Solution to Homework 4 DIY Problems.

Suppose F,,,n > 1 is a tight sequence of distribution functions. Show that their characteristic
functions 1, are equi-continuous, i.e., for any € > 0, there exists 6 > 0, such that |1, (t) — 1, (s)| < €
for all n and all |t — s| < 4.

Solution. For all t, s such that |t — s| <4,
sup 15 (t) — Y (s)] < sup [E(e™ 1yix,1<ary) — B(™ " 1yix,1<arp)| + 25up P(|X,| > M)
< M|t —s|+2sup P(|X,| > M) < Mé + 2sup P(|X,,| > M) — 0,
as 6 — 0 and then M — 0. g
The Levy concentration function is defined, for a r.v. X (or essentially its distribution) as

Qx(a) =sup P(X € [z,2 + a)), a>0

Prove that Qx(a/2)Qy(a/2) < Qx1y(a) < min(Qx(a), Qy(a)) for two independent r.v.s. X and
Y.

Solution. By the independence of X and Y,

Qx(a/2)Qy (a/2) = sup P(X € [2,2 + a/2)) Sl;pP(Y € ly,y+a/2))

< supP(X €[z, +a/2), Y € [y,y+a/2))
< si;)P(X LY €t +a) = Qxpra)
and
Qxiv(a) =sup P(X +Y € [, +0)) = sup / P(X +1€ 2,2+ a))dFy(?)
< SEPP(X € [y.y +a)) = Qx(a).
Likewise, Qx4v(a) < Qy (a). O

The Levy metric is defined, between two distribution functions F' and G, as
p(F,G)=inf{e >0: F(z—¢) —e <G(x) < F(x+¢€)+¢ forall z}

Show that F,, converges to F weakly if and only if p(F,, F) — 0.

Solution. “<=" p(F,,F) — 0 ensures the existence of ¢, | 0 such that F(x —¢,) — ¢, < F,(z) <
F(z + €,) + €, for all z. For any x that is continuity point of F,

O—F(x—€p)—€en—(F(z+e)+e) <F,(z)— (F(z+e€)+e)
< Fu(z) - F(x)
<F(z)—(Fx—¢€)—€) < Fz+e,) + e, — (F(x—€n) —€,) = 0.

“—" Suppose p(F,, F) » 0. There exist € > 0 and z,, such that F,(z,) ¢ [F (2, —€) — €, F(z, +
€) + €]. Without loss generality, suppose F,(z,) > F(z, + €) + ¢. There exists a subsequence of z,,
tending to either —oco or a constant, say x. The former implies F}, has probability mass of at least
€ at —oo, which is impossible for our definition of cdf. As continuity points are dense, there exists
one in (z,x +€), say y. Then, F,(y) > F,(x,) > F(y) + €, meaning that F,(y) - F(y). O
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Suppose X and Y are independent, and X + Y and X have same distribution. Show that
Y = 0 with probability 1.
Solution. Yx1y(t) = ¥x )Yy (t) = ¥x(t). Hence 1y (t) = 1 for ¢ in a neighborhood of 0, implying
E(cos(tY)) =1 for ¢ in a neighborhood of 0. Hence P(Y =0) = 1. O
Suppose X,, are independent with mean 0 and E(|X,|?) < 1 for some § > 2. Raise a counter-
example to show S, /s, - N(0,1), where S, = X7 +--- X,, and s2 = var(S,,).
Solution. Let P(X, =1)=4"" = P(X, =—1) and P(X,, =0) =1 —2/4". Then,

P(S,=0)>1-) P(X;#0)=1-) 2/4>1-2/3=1/3.
i=1 i=1
Then S,, /s, does not converge to N(0,1). O

Suppose X1, ..., X,, are iid with mean 0 and finite positive variance. Use central limit theorem
and Kolmogorov’s 0-1 law to show limsup S, /v/n = oo a.s., where S, = X; + -+ + X,,.

Solution. By Kolmogorov’s 0-1 law, lim sup S, /y/n must be ¢, which is either a constant or oo or
—o00. By the CLT, for any constant a,

Sn . Sk a ) Sn a a
P(limsup — > a) =lim P(sup —— > —) > lim P > —)— P(N(0,1) > —) > 0.
(imsup "2 > a) = lim P(sup —2 > %) > Fm P(2 > %) = P(NO,1) > )

Therefore, lim sup S, /v/n = oo with probability 1. |

For positive values of «, if any, does CLT hold for iid symmetric r.v.s with distribution
F(z)=1-1/(2z%) for x > 1 and F(z) = 1/2 for x € [0,1]?

Solution. For x > 1, P(|X| > z) =2~ * and

r 2log x a=2
2 _ 2 _
E(|X["1{x|<ayy) = 2/1 tdF(t) = { 2 (1) a#2
Therefore, as x — oo.
2?P(|X| > x) _}{0 for a > 2

It follows from Theorem 2.3 that when o > 2, CLT holds. ]
Show Lindeberg condition implies maxj <<y 0;/sn, — 0, which is equivalent to o,,/s,, — 0 where

o;>0and s2 =0 + -+ 02.

Solution. For any € > 0,

1 1
— max g; = — max E(X§1{|Xi|<esn} + — max E(Xfl{‘xibesn}
= s

2 p p
Sy 1<i<n 7 1<i<n

1
< €+ ) Z;E(X,?lﬂxilxsn} — 0, asn— oo.
1=
Since € > 0 is arbitrary, we have maxi<;<n 0;/$, — 0.
Obviously, maxi<;<y 0;/$, — 0 implies 0,/s, — 0. On the other hand, if o,/s, — 0, for any

integer M,

max o0;/S, < max o;/s, + max o;/s; — maxo;/s;, asn — oo.
1<i<n / 1<i<M / M<i<n / M<i /5i;

Let M — oo, we have maxj<ij<n 0;/Sn. O
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Suppose X,, are iid with mean p and finite variance. Then,

V(X —p)
VU= 1) X, (X - %)

— N(0,1)

where X = (1/n) Y7, X;. In particular, t-distribution with n degree of freedom tends to standard
normal distribution as n — oco.

Solution. The classical central limit theorem implies /n(X — p)/o — N(0,1). Law of large
numbers ensures 1/(n — 1) 37" (X; — X)? — E(X — B(X))? = 0% a.s.. Then, the convergence
follows from Slutsky’s theorem. The above statistic follows t-distribution with degree of freedom
n — 1 when X; follows normal distribution. ([l

Raise an example of independent random variables X,, with mean 0 and finite positive variance
o2 such that S,,/s,, — N(0, 1), but the Lindeberg condition does not hold, where S,, = X1 +---+X,
and s2 = o? + -+ 02,
Solution. X, are independent ~ N (0,2"), which is the same as v/2"N(0,1). Then, s =2 + 22 +
<o 427 =271 _ 92 And, for n > 2,

2 2 2 2 2 2
E(Xn1{|Xn\>€Sn}> = QnE(Z 1{|Z‘>€\/m} Z 5SnE(Z 1{|Z\>€\/§}) Z 5SnE(Z 1{|Z|>e\/§})’

where Z is a standard normal r.v.. Then, Lindeberg condition does not hold. But S,,/s,, follows
exactly N(0,1). O



