Solutions of Homework 2.

1. Suppose | X,| <Y with E(Y) < oo, and X,, — X in probability. Show that F|X,, — X| — 0 (i.e.,
X, — X in Ly).
Solution. Method 1. Suppose X,, - X in L;. Then, there exists a subsequence {ns} such that
E|X,, — X| > e for some € > 0 and all {ny}. Since X,,, — X in probability, there exists a further
subsequence ny; such that Xnkj — X a.e.. Then the dominated convergence theorem implies that
E|Xnkj — X| — 0. This contradicts with E|X,, — X| > € for some ¢ > 0 and all {n;}. Hence,
X, — X in Ly.

Method 2. Let Z,, = |X,, — X|. Then Z,, <2Y.

E(Z,) E(Zu1{z,<a) + E(Znl{z,>¢})

< e+ 2E(Y1{Zn>6})

< €+ 2E(Y1ys1/ez,5a) T 2E(YV 1y <i/e,z,5¢})
< e+ 2E(Y1gys1/e) +2/€E(1iz,5e)

= e+2E(Yliys1/e) +2/eP(Zy > €)

— e+ EY1ys1/a) as n — 0o

which can be arbitrarily small since € can be chosen arbitrarily small. Therefore lim,, E(Z,) = 0.
O

2. X,, — X in probability if and only if, for any sub-sequence of X,,n > 1, there always exists a
further sub-sequence, which may be called sub-sub-sequence, that converges a.s. to X.

Solution. “ <=" Suppose X, does not converge to X in probability. There exists a subsequence
ny and an € > 0 such that P(X,, — X| > €) > e. Then, no further subsequence of X,,, can converge
to X, a.s. or in probability, which leads to a contradiction.

“=—"  Any subsequence of {X,,} still converges to X in probability. And there is always of further
subsequence of this subsequence that converges to X a.s.. O

3. Twor.v.s X,Y are called conditionally independent giver.v. Zif P(X <t,Y <s|Z =2)=P(X <
t|Z = 2)P(Y < s|Z = z) for all t, s,z. Let X,, be the total number of heads of the first n tosses of
a fair coin. Set Xy = 0. Show that X,,_; and X, ;1 are conditionally independent given X,,.

Solution. Let &, be 1 or 0 when the n-th toss is a head or tail. Set {§, = 0. Then &;,7=0,1,2, ...
are independent. X, = Y7 (&;. And §,41 is independent of X, and &,

P(Xp+1 =k, Xn1=j|Xn=1)
= P(§n+1:k_lv gn:l_ﬂXn:l)
P(§n+1 =k—1, gn:l_ijn:l)
P(X, =1
T £ ;(ZXHJ’:)I()” =4
= P(§n+1 :k_l|Xn:l)P(§n :l_j|Xn :l)
= P(X, =kX,=0)PXn_1=j|X,=1)

O

4. Suppose X1, Xo, ... arei.i.d. random variables following exponential distribution with mean 1. Show
that Y,, — oo a.e., where Y;, = maxj<i<, X;. (You might consider first show the convergence in
probability.)



Solution. For any constant C' > 0,

P(Y,>C)=P(max X; >C)=1-P(max X; <C)=1-(1-¢e 9" =1

1<i<n 1<i<n
as n — oco. Therefore Y,, — oo in probability. Since Y,, is nondecreasing, Y;,, — oo a.e.. (why?) O

. Raise an example to show that Fatou’s lemma does not hold if the condition of X,, > 0 is dropped.

Solution. Suppose § ~ Unif[0,1]. Let X,, = —1/&1¢<1/ny. Then X, — 0 a.e., but E(X,) = —oc0
for all n. Therefore E(liminf X,,) = 0 > liminf,, F(X,) = —oc. O

DIY EXERCISES

. ++ (Extension of Fatou’s lemma). Suppose X, > Y and E(Y ) < co. Then E(liminf, X,,) <
liminf,, E(X,).
Solution. X, >Y — X, -Y >0— X, — (Y+ -Y)>0= X, +Y~ > 0. By Fatou’s
lemma,
E(liminf X,,) = E(liminf(X,, +Y ™) - E(Y ")
< liminf B(X, +Y ") — E(Y ™) = liminf E(X,,).
O
. * 45 Suppose | X, | <Y,, E(|Y,, —Y|) — 0 with E(Y) < oo, and X,, — X in probability. Then
E(X,) — E(X).
Solution. (This problem is a further extension of Problem 1)

Method 1: |X,, — X| <Y, + Y. Let & = |X,, — X|. Then &, — 0 in probability. Choose any
0 < € < ¢ < oo. Then,

E(gn) = E(fnl{gngc}) + E(§n1{£n>c})
< E(alig, <o) + Enlig,>e)) + E(€nlig,>c))
< eP(6n <€)+ E(§n1{5<£ngc}) + E[(Yn + Y)l{Yn+Y>c}
< e+ cPE > )+ E(Y, =Y |)+2E(Y 1y, +v>c})
— 6+O+0+E(Y1{2y>c}).

Letting ¢ | 0 and ¢ T oo, we have E(§,) — 0.
Method 2: Assume first X,, — X a.e. and Y,, — Y a.e.. Then Fatou’s lemma implies

E(Y — X) = E(liminf(Y, — X,,)] < liminf E(Y, — X,,) = B(Y) — limsup E(X,,)

E(Y +X) = E(liminf(Y,, + X,,)] < liminf E(Y,, + X,,) = E(Y) + liminf F(X,,)

So, the limit of E(X,,) exists and equals to F(X). Now suppose E(X,) - FE(X). There exists
a subsequence {ny} such that |E(X,, — E(X)| > € for some ¢ > 0 and all {n;}. But for this
subsequence, since X,, — X and Y;, — Y in probability, there exists a further subsequence
{Xnkj} — X a.e. and {Ynk].} — Y a.e.. Then the above proof implies E(Xnkj) — E(X), which
contracts with |E(X,,,) — E(X)| > e. O

.+ Show that Bin(n,p,) — P(N) if n — co and np,, — A > 0. (This problem and the next one are
for your knowledge about the basic facts of commonly used distributions.)



Solution. For any fixed integer k > 0,

P(Bin(pn) =) = ()b = = s () - gy

_ onn=1)---(n—k+1)/ np, \* n_ Lk oA
N klnk (1 —pn) (1=pa)" = k!)\ c
O

. % Suppose M and N are two independent Poisson random variables with mean A\ and 6. Show
that M + N is still Poisson random variable, and, moreover, the conditional distribution of M given
M + N =k is Bin(k,p), where p = \/(\ +6).

Solution.
k k
P(M+N=k)=) P(M=jN=k—-j)=> P(M=jP(N=k-j)
j=0 j=0
1 a1 k 6 koo (b A N0 Nk
— W 9 —Jp—V — 9 —A— - 7
;J' & —j) a9 jz_:0<j>()\+9) ()\—1—9)
_ 1 k_—A—0
And
’ P(M =j,N=Fk—j) PM=jPN =k-—j)
P(M =jM+N=k)= =
(M =M+ e g P(M+ N = k)
Y e A I AN B
= 3 - Foon=0 — \ . p(1—p)
gk =)L (A +6)*e J
where p = \/(A+ 0). O

. Suppose X € F (meaning that X is measurable to a o-algebra F). Show that E(X|F) = X, a.e.
Solution. Since X satisfies condition X € F and the condition E(X14) = E(X14) for every A € F,
which is actually an identity, so E(X|F) = X, a.s.. O

. % Suppose X,, > 0 and X,, T X a.e., then E(X,|F) T E(X|F), a.e.. (This is the monotone
convergence theorem for conditional expectation. Fatou’s lemma and the dominated convergence
theorem also hold for conditional expectation.)

Solution. Since X,, 1, X,,41 — X, > 0. Therefore E(X,, 11 — X,,|F) > 0. Hence, E(X,|F) 1.
Let the limit be &. Since E(X,|F) € F, the limit £ is also F-measurable. For any set A € F,
E(X,|F)1a T &14. by monotone convergence theorem,

E(€ly) =lim E[E(X,|F)14] by monotone convergence theorem

= limE(X,14) by the definition of conditional expectation w.r.t. o-algebra

= F(X1a) by monotone convergence theorem.

Therefore by the definition of conditional expectation with respect to a o-algebra, £ = E(X|F). O

. % Suppose X,, — c in distribution where c is a constant. Then X,, — c¢ in probability.

Solution. For constant ¢ as a r.v., its c.d.f. F(t) = 1 for all ¢t > ¢ and F(t) = 0 for all ¢t < c.
Therefore P(X,, <t) — 1 for any t > ¢ and P(X,, <t) — 0 for any ¢ < ¢. Hence, P(X,, >t) — 0
for any t > ¢. So X, — ¢ in probability. O



10.

11.

12.

+x Let Xy, Xo,... be i.id. r.v.s. with limsup, .. tP(X; > t) — 0. Show that Y,,/n — 0 in
probability, where Y,, = maxj<;<,, X;. (Hint: use Chebyshev inequality).
Solution. Let € > 0.

P(Y,/n > ¢) P(lrg%anl >ne) =1 P(lrél%xn Xi < ne)

1—P(X1 §ne)" =1- (1 —P(Xl > ne))"
1— enlog(l—P(X1>ne)) ~1— e—nP(X1>ne)

— 0

Next,

P(Y,/n < —¢) = P(lrga<x X; < —ne) < P(X; < —ne) — 0.
So, Y,,/n — 0 in probability. O
% Let f, and f be bounded continuous functions such that lim, sup, |f.(t) — f(¢)| = 0. Suppose
X, — X in distribution. Then, E(f,(X,)) — E(f(X)).

Solution.

[E(fn(Xn)) = E(f (X)) < E|fn(Xn) = F(Xn)| + [E(f(Xn)) — E(f(X))]
< swplfu() = fOI+ 1B (Xn)) — E(fF (X)) = 0.

O

» For any sequence of r.v.s. X,,, there exists a sequence of constants A, such that X, /A4, — 0
a.e.. (Hint: use Borel-Contelli Lemma).

Solution. Choose a,, such that P(|X,| > a,) < 1/2™. Let A,, = na,,. Then,
X011 x01<any/An < an/A, =1/n— 0.
And P(|X,,| > a,,i.0.) =0as Y - P(|X,| > a,) < oo by the Borel-Cantelli lemma. Therefore,
| Xnll{x,|5an}/An — 0, ae.

Consequently, X,,/A4,, — 0 a.e.. O

* Suppose F C A. Show that E(E(X|F)|A) = E(X|F).

Solution. Let Y = E(X|F). Y is F-measurable, so Y must be A-measurable since F € A.
Therefore E(Y|A=Y". O

** (CRUDE VERSION OF MARTINGALE CONVERGENCE THEOREM) Suppose F,, C F, 1 for n > 1.
Let F = o(U2, F),). For any random variable X with |X| < ¢ > 0,a.s., assume F(X|F,) has an
a.s. limit. show that

E(X|F,) — E(X|F), a.s.

Solution. Perhaps for a better understanding, denote Y,, = E(X + ¢|F,) and Y = E(X + ¢|F),
which are nonnegative r.v.s. For any A € F,,, E(Y,1a) = E(Y14) = E(XT1y4) for all n > m.
Then, Fatou’s lemma ensures

E(liminf Y, 1,4) < liminf E(Y,14) = E(Y14).

ie.,

E((Y —liminfY;,)14) > 0, for all A € Fpp,m > 1

It implies E((Y — liminf, Y,,)14) > 0, for all A € F, which can be proved by showing {A € F :
E((Y — liminf, Y;,)14) > 0} is a o-algebra which contains F,,, m > 1, and therefore must be the



same as F. Then, Y — liminf, Y,,, being F-measurable, must be nonnegative a.s.. As a result, we
have shown
liminf EB(X|F,) < E(X|F), a.s.

Next, by considering V;,, = E(c — X|F,) and Y = E(c — X|F), one can likewise show

limsup E(X|F,) > E(X|F). a.s.

Consequently, lim,, E(X|F,) = E(X|F) a.s.. O



