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Solutions of Homework 2.

1. Suppose |Xn| ≤ Y with E(Y ) < ∞, and Xn → X in probability. Show that E|Xn − X | → 0 (i.e.,
Xn → X in L1).

Solution. Method 1. Suppose Xn 9 X in L1. Then, there exists a subsequence {nk} such that
E|Xnk

− X | > ǫ for some ǫ > 0 and all {nk}. Since Xnk
→ X in probability, there exists a further

subsequence nkj
such that Xnkj

→ X a.e.. Then the dominated convergence theorem implies that

E|Xnkj
− X | → 0. This contradicts with E|Xnk

− X | > ǫ for some ǫ > 0 and all {nk}. Hence,
Xn → X in L1.

Method 2. Let Zn = |Xn − X |. Then Zn ≤ 2Y .

E(Zn) = E(Zn1{Zn≤ǫ}) + E(Zn1{Zn>ǫ})

≤ ǫ + 2E(Y 1{Zn>ǫ})

≤ ǫ + 2E(Y 1{Y >1/ǫ,Zn>ǫ}) + 2E(Y 1{Y ≤1/ǫ,Zn>ǫ})

≤ ǫ + 2E(Y 1{Y >1/ǫ}) + 2/ǫE(1{Zn>ǫ})

= ǫ + 2E(Y 1{Y >1/ǫ}) + 2/ǫP (Zn > ǫ)

→ ǫ + E(Y 1{Y >1/ǫ}) as n → ∞

which can be arbitrarily small since ǫ can be chosen arbitrarily small. Therefore limn E(Zn) = 0.
�

2. Xn → X in probability if and only if, for any sub-sequence of Xn, n ≥ 1, there always exists a
further sub-sequence, which may be called sub-sub-sequence, that converges a.s. to X .

Solution. “ ⇐=” Suppose Xn does not converge to X in probability. There exists a subsequence
nk and an ǫ > 0 such that P (Xnk

−X | > ǫ) > ǫ. Then, no further subsequence of Xnk
can converge

to X , a.s. or in probability, which leads to a contradiction.

“=⇒” Any subsequence of {Xn} still converges to X in probability. And there is always of further
subsequence of this subsequence that converges to X a.s.. �

3. Two r.v.s X, Y are called conditionally independent give r.v. Z if P (X ≤ t, Y ≤ s|Z = z) = P (X ≤
t|Z = z)P (Y ≤ s|Z = z) for all t, s, z. Let Xn be the total number of heads of the first n tosses of
a fair coin. Set X0 = 0. Show that Xn−1 and Xn+1 are conditionally independent given Xn.

Solution. Let ξn be 1 or 0 when the n-th toss is a head or tail. Set ξ0 = 0. Then ξi, i = 0, 1, 2, ...
are independent. Xn =

∑n
j=0 ξj . And ξn+1 is independent of Xn and ξn

P (Xn+1 = k, Xn−1 = j|Xn = l)

= P (ξn+1 = k − l, ξn = l − j|Xn = l)

=
P (ξn+1 = k − l, ξn = l − j, Xn = l)

P (Xn = l)

= P (ξn+1 = k − l)
P (ξn = l − j, Xn = l)

P (Xn = l)

= P (ξn+1 = k − l|Xn = l)P (ξn = l − j|Xn = l)

= P (Xn = k|Xn = l)P (Xn−1 = j|Xn = l)

�

4. Suppose X1, X2, ... are i.i.d. random variables following exponential distribution with mean 1. Show
that Yn → ∞ a.e., where Yn = max1≤i≤n Xi. (You might consider first show the convergence in
probability.)
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Solution. For any constant C > 0,

P (Yn > C) = P ( max
1≤i≤n

Xi > C) = 1 − P ( max
1≤i≤n

Xi ≤ C) = 1 − (1 − e−C)n → 1

as n → ∞. Therefore Yn → ∞ in probability. Since Yn is nondecreasing, Yn → ∞ a.e.. (why?) �

5. Raise an example to show that Fatou’s lemma does not hold if the condition of Xn ≥ 0 is dropped.

Solution. Suppose ξ ∼ Unif [0, 1]. Let Xn = −1/ξ1{ξ≤1/n}. Then Xn → 0 a.e., but E(Xn) = −∞
for all n. Therefore E(lim inf Xn) = 0 > lim infn E(Xn) = −∞. �

DIY Exercises

1. ⋆⋆ (Extension of Fatou’s lemma). Suppose Xn ≥ Y and E(Y −) < ∞. Then E(lim infn Xn) ≤
lim infn E(Xn).

Solution. Xn ≥ Y =⇒ Xn − Y ≥ 0 =⇒ Xn − (Y + − Y −) ≥ 0 =⇒ Xn + Y − ≥ 0. By Fatou’s
lemma,

E(lim inf
n

Xn) = E(lim inf
n

(Xn + Y −) − E(Y −)

≤ lim inf
n

E(Xn + Y −) − E(Y −) = lim inf
n

E(Xn).

�

2. ⋆ ⋆ ⋆⋆ Suppose |Xn| ≤ Yn, E(|Yn − Y |) → 0 with E(Y ) < ∞, and Xn → X in probability. Then
E(Xn) → E(X).

Solution. (This problem is a further extension of Problem 1)

Method 1: |Xn − X | ≤ Yn + Y . Let ξn = |Xn − X |. Then ξn → 0 in probability. Choose any
0 < ǫ < c < ∞. Then,

E(ξn) = E(ξn1{ξn≤c}) + E(ξn1{ξn>c})

≤ E(ξn1{ξn≤c}) + E(ξn1{ξn>c}) + E(ξn1{ξn>c})

≤ ǫP (ξn ≤ ǫ) + E(ξn1{ǫ<ξn≤c}) + E[(Yn + Y )1{Yn+Y >c}

≤ ǫ + cP (ξn > ǫ) + E(|Yn − Y |) + 2E(Y 1{Yn+Y >c})

→ ǫ + 0 + 0 + E(Y 1{2Y >c}).

Letting ǫ ↓ 0 and c ↑ ∞, we have E(ξn) → 0.

Method 2: Assume first Xn → X a.e. and Yn → Y a.e.. Then Fatou’s lemma implies

E(Y − X) = E(lim inf
n

(Yn − Xn)] ≤ lim inf E(Yn − Xn) = E(Y ) − lim sup
n

E(Xn)

E(Y + X) = E(lim inf
n

(Yn + Xn)] ≤ lim inf E(Yn + Xn) = E(Y ) + lim inf
n

E(Xn)

So, the limit of E(Xn) exists and equals to E(X). Now suppose E(Xn) 9 E(X). There exists
a subsequence {nk} such that |E(Xnk

− E(X)| > ǫ for some ǫ > 0 and all {nk}. But for this
subsequence, since Xnk

→ X and Yn → Y in probability, there exists a further subsequence
{Xnkj

} → X a.e. and {Ynkj
} → Y a.e.. Then the above proof implies E(Xnkj

) → E(X), which

contracts with |E(Xnk
) − E(X)| > ǫ. �

3. ⋆ Show that Bin(n, pn) → P(λ) if n → ∞ and npn → λ > 0. (This problem and the next one are
for your knowledge about the basic facts of commonly used distributions.)
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Solution. For any fixed integer k ≥ 0,

P (Bin(n, pn) = k) =

(

n

k

)

pk
n(1 − pn)n−k =

n!

k!(n − k)!

( pn

1 − pn

)k

(1 − pn)n

=
n(n − 1) · · · (n − k + 1)

k!nk

( npn

1 − pn

)k

(1 − pn)n →
1

k!
λke−λ.

�

4. ⋆ Suppose M and N are two independent Poisson random variables with mean λ and θ. Show
that M +N is still Poisson random variable, and, moreover, the conditional distribution of M given
M + N = k is Bin(k, p), where p = λ/(λ + θ).

Solution.

P (M + N = k) =
k

∑

j=0

P (M = j, N = k − j) =
k

∑

j=0

P (M = j)P (N = k − j)

=

k
∑

j=0

1

j!
λje−λ 1

(k − j)!
θk−je−θ =

1

k!
(λ + θ)ke−λ−θ

k
∑

j=0

(

k

j

)

( λ

λ + θ

)j( θ

λ + θ

)k−j

=
1

k!
(λ + θ)ke−λ−θ.

And

P (M = j|M + N = k) =
P (M = j, N = k − j)

P (M + N = k)
=

P (M = j)P (N = k − j)

P (M + N = k)

=
k!

j!(k − j)!

λje−λθk−je−θ

(λ + θ)ke−λ−θ
=

(

k

j

)

pj(1 − p)k−j

where p = λ/(λ + θ). �

5. ⋆ Suppose X ∈ F (meaning that X is measurable to a σ-algebra F). Show that E(X |F) = X , a.e.

Solution. Since X satisfies condition X ∈ F and the condition E(X1A) = E(X1A) for every A ∈ F ,
which is actually an identity, so E(X |F) = X , a.s.. �

6. ⋆⋆ Suppose Xn ≥ 0 and Xn ↑ X a.e., then E(Xn|F) ↑ E(X |F), a.e.. (This is the monotone
convergence theorem for conditional expectation. Fatou’s lemma and the dominated convergence
theorem also hold for conditional expectation.)

Solution. Since Xn ↑, Xn+1 − Xn ≥ 0. Therefore E(Xn+1 − Xn|F) ≥ 0. Hence, E(Xn|F) ↑.
Let the limit be ξ. Since E(Xn|F) ∈ F , the limit ξ is also F -measurable. For any set A ∈ F ,
E(Xn|F)1A ↑ ξ1A. by monotone convergence theorem,

E(ξ1A) = lim
n

E[E(Xn|F)1A] by monotone convergence theorem

= lim
n

E(Xn1A) by the definition of conditional expectation w.r.t. σ-algebra

= E(X1A) by monotone convergence theorem.

Therefore by the definition of conditional expectation with respect to a σ-algebra, ξ = E(X |F). �

7. ⋆ Suppose Xn → c in distribution where c is a constant. Then Xn → c in probability.

Solution. For constant c as a r.v., its c.d.f. F (t) = 1 for all t ≥ c and F (t) = 0 for all t < c.
Therefore P (Xn ≤ t) → 1 for any t > c and P (Xn ≤ t) → 0 for any t < c. Hence, P (Xn > t) → 0
for any t > c. So Xn → c in probability. �
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8. ⋆⋆ Let X1, X2, ... be i.i.d. r.v.s. with lim supt→∞ tP (X1 > t) → 0. Show that Yn/n → 0 in
probability, where Yn = max1≤i≤n Xi. (Hint: use Chebyshev inequality).

Solution. Let ǫ > 0.

P (Yn/n > ǫ) = P ( max
1≤i≤n

Xi > nǫ) = 1 − P ( max
1≤i≤n

Xi ≤ nǫ)

= 1 − P (X1 ≤ nǫ)n = 1 − (1 − P (X1 > nǫ))n

= 1 − en log(1−P (X1>nǫ)) ≈ 1 − e−nP (X1>nǫ) → 0

Next,
P (Yn/n < −ǫ) = P ( max

1≤i≤n
Xi < −nǫ) ≤ P (X1 < −nǫ) → 0.

So, Yn/n → 0 in probability. �

9. ⋆ Let fn and f be bounded continuous functions such that limn supt |fn(t) − f(t)| = 0. Suppose
Xn → X in distribution. Then, E(fn(Xn)) → E(f(X)).

Solution.

|E(fn(Xn)) − E(f(X))| ≤ E|fn(Xn) − f(Xn)| + |E(f(Xn)) − E(f(X))|

≤ sup
t

|fn(t) − f(t)| + |E(f(Xn)) − E(f(X))| → 0.

�

10. ⋆ For any sequence of r.v.s. Xn, there exists a sequence of constants An such that Xn/An → 0
a.e.. (Hint: use Borel-Contelli Lemma).

Solution. Choose an such that P (|Xn| > an) ≤ 1/2n. Let An = nan. Then,

|Xn|1{|Xn|≤an}/An ≤ an/An = 1/n → 0.

And P (|Xn| > an, i.o.) = 0 as
∑∞

n=1 P (|Xn| > an) < ∞ by the Borel-Cantelli lemma. Therefore,

|Xn|1{|Xn|>an}/An → 0, a.e.

Consequently, Xn/An → 0 a.e.. �

11. ⋆ Suppose F ⊆ A. Show that E(E(X |F)|A) = E(X |F).

Solution. Let Y = E(X |F). Y is F -measurable, so Y must be A-measurable since F ∈ A.
Therefore E(Y |A = Y . �

12. ⋆⋆ (crude version of martingale convergence theorem) Suppose Fn ⊆ Fn+1 for n ≥ 1.
Let F = σ(∪∞

n=1Fn). For any random variable X with |X | ≤ c > 0, a.s., assume E(X |Fn) has an
a.s. limit. show that

E(X |Fn) → E(X |F), a.s.

Solution. Perhaps for a better understanding, denote Yn = E(X + c|Fn) and Y = E(X + c|F),
which are nonnegative r.v.s. For any A ∈ Fm, E(Yn1A) = E(Y 1A) = E(X+1A) for all n ≥ m.
Then, Fatou’s lemma ensures

E(lim inf
n

Yn1A) ≤ lim inf
n

E(Yn1A) = E(Y 1A).

i.e.,
E((Y − lim inf

n
Yn)1A) ≥ 0, for all A ∈ Fm, m ≥ 1

It implies E((Y − lim infn Yn)1A) ≥ 0, for all A ∈ F , which can be proved by showing {A ∈ F :
E((Y − lim infn Yn)1A) ≥ 0} is a σ-algebra which contains Fm, m ≥ 1, and therefore must be the
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same as F . Then, Y − lim infn Yn, being F -measurable, must be nonnegative a.s.. As a result, we
have shown

lim inf
n

E(X |Fn) ≤ E(X |F), a.s.

Next, by considering Yn = E(c − X |Fn) and Y = E(c − X |F), one can likewise show

lim sup
n

E(X |Fn) ≥ E(X |F). a.s.

Consequently, limn E(X |Fn) = E(X |F) a.s.. �


