Solutions of Homework 2.

1. Suppose $\left|X_{n}\right| \leq Y$ with $E(Y)<\infty$, and $X_{n} \rightarrow X$ in probability. Show that $E\left|X_{n}-X\right| \rightarrow 0$ (i.e., $X_{n} \rightarrow X$ in $\left.L_{1}\right)$.
Solution. Method 1. Suppose $X_{n} \nrightarrow X$ in L_{1}. Then, there exists a subsequence $\left\{n_{k}\right\}$ such that $E\left|X_{n_{k}}-X\right|>\epsilon$ for some $\epsilon>0$ and all $\left\{n_{k}\right\}$. Since $X_{n_{k}} \rightarrow X$ in probability, there exists a further subsequence $n_{k_{j}}$ such that $X_{n_{k_{j}}} \rightarrow X$ a.e.. Then the dominated convergence theorem implies that $E\left|X_{n_{k_{j}}}-X\right| \rightarrow 0$. This contradicts with $E\left|X_{n_{k}}-X\right|>\epsilon$ for some $\epsilon>0$ and all $\left\{n_{k}\right\}$. Hence, $X_{n} \rightarrow X$ in L_{1}.
Method 2. Let $Z_{n}=\left|X_{n}-X\right|$. Then $Z_{n} \leq 2 Y$.

$$
\begin{aligned}
E\left(Z_{n}\right) & =E\left(Z_{n} 1_{\left\{Z_{n} \leq \epsilon\right\}}\right)+E\left(Z_{n} 1_{\left\{Z_{n}>\epsilon\right\}}\right) \\
& \leq \epsilon+2 E\left(Y 1_{\left\{Z_{n}>\epsilon\right\}}\right) \\
& \leq \epsilon+2 E\left(Y 1_{\left\{Y>1 / \epsilon, Z_{n}>\epsilon\right\}}\right)+2 E\left(Y 1_{\left\{Y \leq 1 / \epsilon, Z_{n}>\epsilon\right\}}\right) \\
& \leq \epsilon+2 E\left(Y 1_{\{Y>1 / \epsilon\}}\right)+2 / \epsilon E\left(1_{\left\{Z_{n}>\epsilon\right\}}\right) \\
& =\epsilon+2 E\left(Y 1_{\{Y>1 / \epsilon\}}\right)+2 / \epsilon P\left(Z_{n}>\epsilon\right) \\
& \rightarrow \epsilon+E\left(Y 1_{\{Y>1 / \epsilon\}}\right) \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which can be arbitrarily small since ϵ can be chosen arbitrarily small. Therefore $\lim _{n} E\left(Z_{n}\right)=0$.
2. $X_{n} \rightarrow X$ in probability if and only if, for any sub-sequence of $X_{n}, n \geq 1$, there always exists a further sub-sequence, which may be called sub-sub-sequence, that converges a.s. to X.
Solution. " $\Longleftarrow "$ Suppose X_{n} does not converge to X in probability. There exists a subsequence n_{k} and an $\epsilon>0$ such that $P\left(X_{n_{k}}-X \mid>\epsilon\right)>\epsilon$. Then, no further subsequence of $X_{n_{k}}$ can converge to X, a.s. or in probability, which leads to a contradiction.
" \Longrightarrow " Any subsequence of $\left\{X_{n}\right\}$ still converges to X in probability. And there is always of further subsequence of this subsequence that converges to X a.s..
3. Two r.v.s X, Y are called conditionally independent give r.v. Z if $P(X \leq t, Y \leq s \mid Z=z)=P(X \leq$ $t \mid Z=z) P(Y \leq s \mid Z=z)$ for all t, s, z. Let X_{n} be the total number of heads of the first n tosses of a fair coin. Set $X_{0}=0$. Show that X_{n-1} and X_{n+1} are conditionally independent given X_{n}.
Solution. Let ξ_{n} be 1 or 0 when the n -th toss is a head or tail. Set $\xi_{0}=0$. Then $\xi_{i}, i=0,1,2, \ldots$ are independent. $X_{n}=\sum_{j=0}^{n} \xi_{j}$. And ξ_{n+1} is independent of X_{n} and ξ_{n}

$$
\begin{aligned}
& P\left(X_{n+1}=k, X_{n-1}=j \mid X_{n}=l\right) \\
= & P\left(\xi_{n+1}=k-l, \xi_{n}=l-j \mid X_{n}=l\right) \\
= & \frac{P\left(\xi_{n+1}=k-l, \xi_{n}=l-j, X_{n}=l\right)}{P\left(X_{n}=l\right)} \\
= & P\left(\xi_{n+1}=k-l\right) \frac{P\left(\xi_{n}=l-j, X_{n}=l\right)}{P\left(X_{n}=l\right)} \\
= & P\left(\xi_{n+1}=k-l \mid X_{n}=l\right) P\left(\xi_{n}=l-j \mid X_{n}=l\right) \\
= & P\left(X_{n}=k \mid X_{n}=l\right) P\left(X_{n-1}=j \mid X_{n}=l\right)
\end{aligned}
$$

4. Suppose X_{1}, X_{2}, \ldots are i.i.d. random variables following exponential distribution with mean 1. Show that $Y_{n} \rightarrow \infty$ a.e., where $Y_{n}=\max _{1 \leq i \leq n} X_{i}$. (You might consider first show the convergence in probability.)

Solution. For any constant $C>0$,

$$
P\left(Y_{n}>C\right)=P\left(\max _{1 \leq i \leq n} X_{i}>C\right)=1-P\left(\max _{1 \leq i \leq n} X_{i} \leq C\right)=1-\left(1-e^{-C}\right)^{n} \rightarrow 1
$$

as $n \rightarrow \infty$. Therefore $Y_{n} \rightarrow \infty$ in probability. Since Y_{n} is nondecreasing, $Y_{n} \rightarrow \infty$ a.e.. (why?)
5. Raise an example to show that Fatou's lemma does not hold if the condition of $X_{n} \geq 0$ is dropped.

Solution. Suppose $\xi \sim \operatorname{Unif}[0,1]$. Let $X_{n}=-1 / \xi 1_{\{\xi \leq 1 / n\}}$. Then $X_{n} \rightarrow 0$ a.e., but $E\left(X_{n}\right)=-\infty$ for all n. Therefore $E\left(\liminf X_{n}\right)=0>\liminf _{n} E\left(X_{n}\right)=-\infty$.

DIY ExERCISES

1. ** (Extension of Fatou's lemma). Suppose $X_{n} \geq Y$ and $E\left(Y^{-}\right)<\infty$. Then $E\left(\liminf _{n} X_{n}\right) \leq$ $\liminf _{n} E\left(X_{n}\right)$.
Solution. $\quad X_{n} \geq Y \Longrightarrow X_{n}-Y \geq 0 \Longrightarrow X_{n}-\left(Y^{+}-Y^{-}\right) \geq 0 \Longrightarrow X_{n}+Y^{-} \geq 0$. By Fatou's lemma,

$$
\begin{aligned}
& E\left(\liminf _{n} X_{n}\right)=E\left(\liminf _{n}\left(X_{n}+Y^{-}\right)-E\left(Y^{-}\right)\right. \\
\leq \quad & \liminf _{n} E\left(X_{n}+Y^{-}\right)-E\left(Y^{-}\right)=\liminf _{n} E\left(X_{n}\right)
\end{aligned}
$$

2. $\star \star \star \star$ Suppose $\left|X_{n}\right| \leq Y_{n}, E\left(\left|Y_{n}-Y\right|\right) \rightarrow 0$ with $E(Y)<\infty$, and $X_{n} \rightarrow X$ in probability. Then $E\left(X_{n}\right) \rightarrow E(X)$.
Solution. (This problem is a further extension of Problem 1)
Method 1: $\left|X_{n}-X\right| \leq Y_{n}+Y$. Let $\xi_{n}=\left|X_{n}-X\right|$. Then $\xi_{n} \rightarrow 0$ in probability. Choose any $0<\epsilon<c<\infty$. Then,

$$
\begin{aligned}
E\left(\xi_{n}\right) & =E\left(\xi_{n} 1_{\left\{\xi_{n} \leq c\right\}}\right)+E\left(\xi_{n} 1_{\left\{\xi_{n}>c\right\}}\right) \\
& \leq E\left(\xi_{n} 1_{\left\{\xi_{n} \leq c\right\}}\right)+E\left(\xi_{n} 1_{\left\{\xi_{n}>c\right\}}\right)+E\left(\xi_{n} 1_{\left\{\xi_{n}>c\right\}}\right) \\
& \leq \epsilon P\left(\xi_{n} \leq \epsilon\right)+E\left(\xi_{n} 1_{\left\{\epsilon<\xi_{n} \leq c\right\}}\right)+E\left[\left(Y_{n}+Y\right) 1_{\left\{Y_{n}+Y>c\right\}}\right. \\
& \leq \epsilon+c P\left(\xi_{n}>\epsilon\right)+E\left(\left|Y_{n}-Y\right|\right)+2 E\left(Y 1_{\left\{Y_{n}+Y>c\right\}}\right) \\
& \rightarrow \epsilon+0+0+E\left(Y 1_{\{2 Y>c\}}\right) .
\end{aligned}
$$

Letting $\epsilon \downarrow 0$ and $c \uparrow \infty$, we have $E\left(\xi_{n}\right) \rightarrow 0$.
Method 2: Assume first $X_{n} \rightarrow X$ a.e. and $Y_{n} \rightarrow Y$ a.e.. Then Fatou's lemma implies

$$
\begin{aligned}
& E(Y-X)=E\left(\liminf _{n}\left(Y_{n}-X_{n}\right)\right] \leq \liminf E\left(Y_{n}-X_{n}\right)=E(Y)-\limsup _{n} E\left(X_{n}\right) \\
& E(Y+X)=E\left(\liminf _{n}\left(Y_{n}+X_{n}\right)\right] \leq \liminf E\left(Y_{n}+X_{n}\right)=E(Y)+\liminf _{n} E\left(X_{n}\right)
\end{aligned}
$$

So, the limit of $E\left(X_{n}\right)$ exists and equals to $E(X)$. Now suppose $E\left(X_{n}\right) \nrightarrow E(X)$. There exists a subsequence $\left\{n_{k}\right\}$ such that $\mid E\left(X_{n_{k}}-E(X) \mid>\epsilon\right.$ for some $\epsilon>0$ and all $\left\{n_{k}\right\}$. But for this subsequence, since $X_{n_{k}} \rightarrow X$ and $Y_{n} \rightarrow Y$ in probability, there exists a further subsequence $\left\{X_{n_{k_{j}}}\right\} \rightarrow X$ a.e. and $\left\{Y_{n_{k_{j}}}\right\} \rightarrow Y$ a.e.. Then the above proof implies $E\left(X_{n_{k_{j}}}\right) \rightarrow E(X)$, which contracts with $\left|E\left(X_{n_{k}}\right)-E(X)\right|>\epsilon$.
3. \star Show that $\operatorname{Bin}\left(n, p_{n}\right) \rightarrow \mathcal{P}(\lambda)$ if $n \rightarrow \infty$ and $n p_{n} \rightarrow \lambda>0$. (This problem and the next one are for your knowledge about the basic facts of commonly used distributions.)

Solution. For any fixed integer $k \geq 0$,

$$
\begin{aligned}
& P\left(\operatorname{Bin}\left(n, p_{n}\right)=k\right)=\binom{n}{k} p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{n!}{k!(n-k)!}\left(\frac{p_{n}}{1-p_{n}}\right)^{k}\left(1-p_{n}\right)^{n} \\
= & \frac{n(n-1) \cdots(n-k+1)}{k!n^{k}}\left(\frac{n p_{n}}{1-p_{n}}\right)^{k}\left(1-p_{n}\right)^{n} \rightarrow \frac{1}{k!} \lambda^{k} e^{-\lambda} .
\end{aligned}
$$

4. \star Suppose M and N are two independent Poisson random variables with mean λ and θ. Show that $M+N$ is still Poisson random variable, and, moreover, the conditional distribution of M given $M+N=k$ is $\operatorname{Bin}(k, p)$, where $p=\lambda /(\lambda+\theta)$.

Solution.

$$
\begin{aligned}
& P(M+N=k)=\sum_{j=0}^{k} P(M=j, N=k-j)=\sum_{j=0}^{k} P(M=j) P(N=k-j) \\
= & \sum_{j=0}^{k} \frac{1}{j!} \lambda^{j} e^{-\lambda} \frac{1}{(k-j)!} \theta^{k-j} e^{-\theta}=\frac{1}{k!}(\lambda+\theta)^{k} e^{-\lambda-\theta} \sum_{j=0}^{k}\binom{k}{j}\left(\frac{\lambda}{\lambda+\theta}\right)^{j}\left(\frac{\theta}{\lambda+\theta}\right)^{k-j} \\
= & \frac{1}{k!}(\lambda+\theta)^{k} e^{-\lambda-\theta} .
\end{aligned}
$$

And

$$
\begin{aligned}
& P(M=j \mid M+N=k)=\frac{P(M=j, N=k-j)}{P(M+N=k)}=\frac{P(M=j) P(N=k-j)}{P(M+N=k)} \\
= & \frac{k!}{j!(k-j)!} \frac{\lambda^{j} e^{-\lambda} \theta^{k-j} e^{-\theta}}{(\lambda+\theta)^{k} e^{-\lambda-\theta}}=\binom{k}{j} p^{j}(1-p)^{k-j}
\end{aligned}
$$

where $p=\lambda /(\lambda+\theta)$.
5. * Suppose $X \in \mathcal{F}$ (meaning that X is measurable to a σ-algebra \mathcal{F}). Show that $E(X \mid \mathcal{F})=X$, a.e.

Solution. Since X satisfies condition $X \in \mathcal{F}$ and the condition $E\left(X 1_{A}\right)=E\left(X 1_{A}\right)$ for every $A \in \mathcal{F}$, which is actually an identity, so $E(X \mid \mathcal{F})=X$, a.s..
6. ** Suppose $X_{n} \geq 0$ and $X_{n} \uparrow X$ a.e., then $E\left(X_{n} \mid \mathcal{F}\right) \uparrow E(X \mid \mathcal{F})$, a.e.. (This is the monotone convergence theorem for conditional expectation. Fatou's lemma and the dominated convergence theorem also hold for conditional expectation.)
Solution. Since $X_{n} \uparrow, X_{n+1}-X_{n} \geq 0$. Therefore $E\left(X_{n+1}-X_{n} \mid \mathcal{F}\right) \geq 0$. Hence, $E\left(X_{n} \mid \mathcal{F}\right) \uparrow$. Let the limit be ξ. Since $E\left(X_{n} \mid \mathcal{F}\right) \in \mathcal{F}$, the limit ξ is also \mathcal{F}-measurable. For any set $A \in \mathcal{F}$, $E\left(X_{n} \mid \mathcal{F}\right) 1_{A} \uparrow \xi 1_{A}$. by monotone convergence theorem,

$$
\begin{aligned}
& E\left(\xi 1_{A}\right)=\lim _{n} E\left[E\left(X_{n} \mid \mathcal{F}\right) 1_{A}\right] \quad \text { by monotone convergence theorem } \\
= & \lim _{n} E\left(X_{n} 1_{A}\right) \quad \text { by the definition of conditional expectation w.r.t. } \sigma \text {-algebra } \\
= & E\left(X 1_{A}\right) \quad \text { by monotone convergence theorem. }
\end{aligned}
$$

Therefore by the definition of conditional expectation with respect to a σ-algebra, $\xi=E(X \mid \mathcal{F})$.
7. \star Suppose $X_{n} \rightarrow c$ in distribution where c is a constant. Then $X_{n} \rightarrow c$ in probability.

Solution. For constant c as a r.v., its c.d.f. $F(t)=1$ for all $t \geq c$ and $F(t)=0$ for all $t<c$. Therefore $P\left(X_{n} \leq t\right) \rightarrow 1$ for any $t>c$ and $P\left(X_{n} \leq t\right) \rightarrow 0$ for any $t<c$. Hence, $P\left(X_{n}>t\right) \rightarrow 0$ for any $t>c$. So $X_{n} \rightarrow c$ in probability.
8. ** Let X_{1}, X_{2}, \ldots be i.i.d. r.v.s. with $\lim \sup _{t \rightarrow \infty} t P\left(X_{1}>t\right) \rightarrow 0$. Show that $Y_{n} / n \rightarrow 0$ in probability, where $Y_{n}=\max _{1 \leq i \leq n} X_{i}$. (Hint: use Chebyshev inequality).
Solution. Let $\epsilon>0$.

$$
\begin{aligned}
& P\left(Y_{n} / n>\epsilon\right)=P\left(\max _{1 \leq i \leq n} X_{i}>n \epsilon\right)=1-P\left(\max _{1 \leq i \leq n} X_{i} \leq n \epsilon\right) \\
= & 1-P\left(X_{1} \leq n \epsilon\right)^{n}=1-\left(1-P\left(X_{1}>n \epsilon\right)\right)^{n} \\
= & 1-e^{n \log \left(1-P\left(X_{1}>n \epsilon\right)\right)} \approx 1-e^{-n P\left(X_{1}>n \epsilon\right)} \rightarrow 0
\end{aligned}
$$

Next,

$$
P\left(Y_{n} / n<-\epsilon\right)=P\left(\max _{1 \leq i \leq n} X_{i}<-n \epsilon\right) \leq P\left(X_{1}<-n \epsilon\right) \rightarrow 0
$$

So, $Y_{n} / n \rightarrow 0$ in probability.
9. \star Let f_{n} and f be bounded continuous functions such that $\lim _{n} \sup _{t}\left|f_{n}(t)-f(t)\right|=0$. Suppose $X_{n} \rightarrow X$ in distribution. Then, $E\left(f_{n}\left(X_{n}\right)\right) \rightarrow E(f(X))$.
Solution.

$$
\begin{aligned}
& \left|E\left(f_{n}\left(X_{n}\right)\right)-E(f(X))\right| \leq E\left|f_{n}\left(X_{n}\right)-f\left(X_{n}\right)\right|+\left|E\left(f\left(X_{n}\right)\right)-E(f(X))\right| \\
\leq & \sup _{t}\left|f_{n}(t)-f(t)\right|+\left|E\left(f\left(X_{n}\right)\right)-E(f(X))\right| \rightarrow 0
\end{aligned}
$$

10. \star For any sequence of r.v.s. X_{n}, there exists a sequence of constants A_{n} such that $X_{n} / A_{n} \rightarrow 0$ a.e.. (Hint: use Borel-Contelli Lemma).

Solution. Choose a_{n} such that $P\left(\left|X_{n}\right|>a_{n}\right) \leq 1 / 2^{n}$. Let $A_{n}=n a_{n}$. Then,

$$
\left|X_{n}\right| 1_{\left\{\left|X_{n}\right| \leq a_{n}\right\}} / A_{n} \leq a_{n} / A_{n}=1 / n \rightarrow 0
$$

And $P\left(\left|X_{n}\right|>a_{n}\right.$, i.o. $)=0$ as $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>a_{n}\right)<\infty$ by the Borel-Cantelli lemma. Therefore,

$$
\left|X_{n}\right| 1_{\left\{\left|X_{n}\right|>a_{n}\right\}} / A_{n} \rightarrow 0, \quad \text { a.e. }
$$

Consequently, $X_{n} / A_{n} \rightarrow 0$ a.e..
11. \star Suppose $\mathcal{F} \subseteq \mathcal{A}$. Show that $E(E(X \mid \mathcal{F}) \mid \mathcal{A})=E(X \mid \mathcal{F})$.

Solution. Let $Y=E(X \mid \mathcal{F})$. Y is \mathcal{F}-measurable, so Y must be \mathcal{A}-measurable since $\mathcal{F} \in \mathcal{A}$. Therefore $E(Y \mid \mathcal{A}=Y$.
12. $\star \star$ (CRUDE VERSION OF MARTINGALE CONVERGENCE THEOREM) Suppose $\mathcal{F}_{n} \subseteq \mathcal{F}_{n+1}$ for $n \geq 1$. Let $\mathcal{F}=\sigma\left(\cup_{n=1}^{\infty} F_{n}\right)$. For any random variable X with $|X| \leq c>0$, a.s., assume $E\left(X \mid \mathcal{F}_{n}\right)$ has an a.s. limit. show that

$$
E\left(X \mid \mathcal{F}_{n}\right) \rightarrow E(X \mid \mathcal{F}), \quad \text { a.s. }
$$

Solution. Perhaps for a better understanding, denote $Y_{n}=E\left(X+c \mid \mathcal{F}_{n}\right)$ and $Y=E(X+c \mid \mathcal{F})$, which are nonnegative r.v.s. For any $A \in \mathcal{F}_{m}, E\left(Y_{n} 1_{A}\right)=E\left(Y 1_{A}\right)=E\left(X^{+} 1_{A}\right)$ for all $n \geq m$. Then, Fatou's lemma ensures

$$
E\left(\liminf _{n} Y_{n} 1_{A}\right) \leq \liminf _{n} E\left(Y_{n} 1_{A}\right)=E\left(Y 1_{A}\right)
$$

i.e.,

$$
E\left(\left(Y-\liminf _{n} Y_{n}\right) 1_{A}\right) \geq 0, \quad \text { for all } A \in \mathcal{F}_{m}, m \geq 1
$$

It implies $E\left(\left(Y-\lim \inf _{n} Y_{n}\right) 1_{A}\right) \geq 0$, for all $A \in \mathcal{F}$, which can be proved by showing $\{A \in \mathcal{F}$: $\left.E\left(\left(Y-\liminf _{n} Y_{n}\right) 1_{A}\right) \geq 0\right\}$ is a σ-algebra which contains $\mathcal{F}_{m}, m \geq 1$, and therefore must be the
same as \mathcal{F}. Then, $Y-\liminf _{n} Y_{n}$, being \mathcal{F}-measurable, must be nonnegative a.s.. As a result, we have shown

$$
\underset{n}{\liminf _{n}} E\left(X \mid \mathcal{F}_{n}\right) \leq E(X \mid \mathcal{F}), \quad \text { a.s. }
$$

Next, by considering $Y_{n}=E\left(c-X \mid \mathcal{F}_{n}\right)$ and $Y=E(c-X \mid \mathcal{F})$, one can likewise show

$$
\limsup _{n} E\left(X \mid \mathcal{F}_{n}\right) \geq E(X \mid \mathcal{F}) . \quad \text { a.s. }
$$

Consequently, $\lim _{n} E\left(X \mid \mathcal{F}_{n}\right)=E(X \mid \mathcal{F})$ a.s..

