_{0}^{c} x d(1-F(x))=\lim _{c \rightarrow \infty}[-(1-$ $F(c)) c+\int_{0}^{c}(1-F(x)) d x$. If $E(X)$ is finite, then $(1-F(c)) c \rightarrow 0$ as $c \rightarrow \infty$ (why?) and the desired equality holds. If $E(X)=\infty$, then $\int_{0}^{\infty} P(X>t) d t=\lim _{c \rightarrow \infty} \int_{0}^{c}(1-F(x)) d x \geq \lim _{c \rightarrow \infty}[-(1-$ $\left.F(c)) c+\int_{0}^{c}(1-F(x)) d x\right]=\lim _{c \rightarrow \infty} \int_{0}^{c} x d F(x)=\infty$.
b). $\sum_{n=1}^{\infty} P(X>n) \leq \sum_{n=1}^{\infty} \int_{n-1}^{n} P(X>t) d t=\int_{0}^{\infty} P(X>t) d t=E(X)$. On the other hand, $\sum_{n=1}^{\infty} P(X>n)+1 \geq \sum_{n=0}^{\infty} \int_{n}^{n+1} P(X>t) d t=\int_{0}^{\infty} P(X>t) d t=E(X)$.
4. (Poincaré Formula). If A_{1}, \ldots, A_{n} are events of a probability space (Ω, \mathcal{F}, P) and

$$
T_{k}=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{k} \leq n} P\left(A_{j_{1}} A_{j_{2}} \ldots A_{j_{k}}\right)
$$

then

$$
P\left(\cup_{1}^{n} A_{j}\right)=\sum_{1}^{n}(-1)^{k-1} T_{k}
$$

Hint: Use the indicator function.
Solution.

$$
\begin{aligned}
& P\left(\cup_{1}^{n} A_{j}\right)=1-P\left(\cap_{1}^{n} A_{j}^{c}\right)=1-E\left(1_{\cap_{1}^{n} A_{j}^{c}}\right) \\
= & 1-E\left(\prod_{1}^{n} 1_{A_{j}^{c}}\right)=1-E\left(\prod_{1}^{n}\left(1-1_{A_{j}}\right)\right) \\
= & 1-\left\{1+\sum_{k=1}^{n} \sum_{1 \leq j_{1}<j_{2}<\ldots<j_{k} \leq n}(-1)^{k} E\left(1_{A_{j_{1}}} 1_{A_{j_{2}}} \ldots 1_{A_{j_{k}}}\right)\right\}
\end{aligned}
$$

$$
=\sum_{1}^{n}(-1)^{k-1} T_{k}
$$

5. Show $E\left(|X+Y|^{p}\right) \leq 2^{p}\left(E\left(|X|^{p}\right)+E\left(|Y|^{p}\right)\right)$, for $p>0$ and any two r.v.s X and Y.

Solution. $E\left(|X+Y|^{p}\right) \leq E\left[(|X|+|Y|)^{p}\right] \leq E\left\{[2(|X| \vee|Y|)]^{p}\right\} \leq 2^{p} E\left\{(|X| \vee|Y|)^{p}\right\} \leq 2^{p} E\left(|X|^{p} \vee\right.$ $\left.|Y|^{p}\right) \leq 2^{p} E\left(|X|^{p}+|Y|^{p}\right)$. Here \vee is the maximum of two values.

Exercises

1. Describe the σ-algebra generated from two nonempty sets A and B, where $A \neq B$.

Solution. Four mutually exclusive sets: $\left\{A B^{c}, B A^{c}, A^{c} B^{c}, A B\right\}$. And the σ-algebra are all the unions of the four sets (totally 11) plus the emtpy set. They are

$$
\begin{aligned}
& \left\{\begin{array}{l}
A B^{c}, B A^{c}, A^{c} B^{c}, A B \text { (the four mutually exclusive sets) } \\
\\
A, B,(A B) \cup\left(A^{c} B^{c}\right),\left(A B^{c}\right) \cup\left(B A^{c}\right), B^{c}, A^{c}, \text { (union of any two of the four sets) } \\
\\
B \cup A^{c}, B^{c} \cup A, A \cup B, A^{c} \cup B^{c},(\text { union of any three of the four sets) } \\
\\
\Omega \text { (union of all sets) } \\
\emptyset .\}
\end{array}\right.
\end{aligned}
$$

The σ-algebra has totally 16 elements. (Here the product of two sets means intersection).
2. Given an algebra \mathcal{F}, show that the following statements are equivalent:
(a). $\cup_{1}^{\infty} A_{n} \in \mathcal{F}$, for any $A_{n}, n \geq 1$ in F .
(b). $\cap_{1}^{\infty} A_{n} \in \mathcal{F}$, for any $A_{n}, n \geq 1$ in F .
(c). $\lim \sup A_{n} \in \mathcal{F}$, for any $A_{n}, n \geq 1$ in F .
(d). $\liminf A_{n} \in \mathcal{F}$, for any $A_{n}, n \geq 1$ in F .

Solution. Keep in mind that from the definition of algebra that, for any A and B in \mathcal{F}, A^{c} and B^{c} and $A \cup B$ are in \mathcal{F}.
$(\mathrm{a}) \Longrightarrow(\mathrm{b}): \cap_{n} A_{n}=\left(\cup_{n} A_{n}^{c}\right)^{c} \in \mathcal{F}$.
(b) $\Longrightarrow(\mathrm{a}): \cup A_{n}=\left(\cap_{n} A_{n}^{c}\right)^{c} \in \mathcal{F}$.
(b) (and/or) (a) \Longrightarrow (c): $\limsup A_{n}=\cap_{n} \cup_{k=n}^{\infty} A_{k} \in \mathcal{F}$.
$(\mathrm{c}) \Longrightarrow(\mathrm{d}): \liminf _{n} A_{n}=\cup_{n} \cap_{k=n}^{\infty} A_{k}=\left(\cap_{n} \cup_{k=n}^{\infty} A_{k}^{c}\right)^{c}=\left(\limsup \sup _{n} A_{n}^{c}\right)^{c} \in \mathcal{F}$.
$(\mathrm{d}) \Longrightarrow(\mathrm{a}): \cup_{n} A_{n}=\liminf _{n} \cup_{k=1}^{n} A_{k} \in \mathcal{F}$.
3. Suppose $\sum_{n} P\left(A_{n}\right)=\infty$. Show that $\limsup _{n} P\left(\cup_{j=1}^{n} A_{j} \mid A_{n+1}\right)=1$.

Solution. Without loss of generality, assume $P\left(A_{n}\right)>0$ for all $n>0$. Let $a_{n}=P\left(\cap_{j=1}^{n-1} A_{j}^{c} A_{n}\right)$. Notice that that

$$
\sum_{n=2}^{\infty} a_{n}=\sum_{n=2}^{\infty}\left[P\left(\cap_{j=1}^{n-1} A_{j}^{c}\right)-P\left(\cap_{j=1}^{n} A_{j}^{c}\right)\right]=P\left(A_{1}^{c}\right)<\infty
$$

Then,

$$
\begin{aligned}
& \limsup _{n} P\left(\cup_{j=1}^{n} A_{j} \mid A_{n+1}\right)=\underset{n}{\limsup } \frac{P\left(\cup_{j=1}^{n} A_{j} \cap A_{n+1}\right.}{P\left(A_{n+1}\right)} \\
& =\limsup _{n} \frac{P\left(A_{n+1}\right)-P\left(\cap_{j=1}^{n} A_{j}^{c} A_{n+1}\right)}{P\left(A_{n+1}\right)}=1-\liminf \frac{a_{n+1}}{P\left(A_{n+1}\right)}
\end{aligned}
$$

Suppose $\liminf a_{n} / P\left(A_{n}\right)>c>0$. Then, for all large $n, a_{n}>c P\left(A_{n}\right)$. This leads to $\sum_{n} P\left(A_{n}\right)<$ ∞, contracting the given condition. Hence liminf $a_{n} / P\left(A_{n}\right)=0$ and $\lim \sup _{n} P\left(\cup_{j=1}^{n} A_{j} \mid A_{n+1}\right)=1$.
4. Let X be a r.v. and g and h are two increasing functions such that $E\left(g(X)^{2}\right)<\infty$ and $E\left(h(X)^{2}\right)<$ ∞, show that $\operatorname{corr}(g(X), h(X)) \geq 0$. (Hint: Consider the ranges $\{x: g(x)>0\}$ and $\{x: g(x)<0\})$.
Solution. Suppose, for simplicity of argument, $E(g(X))=0$. Let a be such that $g(x) \geq 0$ for all $x \geq a$, and $g(x) \leq 0$ for all $x \leq a$. By monotonicity, $h(x) \geq h(a)$ for $x \geq a$ and $h(x) \leq a$ for $x \leq a$. As a result, $g(x)(h(x)-a) \geq 0$ for all x. Therefore

$$
E(g(X) h(X))=E(g(X)[h(X)-h(a)]) \geq 0
$$

This implies that $\operatorname{corr}(g(X), h(X))$ is ≥ 0.
If $E(g(X)) \neq 0$, consider $\tilde{g}(x)=g(x)-E(g(X))$. Then, $E(\tilde{g}(X))=0$. So $\operatorname{corr}(\tilde{g}(X), h(X))$ is ≥ 0. But $\operatorname{corr}(g(X), h(X))$ is the same as $\operatorname{corr}(\tilde{g}(X), h(X))$.
5. For any $r>0, E\left(|X|^{r}\right)<\infty$ iff $\sum_{n=1}^{\infty} n^{r-1} P(|X| \geq n)<\infty$.

Solution. Similar to Problem 3, part a).

$$
\begin{aligned}
& E\left(|X|^{r}\right)=\int_{0}^{\infty} P\left(|X|^{r} \geq t\right) d t=\int_{0}^{\infty} P\left(|X| \geq t^{1 / r}\right) d t=\int_{0}^{\infty} P(|X| \geq s) d s^{r} \\
= & r \int_{0}^{\infty} P(|X| \geq s) s^{r-1} d s .
\end{aligned}
$$

And similar to Problem 3, part b), $E\left(|X|^{r}\right)<\infty$ iff $\sum_{n=1}^{\infty} n^{r-1} P(|X| \geq n)<\infty$.
6. $f_{\tilde{\Omega}}$ is a measurable map from a measurable space (Ω, \mathcal{F}) to another measurable space $\left(\Omega^{*}, \mathcal{F}^{*}\right)$. Let $\tilde{\Omega}=f(\Omega)$ and $\mathcal{A}=\left\{A \cap \tilde{\Omega}, A \in \mathcal{F}^{*}\right\}$. Show that f is a measurable map from (Ω, \mathcal{F}) to $(\tilde{\Omega}, \mathcal{A})$. (Sorry the original problem is erroneous.)
Solution. First show $(\tilde{\Omega}, \mathcal{A})$ is a measurable space. For $B \in \mathcal{A}, B=A \cap \tilde{\Omega}$ for some $A \in \mathcal{F}^{*}$. $A^{c} \cap \tilde{\Omega}=\tilde{\Omega} \backslash A \cap \tilde{\Omega}=\tilde{\Omega} \backslash B$. For $B_{j} \in \mathcal{A}, B_{j}=A_{j} \cap \tilde{\Omega}$ for some $A_{j} \in \mathcal{F}^{*} . \cup_{j=1}^{\infty} A_{j} \cap \tilde{\Omega}=$ $\cup_{j=1}^{\infty}\left(A_{j} \cap \tilde{\Omega}\right)=\cup_{j=1}^{\infty} B_{j}$. Hence, $(\tilde{\Omega}, \mathcal{A})$ is a measurable space. For any $B \in \mathcal{A}, B=A \cap \tilde{\Omega}$ for some $A \in \mathcal{F}^{*} . f^{-1}(B)=f^{-1}(A \cap \tilde{\Omega})=f^{-1}(A) \in \mathcal{F}$. It follows that f is a measurable map from (Ω, \mathcal{F}) to $(\tilde{\Omega}, \mathcal{A})$.
7. Suppose X_{1}, \ldots, X_{n} are independent random variables with c.d.f. F_{1}, \ldots, F_{n}. Express the c.d.f of $\max \left\{X_{i}: 1 \leq i \leq n\right\}$ and $\min \left\{X_{i}: 1 \leq i \leq n\right\}$ in terms of F_{1}, \ldots, F_{n}.
Solution. $P\left(\max \left\{X_{i}: 1 \leq i \leq n\right\} \leq t\right)=P\left(X_{i} \leq t, 1 \leq i \leq n\right)=\prod_{i} P\left(X_{i} \leq t\right)=\prod_{i} F_{i}(t)$.
$P\left(\min \left\{X_{i}: 1 \leq i \leq n\right\} \leq t\right)=1-P\left(\min \left\{X_{i}: 1 \leq i \leq n\right\}>t\right)=1-P\left(X_{i}>t, 1 \leq i \leq n\right)=$ $1-\prod_{i} P\left(X_{i}>t\right)=1-\prod_{i}\left(1-F_{i}(t)\right)$.
8. Suppose $X_{n} \rightarrow 0$ a.e. Show that $P\left(\left|X_{n}\right|>c, i . o.\right)=0$ for all constant $c>0$.

Solution. Let $A_{n}=\left\{\left|X_{n}\right|>c\right\}$. Then, for every $\omega \in\left\{A_{n}, i . o.\right\}$, there exists a subsequence $n_{k} \rightarrow \infty$ (depending on ω) such that $\left|X_{n_{k}}(\omega)\right|>c$. Therefore $X_{n}(\omega) \nrightarrow 0$ for all $\omega \in\left\{A_{n}, i . o.\right\}$. Hence $P\left(\left\{A_{n}\right.\right.$, i.o. $\left.\}\right)=0$.
9. Solution. (Method 1). For any $a>0$, let $X_{n}^{*}=\max \left(-a, \min \left(X_{n}, a\right)\right)$ and $X^{*}=\max (-a, \min (X, a))$. Then, $E\left(X_{n}^{*}\right) \rightarrow E\left(X^{*}\right)$ as $n \rightarrow \infty . \sup _{n} E\left|X_{n}^{*}-X_{n}\right| \leq \sup _{n} E\left(Y_{n} 1_{\left\{Y_{n} \geq a\right\}}\right) \rightarrow 0$ as $a \rightarrow \infty$. Since $\sup _{n} E\left(\left|X_{n}^{*}\right|\right) \leq \sup _{n} E\left(Y_{n}\right)<\infty$ for all $a>0$, we have $\sup _{a>0} E\left(\left|X^{*}\right|\right)<\infty$. Hence $E(|X|)<\infty$ (Why?). Then, $E\left(\left|X^{*}-X\right|\right) \rightarrow 0$ as $a \rightarrow \infty$, by dominated convergence theorem. As a result, $E\left(X_{n}\right) \rightarrow E(X)$.
(Method 2). For any $a>0$, let $X_{n}^{*}=\min \left(X_{n}^{+}, a\right)$ and $X^{*}=\min \left(X^{+}, a\right)$. Then, $E\left(X_{n}^{*}\right) \rightarrow E\left(X^{*}\right)$ as $n \rightarrow \infty$, by the dominated convergence theorem. Observe that $\sup _{n, a} E\left(X_{n}^{*}\right) \leq \sup _{n} E\left(Y_{n}\right)<\infty$

Hence, $\sup _{a} E\left(X^{*}\right)<\infty$. Therefore $E\left(X^{+}\right)<\infty$ since $E\left(X^{*}\right) \uparrow E\left(X^{+}\right)$as $a \uparrow \infty$, by the monotone convergence theorem. Moreover,

$$
\sup _{n} E\left|X_{n}^{+}-X_{n}^{*}\right| \leq \sup _{n} E\left(\left|Y_{n}-a\right| 1_{\left\{Y_{n}>a\right\}}\right) \leq \sup _{n} E\left(Y_{n} 1_{\left\{Y_{n}>a\right\}}\right) \rightarrow 0
$$

as $a \rightarrow \infty$. Then,

$$
\left|E\left(X_{n}^{+}\right)-E\left(X^{+}\right)\right| \leq E\left|X_{n}^{+}-X_{n}^{*}\right|+\mid E\left(X_{n}^{*}-E\left(X^{*}\right)\left|+\left|E\left(X^{*}\right)-E\left(X^{+}\right)\right| \rightarrow 0\right.\right.
$$

as $n \rightarrow \infty$ and then $a \rightarrow \infty$. Similarly, one can show $E\left(X_{n}^{-}\right) \rightarrow E\left(X^{-}\right)$.
10. For events A_{1}, \ldots, A_{n}, set $q_{k}=\sum_{j_{1}<\ldots<j_{k}} P\left(A_{j_{1}} \cdots A_{j_{k}}\right)$. For every even positive $m \leq n$, show that

$$
\sum_{j=1}^{m}(-1)^{k-1} q_{k} \leq P\left(\cup_{j=1}^{n} A_{j}\right) \leq \sum_{j=1}^{m-1}(-1)^{k-1} q_{k}
$$

Solution. For any $1 \leq m \leq J$,

$$
1-\sum_{j=1}^{m}(-1)^{j-1}\binom{J}{j} \quad \begin{cases}\leq 0 & \text { for odd } m \\ \geq 0 & \text { for even } m\end{cases}
$$

(DIY: Please verify using the fact that $\sum_{j=0}^{J}(-1)^{j}\binom{J}{j}=0,\binom{J}{j}=\binom{J}{J-j}$ and $\binom{J}{j}$ is increasing for $j \leq J / 2$.) Write $\cup_{j=1}^{n} A_{j}=\cup_{k=1}^{n} B_{k}$ where B_{k} is the set of ω which belongs to exactly k of the sets A_{1}, \ldots, A_{n}. For $\omega \in B_{J}$,

$$
\begin{aligned}
& \sum_{k=1}^{m}(-1)^{k-1} \sum_{j_{1}<\ldots<j_{k}} 1_{A_{1}}(\omega) \cdots 1_{A_{k}}(\omega)= \begin{cases}\sum_{k=1}^{m}(-1)^{k-1}\binom{J}{k} & \text { for } m<J \\
\sum_{k=1}^{J}(-1)^{k-1}\binom{J}{k} & \text { for } m \geq J\end{cases} \\
& = \begin{cases}\sum_{k=1}^{m}(-1)^{k-1}\binom{J}{k} & \text { for } m<J \\
1 & \text { for } m \geq J\end{cases} \\
& \begin{cases}\leq 1 & \text { if } m \text { is even } \\
\geq 1 & \text { if } m \text { is odd }\end{cases}
\end{aligned}
$$

Let J be $1,2, \ldots, n$. Then, the above inequality implies for $\omega \in \cup_{J=1}^{n} B_{J}=\cup_{j=1}^{n} A_{j}$

$$
\sum_{k=1}^{m}(-1)^{k-1} \sum_{j_{1}<\ldots<j_{k}} 1_{A_{1}}(\omega) \cdots 1_{A_{k}}(\omega) \begin{cases}\leq 1 & \text { if } m \text { is even } \\ \geq 1 & \text { if } m \text { is odd }\end{cases}
$$

As the left hand side is 0 if $\omega \notin \cup_{J=1}^{n} B_{J}=\cup_{j=1}^{n} A_{j}$. We therefore have

$$
\operatorname{sum}_{k=1}^{m}(-1)^{k-1} \sum_{j_{1}<\ldots<j_{k}} 1_{A_{1}}(\omega) \cdots 1_{A_{k}}(\omega) \begin{cases}\leq 1_{\cup_{j=1}^{n} A_{j}} & \text { if } m \text { is even } \\ \geq 1_{\cup_{j=1}^{n} A_{j}} & \text { if } m \text { is odd. }\end{cases}
$$

Taking expectation on both sides, the Bonferroni's inequality follows.

