Solutions of Homework 2.

1. Suppose $|X_n| \leq Y$ with $E(Y) < \infty$, and $X_n \to X$ in probability. Show that $E|X_n - X| \to 0$ (i.e., $X_n \to X$ in L_1).

Solution. Method 1. Suppose $X_n \to X$ in L_1 . Then, there exists a subsequence $\{n_k\}$ such that $E|X_{n_k} - X| > \epsilon$ for some $\epsilon > 0$ and all $\{n_k\}$. Since $X_{n_k} \to X$ in probability, there exists a further subsequence n_{k_j} such that $X_{n_{k_j}} \to X$ a.e.. Then the dominated convergence theorem implies that $E|X_{n_{k_j}} - X| \to 0$. This contradicts with $E|X_{n_k} - X| > \epsilon$ for some $\epsilon > 0$ and all $\{n_k\}$. Hence, $X_n \to X$ in L_1 .

Method 2. Let $Z_n = |X_n - X|$. Then $Z_n \le 2Y$.

$$E(Z_n) = E(Z_n \mathbb{1}_{\{Z_n \le \epsilon\}}) + E(Z_n \mathbb{1}_{\{Z_n > \epsilon\}})$$

$$\leq \epsilon + 2E(Y \mathbb{1}_{\{Z_n > \epsilon\}})$$

$$\leq \epsilon + 2E(Y \mathbb{1}_{\{Y > 1/\epsilon, Z_n > \epsilon\}}) + 2E(Y \mathbb{1}_{\{Y \le 1/\epsilon, Z_n > \epsilon\}})$$

$$\leq \epsilon + 2E(Y \mathbb{1}_{\{Y > 1/\epsilon\}}) + 2/\epsilon E(\mathbb{1}_{\{Z_n > \epsilon\}})$$

$$= \epsilon + 2E(Y \mathbb{1}_{\{Y > 1/\epsilon\}}) + 2/\epsilon P(Z_n > \epsilon)$$

$$\rightarrow \epsilon + E(Y \mathbb{1}_{\{Y > 1/\epsilon\}}) \quad \text{as } n \to \infty$$

which can be arbitrarily small since ϵ can be chosen arbitrarily small. Therefore $\lim_{n \to \infty} E(Z_n) = 0$.

2. $X_n \to X$ in probability if and only if, for any sub-sequence of $X_n, n \ge 1$, there always exists a further sub-sequence, which may be called sub-sub-sequence, that converges a.s. to X.

Solution. " \Leftarrow " Suppose X_n does not converge to X in probability. There exists a subsequence n_k and an $\epsilon > 0$ such that $P(X_{n_k} - X | > \epsilon) > \epsilon$. Then, no further subsequence of X_{n_k} can converge to X, a.s. or in probability, which leads to a contradiction.

" \implies " Any subsequence of $\{X_n\}$ still converges to X in probability. And there is always of further subsequence of this subsequence that converges to X a.s..

3. Two r.v.s X, Y are called conditionally independent give r.v. Z if $P(X \le t, Y \le s | Z = z) = P(X \le t | Z = z)P(Y \le s | Z = z)$ for all t, s, z. Let X_n be the total number of heads of the first n tosses of a fair coin. Set $X_0 = 0$. Show that X_{n-1} and X_{n+1} are conditionally independent given X_n .

Solution. Let ξ_n be 1 or 0 when the n-th toss is a head or tail. Set $\xi_0 = 0$. Then $\xi_i, i = 0, 1, 2, ...$ are independent. $X_n = \sum_{j=0}^n \xi_j$. And ξ_{n+1} is independent of X_n and ξ_n

$$P(X_{n+1} = k, X_{n-1} = j | X_n = l)$$

$$= P(\xi_{n+1} = k - l, \ \xi_n = l - j | X_n = l)$$

$$= \frac{P(\xi_{n+1} = k - l, \ \xi_n = l - j, X_n = l)}{P(X_n = l)}$$

$$= P(\xi_{n+1} = k - l) \frac{P(\xi_n = l - j, \ X_n = l)}{P(X_n = l)}$$

$$= P(\xi_{n+1} = k - l | X_n = l) P(\xi_n = l - j | X_n = l)$$

$$= P(X_n = k | X_n = l) P(X_{n-1} = j | X_n = l)$$

4. Suppose $X_1, X_2, ...$ are i.i.d. random variables following exponential distribution with mean 1. Show that $Y_n \to \infty$ a.e., where $Y_n = \max_{1 \le i \le n} X_i$. (You might consider first show the convergence in probability.)

$$P(Y_n > C) = P(\max_{1 \le i \le n} X_i > C) = 1 - P(\max_{1 \le i \le n} X_i \le C) = 1 - (1 - e^{-C})^n \to 1$$

as $n \to \infty$. Therefore $Y_n \to \infty$ in probability. Since Y_n is nondecreasing, $Y_n \to \infty$ a.e., (why?)

5. Raise an example to show that Fatou's lemma does not hold if the condition of $X_n \ge 0$ is dropped. Solution. Suppose $\xi \sim Unif[0,1]$. Let $X_n = -1/\xi \mathbb{1}_{\{\xi \le 1/n\}}$. Then $X_n \to 0$ a.e., but $E(X_n) = -\infty$ for all n. Therefore $E(\liminf X_n) = 0 > \liminf_n E(X_n) = -\infty$.

DIY EXERCISES

1. ** (Extension of Fatou's lemma). Suppose $X_n \ge Y$ and $E(Y^-) < \infty$. Then $E(\liminf_n X_n) \le \liminf_n E(X_n)$.

Solution. $X_n \ge Y \Longrightarrow X_n - Y \ge 0 \Longrightarrow X_n - (Y^+ - Y^-) \ge 0 \Longrightarrow X_n + Y^- \ge 0$. By Fatou's lemma,

$$E(\liminf_{n} X_{n}) = E(\liminf_{n} (X_{n} + Y^{-}) - E(Y^{-}))$$

$$\leq \liminf_{n} E(X_{n} + Y^{-}) - E(Y^{-}) = \liminf_{n} E(X_{n}).$$

2. $\star \star \star \star$ Suppose $|X_n| \leq Y_n$, $E(|Y_n - Y|) \to 0$ with $E(Y) < \infty$, and $X_n \to X$ in probability. Then $E(X_n) \to E(X)$.

Solution. (This problem is a further extension of Problem 1)

Method 1: $|X_n - X| \leq Y_n + Y$. Let $\xi_n = |X_n - X|$. Then $\xi_n \to 0$ in probability. Choose any $0 < \epsilon < c < \infty$. Then,

$$\begin{split} E(\xi_n) &= E(\xi_n 1_{\{\xi_n \le c\}}) + E(\xi_n 1_{\{\xi_n > c\}}) \\ &\leq E(\xi_n 1_{\{\xi_n \le c\}}) + E(\xi_n 1_{\{\xi_n > c\}}) + E(\xi_n 1_{\{\xi_n > c\}}) \\ &\leq \epsilon P(\xi_n \le \epsilon) + E(\xi_n 1_{\{\epsilon < \xi_n \le c\}}) + E[(Y_n + Y) 1_{\{Y_n + Y > c\}}) \\ &\leq \epsilon + c P(\xi_n > \epsilon) + E(|Y_n - Y|) + 2E(Y 1_{\{Y_n + Y > c\}}) \\ &\rightarrow \epsilon + 0 + 0 + E(Y 1_{\{2Y > c\}}). \end{split}$$

Letting $\epsilon \downarrow 0$ and $c \uparrow \infty$, we have $E(\xi_n) \to 0$.

Method 2: Assume first $X_n \to X$ a.e. and $Y_n \to Y$ a.e.. Then Fatou's lemma implies

$$E(Y - X) = E(\liminf_{n} (Y_n - X_n)] \le \liminf_{n} E(Y_n - X_n) = E(Y) - \limsup_{n} E(X_n)$$

$$E(Y+X) = E(\liminf_{n} (Y_n + X_n)] \le \liminf_{n} E(Y_n + X_n) = E(Y) + \liminf_{n} E(X_n)$$

So, the limit of $E(X_n)$ exists and equals to E(X). Now suppose $E(X_n) \not\rightarrow E(X)$. There exists a subsequence $\{n_k\}$ such that $|E(X_{n_k} - E(X)| > \epsilon$ for some $\epsilon > 0$ and all $\{n_k\}$. But for this subsequence, since $X_{n_k} \rightarrow X$ and $Y_n \rightarrow Y$ in probability, there exists a further subsequence $\{X_{n_{k_j}}\} \rightarrow X$ a.e. and $\{Y_{n_{k_j}}\} \rightarrow Y$ a.e.. Then the above proof implies $E(X_{n_{k_j}}) \rightarrow E(X)$, which contracts with $|E(X_{n_k}) - E(X)| > \epsilon$.

3. * Show that $Bin(n, p_n) \to \mathcal{P}(\lambda)$ if $n \to \infty$ and $np_n \to \lambda > 0$. (This problem and the next one are for your knowledge about the basic facts of commonly used distributions.)

Solution. For any fixed integer $k \ge 0$,

$$P(Bin(n, p_n) = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{p_n}{1 - p_n}\right)^k (1 - p_n)^n$$
$$= \frac{n(n-1)\cdots(n-k+1)}{k!n^k} \left(\frac{np_n}{1 - p_n}\right)^k (1 - p_n)^n \to \frac{1}{k!} \lambda^k e^{-\lambda}.$$

4. \star Suppose M and N are two independent Poisson random variables with mean λ and θ . Show that M + N is still Poisson random variable, and, moreover, the conditional distribution of M given M + N = k is Bin(k, p), where $p = \lambda/(\lambda + \theta)$.

Solution.

$$\begin{split} P(M+N=k) &= \sum_{j=0}^{k} P(M=j, N=k-j) = \sum_{j=0}^{k} P(M=j) P(N=k-j) \\ &= \sum_{j=0}^{k} \frac{1}{j!} \lambda^{j} e^{-\lambda} \frac{1}{(k-j)!} \theta^{k-j} e^{-\theta} = \frac{1}{k!} (\lambda+\theta)^{k} e^{-\lambda-\theta} \sum_{j=0}^{k} \binom{k}{j} \left(\frac{\lambda}{\lambda+\theta}\right)^{j} \left(\frac{\theta}{\lambda+\theta}\right)^{k-j} \\ &= \frac{1}{k!} (\lambda+\theta)^{k} e^{-\lambda-\theta}. \end{split}$$

And

$$P(M = j|M + N = k) = \frac{P(M = j, N = k - j)}{P(M + N = k)} = \frac{P(M = j)P(N = k - j)}{P(M + N = k)}$$
$$= \frac{k!}{j!(k - j)!} \frac{\lambda^{j} e^{-\lambda} \theta^{k - j} e^{-\theta}}{(\lambda + \theta)^{k} e^{-\lambda - \theta}} = \binom{k}{j} p^{j} (1 - p)^{k - j}$$

where $p = \lambda/(\lambda + \theta)$.

- 5. * Suppose $X \in \mathcal{F}$ (meaning that X is measurable to a σ -algebra \mathcal{F}). Show that $E(X|\mathcal{F}) = X$, a.e. Solution. Since X satisfies condition $X \in \mathcal{F}$ and the condition $E(X1_A) = E(X1_A)$ for every $A \in \mathcal{F}$, which is actually an identity, so $E(X|\mathcal{F}) = X$, a.s..
- 6. ** Suppose $X_n \ge 0$ and $X_n \uparrow X$ a.e., then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$, a.e.. (This is the monotone convergence theorem for conditional expectation. Fatou's lemma and the dominated convergence theorem also hold for conditional expectation.)

Solution. Since $X_n \uparrow$, $X_{n+1} - X_n \ge 0$. Therefore $E(X_{n+1} - X_n | \mathcal{F}) \ge 0$. Hence, $E(X_n | \mathcal{F}) \uparrow$. Let the limit be ξ . Since $E(X_n | \mathcal{F}) \in \mathcal{F}$, the limit ξ is also \mathcal{F} -measurable. For any set $A \in \mathcal{F}$, $E(X_n | \mathcal{F}) \mathbf{1}_A \uparrow \xi \mathbf{1}_A$. by monotone convergence theorem,

 $E(\xi 1_A) = \lim_{n} E[E(X_n | \mathcal{F}) 1_A]$ by monotone convergence theorem = $\lim_{n} E(X_n 1_A)$ by the definition of conditional expectation w.r.t. σ -algebra = $E(X 1_A)$ by monotone convergence theorem.

Therefore by the definition of conditional expectation with respect to a σ -algebra, $\xi = E(X|\mathcal{F})$. \Box

7. \star Suppose $X_n \to c$ in distribution where c is a constant. Then $X_n \to c$ in probability.

Solution. For constant c as a r.v., its c.d.f. F(t) = 1 for all $t \ge c$ and F(t) = 0 for all t < c. Therefore $P(X_n \le t) \to 1$ for any t > c and $P(X_n \le t) \to 0$ for any t < c. Hence, $P(X_n > t) \to 0$ for any t > c. So $X_n \to c$ in probability.

8. ****** Let $X_1, X_2, ...$ be i.i.d. r.v.s. with $\limsup_{t\to\infty} tP(X_1 > t) \to 0$. Show that $Y_n/n \to 0$ in probability, where $Y_n = \max_{1 \le i \le n} X_i$. (Hint: use Chebyshev inequality). Solution. Let $\epsilon > 0$.

$$P(Y_n/n > \epsilon) = P(\max_{1 \le i \le n} X_i > n\epsilon) = 1 - P(\max_{1 \le i \le n} X_i \le n\epsilon)$$

= $1 - P(X_1 \le n\epsilon)^n = 1 - (1 - P(X_1 > n\epsilon))^n$
= $1 - e^{n\log(1 - P(X_1 > n\epsilon))} \approx 1 - e^{-nP(X_1 > n\epsilon)} \to 0$

Next,

$$P(Y_n/n < -\epsilon) = P(\max_{1 \le i \le n} X_i < -n\epsilon) \le P(X_1 < -n\epsilon) \to 0.$$

So, $Y_n/n \to 0$ in probability.

$$|E(f_n(X_n)) - E(f(X))| \le E|f_n(X_n) - f(X_n)| + |E(f(X_n)) - E(f(X))|$$

$$\le \sup_t |f_n(t) - f(t)| + |E(f(X_n)) - E(f(X))| \to 0.$$

10. \star For any sequence of r.v.s. X_n , there exists a sequence of constants A_n such that $X_n/A_n \to 0$ a.e.. (Hint: use Borel-Contelli Lemma).

Solution. Choose a_n such that $P(|X_n| > a_n) \le 1/2^n$. Let $A_n = na_n$. Then,

$$|X_n| 1_{\{|X_n| \le a_n\}} / A_n \le a_n / A_n = 1/n \to 0.$$

And $P(|X_n| > a_n, i.o.) = 0$ as $\sum_{n=1}^{\infty} P(|X_n| > a_n) < \infty$ by the Borel-Cantelli lemma. Therefore,

$$|X_n| 1_{\{|X_n| > a_n\}} / A_n \to 0,$$
 a.e

Consequently, $X_n/A_n \to 0$ a.e..

- 11. ★ Suppose $\mathcal{F} \subseteq \mathcal{A}$. Show that $E(E(X|\mathcal{F})|\mathcal{A}) = E(X|\mathcal{F})$. Solution. Let $Y = E(X|\mathcal{F})$. Y is \mathcal{F} -measurable, so Y must be \mathcal{A} -measurable since $\mathcal{F} \in \mathcal{A}$. Therefore $E(Y|\mathcal{A} = Y)$.
- 12. ** (CRUDE VERSION OF MARTINGALE CONVERGENCE THEOREM) Suppose $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ for $n \geq 1$. Let $\mathcal{F} = \sigma(\bigcup_{n=1}^{\infty} F_n)$. For any random variable X with $|X| \leq c > 0, a.s.$, assume $E(X|\mathcal{F}_n)$ has an a.s. limit. show that

$$E(X|\mathcal{F}_n) \to E(X|\mathcal{F}), \quad a.s$$

Solution. Perhaps for a better understanding, denote $Y_n = E(X + c|\mathcal{F}_n)$ and $Y = E(X + c|\mathcal{F})$, which are nonnegative r.v.s. For any $A \in \mathcal{F}_m$, $E(Y_n 1_A) = E(Y 1_A) = E(X^+ 1_A)$ for all $n \geq m$. Then, Fatou's lemma ensures

$$E(\liminf_n Y_n 1_A) \le \liminf_n E(Y_n 1_A) = E(Y 1_A).$$

i.e.,

$$E((Y - \liminf Y_n)1_A) \ge 0,$$
 for all $A \in \mathcal{F}_m, m \ge 1$

It implies $E((Y - \liminf_n Y_n)1_A) \ge 0$, for all $A \in \mathcal{F}$, which can be proved by showing $\{A \in \mathcal{F} : E((Y - \liminf_n Y_n)1_A) \ge 0\}$ is a σ -algebra which contains \mathcal{F}_m , $m \ge 1$, and therefore must be the

same as \mathcal{F} . Then, $Y - \liminf_n Y_n$, being \mathcal{F} -measurable, must be nonnegative a.s.. As a result, we have shown

$$\liminf_{n} E(X|\mathcal{F}_n) \le E(X|\mathcal{F}), \qquad a.s.$$

Next, by considering $Y_n = E(c - X | \mathcal{F}_n)$ and $Y = E(c - X | \mathcal{F})$, one can likewise show

$$\limsup_{n} E(X|\mathcal{F}_n) \ge E(X|\mathcal{F}). \qquad a.s.$$

Consequently, $\lim_{n} E(X|\mathcal{F}_n) = E(X|\mathcal{F})$ a.s..