Solution to Homework 4 DIY Problems.

1. $\star \star \star$ Suppose $F_{n}, n \geq 1$ is a tight sequence of distribution functions. Show that their characteristic functions ψ_{n} are equi-continuous, i.e., for any $\epsilon>0$, there exists $\delta>0$, such that $\left|\psi_{n}(t)-\psi_{n}(s)\right|<\epsilon$ for all n and all $|t-s|<\delta$.
Solution. For all t, s such that $|t-s| \leq \delta$,

$$
\begin{aligned}
& \sup _{n}\left|\psi_{n}(t)-\psi_{n}(s)\right| \leq \sup _{n}\left|E\left(e^{i t X_{n}} 1_{\left\{\left|X_{n}\right| \leq M\right\}}\right)-E\left(e^{i s X_{n}} 1_{\left\{\left|X_{n}\right| \leq M\right\}}\right)\right|+2 \sup _{n} P\left(\left|X_{n}\right|>M\right) \\
\leq & M|t-s|+2 \sup _{n} P\left(\left|X_{n}\right|>M\right) \leq M \delta+2 \sup _{n} P\left(\left|X_{n}\right|>M\right) \rightarrow 0
\end{aligned}
$$

as $\delta \rightarrow 0$ and then $M \rightarrow 0$.
2. \quad * The Levy concentration function is defined, for a r.v. X (or essentially its distribution) as

$$
Q_{X}(a)=\sup _{x} P(X \in[x, x+a)), \quad a \geq 0
$$

Prove that $Q_{X}(a / 2) Q_{Y}(a / 2) \leq Q_{X+Y}(a) \leq \min \left(Q_{X}(a), Q_{Y}(a)\right)$ for two independent r.v.s. X and Y.
Solution. By the independence of X and Y,

$$
\begin{aligned}
& Q_{X}(a / 2) Q_{Y}(a / 2)=\sup _{x} P(X \in[x, x+a / 2)) \sup _{y} P(Y \in[y, y+a / 2)) \\
\leq & \left.\sup _{x, y} P(X \in[x, x+a / 2)), Y \in[y, y+a / 2)\right) \\
\leq & \sup _{t} P(X+Y \in[t, t+a))=Q_{X+Y}(a)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{X+Y}(a)=\sup _{x} P(X+Y \in[x, x+a))=\sup _{x} \int P(X+t \in[x, x+a)) d F_{Y}(t) \\
\leq & \sup _{y} P(X \in[y, y+a))=Q_{X}(a) .
\end{aligned}
$$

Likewise, $Q_{X+Y}(a) \leq Q_{Y}(a)$.
3. ** The Levy metric is defined, between two distribution functions F and G, as

$$
\rho(F, G)=\inf \{\epsilon>0: F(x-\epsilon)-\epsilon \leq G(x) \leq F(x+\epsilon)+\epsilon \text { for all } x\}
$$

Show that F_{n} converges to F weakly if and only if $\rho\left(F_{n}, F\right) \rightarrow 0$.
Solution. " "" $\rho\left(F_{n}, F\right) \rightarrow 0$ ensures the existence of $\epsilon_{n} \downarrow 0$ such that $F\left(x-\epsilon_{n}\right)-\epsilon_{n} \leq F_{n}(x) \leq$ $F\left(x+\epsilon_{n}\right)+\epsilon_{n}$ for all x. For any x that is continuity point of F,

$$
\begin{array}{ll}
0 \leftarrow F\left(x-\epsilon_{n}\right)-\epsilon_{n}-(F(x+\epsilon)+\epsilon) \leq F_{n}(x)-(F(x+\epsilon)+\epsilon) \\
\leq & F_{n}(x)-F(x) \\
& \leq F_{n}(x)-(F(x-\epsilon)-\epsilon) \leq F\left(x+\epsilon_{n}\right)+\epsilon_{n}-\left(F\left(x-\epsilon_{n}\right)-\epsilon_{n}\right) \rightarrow 0
\end{array}
$$

$" \Longrightarrow "$ Suppose $\rho\left(F_{n}, F\right) \nrightarrow 0$. There exist $\epsilon>0$ and x_{n} such that $F_{n}\left(x_{n}\right) \notin\left[F\left(x_{n}-\epsilon\right)-\epsilon, F\left(x_{n}+\right.\right.$ $\epsilon)+\epsilon]$. Without loss generality, suppose $F_{n}\left(x_{n}\right)>F\left(x_{n}+\epsilon\right)+\epsilon$. There exists a subsequence of x_{n} tending to either $-\infty$ or a constant, say x. The former implies F_{n} has probability mass of at least ϵ at $-\infty$, which is impossible for our definition of cdf. As continuity points are dense, there exists one in $(x, x+\epsilon)$, say y. Then, $F_{n}(y)>F_{n}\left(x_{n}\right)>F(y)+\epsilon$, meaning that $F_{n}(y) \nrightarrow F(y)$.
4. ** Suppose X and Y are independent, and $X+Y$ and X have same distribution. Show that $Y=0$ with probability 1.
Solution. $\psi_{X+Y}(t)=\psi_{X}(t) \psi_{Y}(t)=\psi_{X}(t)$. Hence $\psi_{Y}(t)=1$ for t in a neighborhood of 0 , implying $E(\cos (t Y))=1$ for t in a neighborhood of 0 . Hence $P(Y=0)=1$.
5. ** Suppose X_{n} are independent with mean 0 and $E\left(\left|X_{n}\right|^{\delta}\right) \leq 1$ for some $\delta>2$. Raise a counterexample to show $S_{n} / s_{n} \nrightarrow N(0,1)$, where $S_{n}=X_{1}+\cdots X_{n}$ and $s_{n}^{2}=\operatorname{var}\left(S_{n}\right)$.
Solution. Let $P\left(X_{n}=1\right)=4^{-n}=P\left(X_{n}=-1\right)$ and $P\left(X_{n}=0\right)=1-2 / 4^{n}$. Then,

$$
P\left(S_{n}=0\right) \geq 1-\sum_{i=1}^{n} P\left(X_{i} \neq 0\right)=1-\sum_{i=1}^{n} 2 / 4^{i} \geq 1-2 / 3=1 / 3
$$

Then S_{n} / s_{n} does not converge to $N(0,1)$.
6. $\quad \star \star$ Suppose X_{1}, \ldots, X_{n} are iid with mean 0 and finite positive variance. Use central limit theorem and Kolmogorov's 0-1 law to show $\lim \sup S_{n} / \sqrt{n}=\infty$ a.s., where $S_{n}=X_{1}+\cdots+X_{n}$.
Solution. By Kolmogorov's 0-1 law, $\lim \sup S_{n} / \sqrt{n}$ must be c, which is either a constant or ∞ or $-\infty$. By the CLT, for any constant a,

$$
P\left(\limsup _{n} \frac{S_{n}}{\sqrt{n}}>a\right)=\lim _{n} P\left(\sup _{k \geq n} \frac{S_{k}}{\sqrt{k} \sigma}>\frac{a}{\sigma}\right) \geq \lim _{n} P\left(\frac{S_{n}}{\sqrt{n} \sigma}>\frac{a}{\sigma}\right) \rightarrow P\left(N(0,1)>\frac{a}{\sigma}\right)>0
$$

Therefore, $\lim \sup S_{n} / \sqrt{n}=\infty$ with probability 1 .
7. $\quad \star \star \star$ For positive values of α, if any, does CLT hold for iid symmetric r.v.s with distribution $F(x)=1-1 /\left(2 x^{\alpha}\right)$ for $x>1$ and $F(x)=1 / 2$ for $x \in[0,1]$?
Solution. For $x>1, P(|X|>x)=x^{-\alpha}$ and

$$
E\left(|X|^{2} 1_{\{|X| \leq x\}\}}\right)=2 \int_{1}^{x} t^{2} d F(t)= \begin{cases}2 \log x & \alpha=2 \\ \frac{\alpha}{2-\alpha}\left(x^{-\alpha+2}-1\right) & \alpha \neq 2\end{cases}
$$

Therefore, as $x \rightarrow \infty$.

$$
\frac{x^{2} P(|X|>x)}{E\left(|X|^{2} 1_{\{|X| \leq x\}\})}\right)} \rightarrow \begin{cases}0 & \text { for } \alpha \geq 2 \\ \alpha /(2-\alpha) & \text { for } \alpha<2\end{cases}
$$

It follows from Theorem 2.3 that when $\alpha \geq 2$, CLT holds.
8. \star Show Lindeberg condition implies $\max _{1 \leq i \leq n} \sigma_{i} / s_{n} \rightarrow 0$, which is equivalent to $\sigma_{n} / s_{n} \rightarrow 0$ where $\sigma_{i}>0$ and $s_{n}^{2}=\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}$.
Solution. For any $\epsilon>0$,

$$
\begin{aligned}
& \frac{1}{s_{n}^{2}} \max _{1 \leq i \leq n} \sigma_{i}^{2}=\frac{1}{s_{n}^{2}} \max _{1 \leq i \leq n} E\left(X_{i}^{2} 1_{\left\{\left|X_{i}\right| \leq \epsilon s_{n}\right\}}+\frac{1}{s_{n}^{2}} \max _{1 \leq i \leq n} E\left(X_{i}^{2} 1_{\left\{\left|X_{i}\right|>\epsilon s_{n}\right\}}\right.\right. \\
\leq & \epsilon^{2}+\frac{1}{s_{n}^{2}} \sum_{i=1}^{n} E\left(X_{i}^{2} 1_{\left\{\left|X_{i}\right|>\epsilon s_{n}\right\}} \rightarrow 0, \quad \text { as } n \rightarrow \infty .\right.
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, we have $\max _{1 \leq i \leq n} \sigma_{i} / s_{n} \rightarrow 0$.
Obviously, $\max _{1 \leq i \leq n} \sigma_{i} / s_{n} \rightarrow 0$ implies $\sigma_{n} / s_{n} \rightarrow 0$. On the other hand, if $\sigma_{n} / s_{n} \rightarrow 0$, for any integer M,

$$
\max _{1 \leq i \leq n} \sigma_{i} / s_{n} \leq \max _{1 \leq i \leq M} \sigma_{i} / s_{n}+\max _{M<i \leq n} \sigma_{i} / s_{i} \rightarrow \max _{M<i} \sigma_{i} / s_{i}, \quad \text { as } n \rightarrow \infty
$$

Let $M \rightarrow \infty$, we have $\max _{1 \leq i \leq n} \sigma_{i} / s_{n}$.
9. ** Suppose X_{n} are iid with mean μ and finite variance. Then,

$$
\frac{\sqrt{n}(\bar{X}-\mu)}{\sqrt{1 /(n-1) \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}} \rightarrow N(0,1)
$$

where $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$. In particular, t-distribution with n degree of freedom tends to standard normal distribution as $n \rightarrow \infty$.
Solution. The classical central limit theorem implies $\sqrt{n}(\bar{X}-\mu) / \sigma \rightarrow N(0,1)$. Law of large numbers ensures $1 /(n-1) \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \rightarrow E(X-E(X))^{2}=\sigma^{2}$ a.s.. Then, the convergence follows from Slutsky's theorem. The above statistic follows t-distribution with degree of freedom $n-1$ when X_{i} follows normal distribution.
10. $\quad \star \star \star$ Raise an example of independent random variables X_{n} with mean 0 and finite positive variance σ_{n}^{2} such that $S_{n} / s_{n} \rightarrow N(0,1)$, but the Lindeberg condition does not hold, where $S_{n}=X_{1}+\cdots+X_{n}$ and $s_{n}^{2}=\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}$.
Solution. X_{n} are independent $\sim N\left(0,2^{n}\right)$, which is the same as $\sqrt{2^{n}} N(0,1)$. Then, $s_{n}^{2}=2+2^{2}+$ $\cdots+2^{n}=2^{n+1}-2$. And, for $n \geq 2$,

$$
E\left(X_{n}^{2} 1_{\left\{\left|X_{n}\right|>\epsilon s_{n}\right\}}\right)=2^{n} E\left(Z^{2} 1_{\left\{|Z|>\epsilon \sqrt{2-2^{1-n}}\right\}} \geq .5 s_{n}^{2} E\left(Z^{2} 1_{\{|Z|>\epsilon \sqrt{2}\}}\right) \geq .5 s_{n}^{2} E\left(Z^{2} 1_{\{|Z|>\epsilon \sqrt{2}\}}\right)\right.
$$

where Z is a standard normal r.v.. Then, Lindeberg condition does not hold. But S_{n} / s_{n} follows exactly $N(0,1)$.

