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Solution to DIY Problems in Homework 3.

1. ?? Suppose X1, X2, ... are independent nonnegative r.v.s.. Then,
∑

n Xn < ∞ a.s. if and only if∑
n P (Xn > c) < ∞ and

∑
n E(Xn ∧ c) > ∞ for all or any c > 0.

Solution. As
∑

n Xn < ∞ is equivalent to By
∑

n Xn/c < ∞ for all or any c > 0. We only need to
consider c = 1 and cite Kolmogorov’s three series theorem. For the sufficiency, the convergence of
the first two series is trivial as the third also holds since var(Xn ∧ 1) ≤ E((Xn ∧ 1)2) ≤ E(Xn ∧ 1).
For the necessary, the convergence of the first series is

∑
n P (Xn > 1) < ∞ and the

∑
n E(Xn∧1) =∑

n E(Xn1{Xn≤1}) +
∑

n P (Xn > 1) < ∞ by the convergence of the first and second series. ¤

2. ?? Suppose X1, X2, ... are independent nonnegative r.v.s. Prove that
∑

n Xn < ∞ a.s. if and only
if

∑
n E[Xn/(1 + Xn)] < ∞.

Solution. Notice that E[Xn/(1 + Xn)1{Xn>1}] ≤ P (Xn > 1) ≤ 2E[Xn/(1 + Xn)1{Xn>1}] and
E(Xn/(1+Xn)1{Xn≤1}) > E(Xn1Xn≤1) > E(Xn/(1+Xn)1{Xn≤1}). The the desired claim follows
from Kolmogorov’s three series theorem and that the Xi are nonnegative. ¤

3. Let ξ1, ξ2, ... be iid Cauchy r.v.s. with common density 1/[π(1+x2)] and let Xn = |ξn|. Find bn ↑ ∞
such that Sn/bn → 1 in probability.

Solution. Notice that

E(|ξ|1{|ξ|<a}) =
∫ a

0

2t

π(1 + t2)
dt =

1
π

log(1 + a2) ≈ 2
π

log a, for large a.

and

P (|ξ| > a) =
∫ ∞

a

2
π(1 + t2)

dt ≈ 2
πa

, for large a.

We check the two conditions of the WLLN. Let bn = (2/π)n log(n) and an = n log n. Then
nP (|ξ| > an) = 1/ log n → 0. and

nE(|ξ|21|ξ|≤an
)/b2

n ≤
1
π

nan

b2
n

=
n2 log n

π(n log n)2
→ 0.

Then, Sn/bn → 1 in probability. (In fact, no bn ↑ ∞ exists such that Sn/bn → 1 a.s..) ¤

4. Suppose X1, ..., Xn, ... are i.i.d. with mean 1. Show that max1≤k≤n |Xk|/|Sn| → 0 a.s.

Solution. By the SLLN, Sn/n → 1 a.e. It suffices to show max1≤k≤n |Xk|/n → 0 a.e.. First, since
Xi has finite mean, we know E|X| < ∞ and therefore

∑∞
i=1 P (|Xi| > i/ε) < ∞. It follows from the

Borel-Cantelli lemma that, with probability 1, Xn/n ≤ ε for all large n. In other words, Xn/n → 0
a.e.. Write

max
1≤k≤n

|Xk|/n ≤ max
1≤k≤M

|Xk|/n + max
M≤k≤n

|Xk|/n

≤ max
1≤k≤M

|Xk|/n max
M≤k≤n

|Xk|/k ≤ max
1≤k≤M

|Xk|/n + max
M≤k≤∞

|Xk|/k

→ max
M≤k≤∞

|Xk|/k a.e., by letting n →∞
→ 0, a.e., by letting M →∞.
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5. Suppose X1, ...Xn, ... are independent with mean 0 and variance 1. Suppose cn are constants such
that cn/np ↓ 0 for some 0 < p < 1/2. Show that

∑n
j=1 cjXj/n → 0 a.s.

Solution.
∞∑

n=1

var(cnXn)/n2 =
∞∑

n=1

c2
n/n2 ≤

∞∑
n=1

( cn

np

)2 1
n2−2p

< ∞.

By Kolmogorov’s criterion of SLLN,
∑n

j=1 cjXj/n → 0, a.e.. ¤

6. Prove, for iid r.v.s X, X1, X2, ..., that (Sn − Cn)/n → 0 a.s. for some constants Cn if and only if
E(|X|) < ∞. Hint: Symmetrization.

Solution. “⇐=” If E|X| < ∞, choose Cn = nE(X). Then, The SLLN ensures (Sn − Cn)/n → 0
a.s..

“=⇒” Let X∗
i , i = 1, 2, .. be iid independent of Xn, n = 1, 2, .... Then (

∑n
i=1 X∗

i − Cn)/n → 0
a.s.. As a result,

∑n
i=1(Xi − X∗

i )/n → 0, a.s.. Kolmogorov’s SLLN implies E(|X1 − X∗
1 |) < ∞.

Therefore E(|X|) < ∞. ¤

7. If X, X1, X2, ... are iid with E(|X|p) = ∞ for some p > 0, then lim sup |Sn|/n1/p = ∞ a.s.

Solution. E(|X|p) = ∞ ensures lim sup |Xn|/n1/p →∞ a.s., which also ensures lim sup |Sn|/n1/p =
∞ a.s.. ¤

8. Suppose X, X1, X2, ... are iid with E(|X|p) < ∞ for some p ≥ 1. Then, E(|Sn/n|p) → |E(X)|p.
Hint: Fatou lemma.

Solution. It follows from SLLN that Sn/n → E(X) a.s. and
∑n

i=1 |Xi|p/n → E(|X|p) a.s.. Then,

lim inf[E|X|p − E(|Sn/n|p)] = lim inf[E(
n∑

i=1

E|Xi|p/n)− E(|Sn/n|p)]

≥ E[lim inf(sumn
i=1|Xi|p/n)]− E(lim sup |Sn/n|p) = E(|X|p)− |E(X)|p.

As a result, lim sup E(|Sn/n|p) ≤ |E(X)|p. On the other hand, lim inf E(|Sn/n|p) ≥ E(| lim inf Sn/n|p) =
|E(X)|p. Then, E(|Sn/n|p) → |E(X)|p. ¤

9. Suppose X, X1, X2, ... are iid with mean 1 and an are bounded real numbers. Then, (1/n)
∑n

j=1 aj →
1 if and only if (1/n)

∑n
j=1 ajXj → 1 a.s.. Hint: Repeat the proof of Kolmogorov’s SLLN.

Solution. Let ξ = X − 1 and ξi = Xi − 1. Then, ξ, ξ1, ξ2, ... are iid with mean 0. We only need to
show (1/n)

∑n
j=1 ajξj → 0a.s.. Let ηi = ξi1{|ξi≥i}.

(i) P (ξi 6= ηi, i.o.) = 0. Thus (1/n)
∑n

i=1 aiξi → 0 a.s. is equivalent to Thus (1/n)
∑n

i=1 aiηi → 0
a.s..

(ii) E(ηn) → 0. Therefore anηn → 0 as an are bounded. Hence (1/n)
∑n

i=1 aiE(ηi) → 0.

(iii)
∞∑

i=1

var(aiηi/i) ≤ sup
k

a2
k

∞∑

i=1

var(ηi)/i2 < ∞

Therefore
∑∞

i=1 ai(ηi − E(ηi))/i < ∞ a.s.. And the Kronecker lemma implies (1/n)
∑n

i=1 ai(ηi −
E(ηi)) → 0 a.s..

Combine (i), (ii) and (iii), we have (1/n)
∑n

j=1 ajξj → 0a.s.. ¤
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10. Suppose X1, ..., Xn, ... are iid with common density f(x) = cg(x) with g(x) = x−α if x > 1, 1 if
|x| ≤ 1 and (−x)−β if x < −1. c > 0 is some constant and α > 1 and β > 2. Find the a.e. limit of
Sn/n in terms of α and β. What condition on α and β would ensure

∑∞
n=1 Xn/n < ∞ a.e.? (Hint:

verify the three conditions in Kolmogorov’s three series theorem; first make sure that α = β.)

Solution.

E(Xn/n1{|Xn|/n≤1}) = (c/n)[
∫ n

1

xx−αdx +
∫ −1

−n

x(−x)−βdx +
∫ 1

−1

xdx]

= (c/n)
(n−α+2 − 1

−α + 2
− n−β+2 − 1

−β + 2

)

(If α = 2, n−α+2−1
−α+2 is replaced by log n.)

∑∞
n=1 E(Xn/n1{|Xn|/n≤1}) < ∞ only if α = β. Condition

(ii) holds only when α = β.

For condition (i), now that α = β,
∑

n

P (|Xn|/n > 1) =
∑

n

P (|X1| > n) = 2c
∑

n

∫ ∞

n

x−βdx = 2c
∑

n

n−β+1/(β − 1) < ∞,

since β > 2.

For condition (iii),

∑
n

var(Xn/n1{|Xn|≤n}) =
∑

n

(2c/n2)[
∫ n

1

x2x−βdx +
∫ 1

0

x2dx]

=
∑

n

(2c/n2)
(n−β+3 − 1

−β + 3
+ 1/3

)
< ∞,

since β > 2. (Here n−β+3−1
−β+3 is replaced by log(n) if β = 3.

Overall, the condition on α and β is α = β to ensure
∑

n Xn/n < ∞, a.s.. ¤

11. For any sequence of σ2
n satisfying

∑
n σ2

n/n2 = ∞, raise an example of a sequence of independent
random variables X1, X2, ... with mean 0 and var(Xn) ≤ σ2

n such that Xn/n does not converge to
0 a.s., and, as a result,

∑
n Xn/n 6< ∞ a.s..

Solution. Without loss of generality assume 0 < σn ≤ n. Let an = σn/n and Xn = ±n with
probability a2

n/2 and 0 with probability 1 − an. Then Xn are independent with mean 0 and
variance σ2

n. And, for any 0 < ε < 1, P (|Xn|/n > ε) = a2
n and therefore

∑
n P (|Xn|/n > ε) = ∞.

It follows from Borel-Cantelli lemma that P ({Xn/n → 0}) = 0. ¤

12. Suppose ξ1, ..., ξn is a sequence of r.v.s such that, for p > 0,

sup
i,j≥n

E(|ξi − ξj |p) → 0, as n →∞.

Then, there exists a r.v., denoted as ξ, such that ξn → ξ in Lp.

Solution. There exists nk ↑ ∞ such that supi,j≥nk
E(|ξi− ξj |p) ≤ 2−2pk. Let Ak = {|ξnk

− ξnk+1 | ≥
2−k}. By Markov inequality,

P (Ak) ≤ sup
i,j≥nk

P (|ξi − ξj | ≥ 2−k) ≤ sup
i,j≥nk

E(|ξi − ξj |p)/2−pk ≤ 2−pk.

Borel-Cantelli lemma implies P (Ak i.o.) = 0. Hence, P (lim infk Ac
k) = 1. But on lim infk Ac

k, ξnk
is

a Cauchy sequence. By the Cauchy criterion, there exists a limit, denoted as ξ, of ξnk
a.s.. Then,

lim
n

E(|ξn − ξ|p) = lim
n

E(|ξn − lim
k

ξnk
|p)

≤ lim
n

lim inf
k

E(|ξn − ξnk
|p) by Fatou’s Lemma

≤ lim
n

sup
j≥n

E(|ξj − ξn|p) → 0.
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13. ? ? ?? Suppose Xn are iid Poisson random variable with rate λ > 0. Prove that

lim sup
n

Xn log log n

log n
= 1 a.s..

Hint: first show P (X = n) ≤ P (X ≥ n) ≤ eλP (X = n).

Solution. Write

P (X ≥ n) =
∞∑

k=n

e−λλk/k! =
e−λλn

n!

∞∑

k=n

λk−n

k!/n!
≤ e−λλn

n!

∞∑

k=n

λk−n

(k − n)!
= P (X = n)eλ.

Let an be the integer part of δ log n/ log log n for a δ > 0. Then,

P (X = an) =
e−λλan

an!
= e−λean log λe−

∑an
j=1 log j = e−an log an(1+o(1)) = n−δ+o(1).

Then,
∑∞

n=1 P (Xn ≥ an) < ∞ or = ∞ depending upon δ > 1 or δ < 1. This implies, by the
Borel-Cantelli lemma,

lim sup
Xn

log n/ log log n
= 1 a.s..
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