Solution to DIY Problems in Homework 3.

1. ** Suppose $X_1, X_2, ...$ are independent nonnegative r.v.s.. Then, $\sum_n X_n < \infty$ a.s. if and only if $\sum_n P(X_n > c) < \infty$ and $\sum_n E(X_n \wedge c) > \infty$ for all or any c > 0.

Solution. As $\sum_n X_n < \infty$ is equivalent to By $\sum_n X_n/c < \infty$ for all or any c > 0. We only need to consider c = 1 and cite Kolmogorov's three series theorem. For the sufficiency, the convergence of the first two series is trivial as the third also holds since $var(X_n \wedge 1) \leq E((X_n \wedge 1)^2) \leq E(X_n \wedge 1)$. For the necessary, the convergence of the first series is $\sum_n P(X_n > 1) < \infty$ and the $\sum_n E(X_n \wedge 1) = \sum_n E(X_n 1_{\{X_n \leq 1\}}) + \sum_n P(X_n > 1) < \infty$ by the convergence of the first and second series. \Box

2. ****** Suppose $X_1, X_2, ...$ are independent nonnegative r.v.s. Prove that $\sum_n X_n < \infty$ a.s. if and only if $\sum_n E[X_n/(1+X_n)] < \infty$.

Solution. Notice that $E[X_n/(1+X_n)1_{\{X_n>1\}}] \leq P(X_n > 1) \leq 2E[X_n/(1+X_n)1_{\{X_n>1\}}]$ and $E(X_n/(1+X_n)1_{\{X_n\leq 1\}}) > E(X_n1_{X_n\leq 1}) > E(X_n/(1+X_n)1_{\{X_n\leq 1\}})$. The the desired claim follows from Kolmogorov's three series theorem and that the X_i are nonnegative. \Box

3. Let ξ_1, ξ_2, \dots be iid Cauchy r.v.s. with common density $1/[\pi(1+x^2)]$ and let $X_n = |\xi_n|$. Find $b_n \uparrow \infty$ such that $S_n/b_n \to 1$ in probability.

Solution. Notice that

$$E(|\xi|1_{\{|\xi| < a\}}) = \int_0^a \frac{2t}{\pi(1+t^2)} dt = \frac{1}{\pi} \log(1+a^2) \approx \frac{2}{\pi} \log a, \quad \text{for large } a$$

and

$$P(|\xi| > a) = \int_a^\infty \frac{2}{\pi (1+t^2)} dt \approx \frac{2}{\pi a}, \qquad \text{for large } a$$

We check the two conditions of the WLLN. Let $b_n = (2/\pi)n\log(n)$ and $a_n = n\log n$. Then $nP(|\xi| > a_n) = 1/\log n \to 0$. and

$$nE(|\xi|^2 \mathbf{1}_{|\xi| \le a_n})/b_n^2 \le \frac{1}{\pi} \frac{na_n}{b_n^2} = \frac{n^2 \log n}{\pi (n \log n)^2} \to 0.$$

Then, $S_n/b_n \to 1$ in probability. (In fact, no $b_n \uparrow \infty$ exists such that $S_n/b_n \to 1$ a.s..)

4. Suppose $X_1, ..., X_n, ...$ are i.i.d. with mean 1. Show that $\max_{1 \le k \le n} |X_k|/|S_n| \to 0$ a.s.

Solution. By the SLLN, $S_n/n \to 1$ a.e. It suffices to show $\max_{1 \le k \le n} |X_k|/n \to 0$ a.e.. First, since X_i has finite mean, we know $E|X| < \infty$ and therefore $\sum_{i=1}^{\infty} P(|X_i| > i/\epsilon) < \infty$. It follows from the Borel-Cantelli lemma that, with probability 1, $X_n/n \le \epsilon$ for all large n. In other words, $X_n/n \to 0$ a.e.. Write

$$\begin{aligned} \max_{1 \le k \le n} |X_k|/n &\le \max_{1 \le k \le M} |X_k|/n + \max_{M \le k \le n} |X_k|/n \\ &\le \max_{1 \le k \le M} |X_k|/n \max_{M \le k \le n} |X_k|/k \le \max_{1 \le k \le M} |X_k|/n + \max_{M \le k \le \infty} |X_k|/k \\ &\to \max_{M \le k \le \infty} |X_k|/k \quad \text{a.e.,} \quad \text{by letting } n \to \infty \\ &\to 0, \quad \text{a.e.,} \quad \text{by letting } M \to \infty. \end{aligned}$$

5. Suppose $X_1, ..., X_n, ...$ are independent with mean 0 and variance 1. Suppose c_n are constants such that $c_n/n^p \downarrow 0$ for some $0 . Show that <math>\sum_{j=1}^n c_j X_j/n \to 0$ a.s.

$$\sum_{n=1}^{\infty} \operatorname{var}(c_n X_n) / n^2 = \sum_{n=1}^{\infty} c_n^2 / n^2 \le \sum_{n=1}^{\infty} \left(\frac{c_n}{n^p}\right)^2 \frac{1}{n^{2-2p}} < \infty.$$

By Kolmogorov's criterion of SLLN, $\sum_{j=1}^{n} c_j X_j / n \to 0$, a.e..

6. Prove, for iid r.v.s $X, X_1, X_2, ...,$ that $(S_n - C_n)/n \to 0$ a.s. for some constants C_n if and only if $E(|X|) < \infty$. Hint: Symmetrization.

Solution. " \Leftarrow " If $E|X| < \infty$, choose $C_n = nE(X)$. Then, The SLLN ensures $(S_n - C_n)/n \to 0$ a.s..

"⇒" Let $X_i^*, i = 1, 2, ...$ be iid independent of $X_n, n = 1, 2, ...$ Then $(\sum_{i=1}^n X_i^* - C_n)/n \to 0$ a.s.. As a result, $\sum_{i=1}^n (X_i - X_i^*)/n \to 0$, a.s.. Kolmogorov's SLLN implies $E(|X_1 - X_1^*|) < \infty$.

- 7. If $X, X_1, X_2, ...$ are iid with $E(|X|^p) = \infty$ for some p > 0, then $\limsup |S_n|/n^{1/p} = \infty$ a.s. Solution. $E(|X|^p) = \infty$ ensures $\limsup |X_n|/n^{1/p} \to \infty$ a.s., which also ensures $\limsup |S_n|/n^{1/p} = \infty$ a.s..
- 8. Suppose $X, X_1, X_2, ...$ are iid with $E(|X|^p) < \infty$ for some $p \ge 1$. Then, $E(|S_n/n|^p) \rightarrow |E(X)|^p$. Hint: Fatou lemma.

Solution. It follows from SLLN that $S_n/n \to E(X)$ a.s. and $\sum_{i=1}^n |X_i|^p/n \to E(|X|^p)$ a.s.. Then,

$$\liminf[E|X|^{p} - E(|S_{n}/n|^{p})] = \liminf[E(\sum_{i=1}^{n} E|X_{i}|^{p}/n) - E(|S_{n}/n|^{p})]$$

$$\geq E[\liminf(sum_{i=1}^{n}|X_{i}|^{p}/n)] - E(\limsup|S_{n}/n|^{p}) = E(|X|^{p}) - |E(X)|^{p}$$

As a result, $\limsup E(|S_n/n|^p) \le |E(X)|^p$. On the other hand, $\liminf E(|S_n/n|^p) \ge E(|\liminf S_n/n|^p) = |E(X)|^p$. \Box

9. Suppose $X, X_1, X_2, ...$ are iid with mean 1 and a_n are bounded real numbers. Then, $(1/n) \sum_{j=1}^n a_j \to 1$ if and only if $(1/n) \sum_{j=1}^n a_j X_j \to 1$ a.s.. Hint: Repeat the proof of Kolmogorov's SLLN.

Solution. Let $\xi = X - 1$ and $\xi_i = X_i - 1$. Then, ξ, ξ_1, ξ_2, \dots are iid with mean 0. We only need to show $(1/n) \sum_{j=1}^n a_j \xi_j \to 0$ a.s.. Let $\eta_i = \xi_i \mathbb{1}_{\{|\xi_i \ge i\}}$.

(i) $P(\xi_i \neq \eta_i, i.o.) = 0$. Thus $(1/n) \sum_{i=1}^n a_i \xi_i \to 0$ a.s. is equivalent to Thus $(1/n) \sum_{i=1}^n a_i \eta_i \to 0$ a.s.

(ii) $E(\eta_n) \to 0$. Therefore $a_n \eta_n \to 0$ as a_n are bounded. Hence $(1/n) \sum_{i=1}^n a_i E(\eta_i) \to 0$. (iii)

$$\sum_{i=1}^{\infty} \operatorname{var}(a_i \eta_i / i) \le \sup_k a_k^2 \sum_{i=1}^{\infty} \operatorname{var}(\eta_i) / i^2 < \infty$$

Therefore $\sum_{i=1}^{\infty} a_i(\eta_i - E(\eta_i))/i < \infty$ a.s.. And the Kronecker lemma implies $(1/n) \sum_{i=1}^n a_i(\eta_i - E(\eta_i)) \to 0$ a.s..

Combine (i), (ii) and (iii), we have $(1/n) \sum_{j=1}^{n} a_j \xi_j \to 0a.s.$

2

Solution.

10. Suppose $X_1, ..., X_n, ...$ are iid with common density f(x) = cg(x) with $g(x) = x^{-\alpha}$ if x > 1, 1 if $|x| \le 1$ and $(-x)^{-\beta}$ if x < -1. c > 0 is some constant and $\alpha > 1$ and $\beta > 2$. Find the a.e. limit of S_n/n in terms of α and β . What condition on α and β would ensure $\sum_{n=1}^{\infty} X_n/n < \infty$ a.e.? (Hint: verify the three conditions in Kolmogorov's three series theorem; first make sure that $\alpha = \beta$.) Solution.

$$E(X_n/n1_{\{|X_n|/n\leq 1\}}) = (c/n) \left[\int_1^n x x^{-\alpha} dx + \int_{-n}^{-1} x(-x)^{-\beta} dx + \int_{-1}^1 x dx\right]$$

= $(c/n) \left(\frac{n^{-\alpha+2}-1}{-\alpha+2} - \frac{n^{-\beta+2}-1}{-\beta+2}\right)$

(If $\alpha = 2$, $\frac{n^{-\alpha+2}-1}{-\alpha+2}$ is replaced by $\log n$.) $\sum_{n=1}^{\infty} E(X_n/n \mathbb{1}_{\{|X_n|/n \le 1\}}) < \infty$ only if $\alpha = \beta$. Condition (ii) holds only when $\alpha = \beta$.

For condition (i), now that $\alpha = \beta$,

=

$$\sum_{n} P(|X_n|/n > 1) = \sum_{n} P(|X_1| > n) = 2c \sum_{n} \int_{n}^{\infty} x^{-\beta} dx = 2c \sum_{n} n^{-\beta+1}/(\beta - 1) < \infty,$$

since $\beta > 2$.

For condition (iii),

$$\sum_{n} var(X_n/n1_{\{|X_n| \le n\}}) = \sum_{n} (2c/n^2) \left[\int_1^n x^2 x^{-\beta} dx + \int_0^1 x^2 dx \right]$$
$$= \sum_{n} (2c/n^2) \left(\frac{n^{-\beta+3} - 1}{-\beta+3} + 1/3 \right) < \infty,$$

since $\beta > 2$. (Here $\frac{n^{-\beta+3}-1}{-\beta+3}$ is replaced by $\log(n)$ if $\beta = 3$. Overall, the condition on α and β is $\alpha = \beta$ to ensure $\sum_n X_n/n < \infty$, a.s..

11. For any sequence of σ_n^2 satisfying $\sum_n \sigma_n^2/n^2 = \infty$, raise an example of a sequence of independent random variables X_1, X_2, \ldots with mean 0 and $\operatorname{var}(X_n) \leq \sigma_n^2$ such that X_n/n does not converge to 0 a.s., and, as a result, $\sum_n X_n/n \not\leq \infty$ a.s..

Solution. Without loss of generality assume $0 < \sigma_n \leq n$. Let $a_n = \sigma_n/n$ and $X_n = \pm n$ with probability $a_n^2/2$ and 0 with probability $1 - a_n$. Then X_n are independent with mean 0 and variance σ_n^2 . And, for any $0 < \epsilon < 1$, $P(|X_n|/n > \epsilon) = a_n^2$ and therefore $\sum_n P(|X_n|/n > \epsilon) = \infty$. It follows from Borel-Cantelli lemma that $P(\{X_n/n \to 0\}) = 0$.

12. Suppose $\xi_1, ..., \xi_n$ is a sequence of r.v.s such that, for p > 0,

$$\sup_{i,j\ge n} E(|\xi_i-\xi_j|^p)\to 0, \qquad \text{as} \qquad n\to\infty.$$

Then, there exists a r.v., denoted as ξ , such that $\xi_n \to \xi$ in L^p .

Solution. There exists $n_k \uparrow \infty$ such that $\sup_{i,j \ge n_k} E(|\xi_i - \xi_j|^p) \le 2^{-2pk}$. Let $A_k = \{|\xi_{n_k} - \xi_{n_{k+1}}| \ge 2^{-k}\}$. By Markov inequality,

$$P(A_k) \le \sup_{i,j \ge n_k} P(|\xi_i - \xi_j| \ge 2^{-k}) \le \sup_{i,j \ge n_k} E(|\xi_i - \xi_j|^p)/2^{-pk} \le 2^{-pk}.$$

Borel-Cantelli lemma implies $P(A_k \ i.o.) = 0$. Hence, $P(\liminf_k A_k^c) = 1$. But on $\liminf_k A_k^c$, ξ_{n_k} is a Cauchy sequence. By the Cauchy criterion, there exists a limit, denoted as ξ , of ξ_{n_k} a.s.. Then,

 $\lim_{n} E(|\xi_{n} - \xi|^{p}) = \lim_{n} E(|\xi_{n} - \lim_{k} \xi_{n_{k}}|^{p})$ $\leq \lim_{n} \liminf_{k} E(|\xi_{n} - \xi_{n_{k}}|^{p}) \quad \text{by Fatou's Lemma}$ $\leq \limsup_{n} \sup_{j \geq n} E(|\xi_{j} - \xi_{n}|^{p}) \to 0.$

13. $\star \star \star \star$ Suppose X_n are iid Poisson random variable with rate $\lambda > 0$. Prove that

$$\limsup_{n} \frac{X_n \log \log n}{\log n} = 1 \qquad a.s..$$

Hint: first show $P(X = n) \le P(X \ge n) \le e^{\lambda} P(X = n)$. Solution. Write

$$P(X \ge n) = \sum_{k=n}^{\infty} e^{-\lambda} \lambda^k / k! = \frac{e^{-\lambda} \lambda^n}{n!} \sum_{k=n}^{\infty} \frac{\lambda^{k-n}}{k!/n!} \le \frac{e^{-\lambda} \lambda^n}{n!} \sum_{k=n}^{\infty} \frac{\lambda^{k-n}}{(k-n)!} = P(X=n)e^{\lambda} \cdot \frac{e^{-\lambda} \lambda^n}{k!} \sum_{k=n}^{\infty} \frac{e^{-\lambda} \lambda^n}{k!} \sum_{k=n}^{\infty$$

Let a_n be the integer part of $\delta \log n / \log \log n$ for a $\delta > 0$. Then,

$$P(X = a_n) = \frac{e^{-\lambda}\lambda^{a_n}}{a_n!} = e^{-\lambda}e^{a_n\log\lambda}e^{-\sum_{j=1}^{a_n}\log j} = e^{-a_n\log a_n(1+o(1))} = n^{-\delta+o(1)}.$$

Then, $\sum_{n=1}^{\infty} P(X_n \ge a_n) < \infty$ or $= \infty$ depending upon $\delta > 1$ or $\delta < 1$. This implies, by the Borel-Cantelli lemma,

$$\limsup \frac{X_n}{\log n / \log \log n} = 1 \qquad a.s..$$