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Solution to Homework 4 DIY Problems.

1. ??? Suppose Fn, n ≥ 1 is a tight sequence of distribution functions. Show that their characteristic
functions ψn are equi-continuous, i.e., for any ε > 0, there exists δ > 0, such that |ψn(t)−ψn(s)| < ε
for all n and all |t− s| < δ.

Solution. For all t, s such that |t− s| ≤ δ,

sup
n
|ψn(t)− ψn(s)| ≤ sup

n
|E(eitXn1{|Xn|≤M})−E(eisXn1{|Xn|≤M})|+ 2 sup

n
P (|Xn| > M)

≤ M |t− s|+ 2 sup
n

P (|Xn| > M) ≤ Mδ + 2 sup
n

P (|Xn| > M) → 0,

as δ → 0 and then M → 0. ¤

2. ?? The Levy concentration function is defined, for a r.v. X (or essentially its distribution) as

QX(a) = sup
x

P (X ∈ [x, x + a)), a ≥ 0

Prove that QX(a/2)QY (a/2) ≤ QX+Y (a) ≤ min(QX(a), QY (a)) for two independent r.v.s. X and
Y .

Solution. By the independence of X and Y ,

QX(a/2)QY (a/2) = sup
x

P (X ∈ [x, x + a/2)) sup
y

P (Y ∈ [y, y + a/2))

≤ sup
x,y

P (X ∈ [x, x + a/2)), Y ∈ [y, y + a/2))

≤ sup
t

P (X + Y ∈ [t, t + a)) = QX+Y (a);

and

QX+Y (a) = sup
x

P (X + Y ∈ [x, x + a)) = sup
x

∫
P (X + t ∈ [x, x + a))dFY (t)

≤ sup
y

P (X ∈ [y, y + a)) = QX(a).

Likewise, QX+Y (a) ≤ QY (a). ¤

3. ?? The Levy metric is defined, between two distribution functions F and G, as

ρ(F,G) = inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x + ε) + ε for all x}

Show that Fn converges to F weakly if and only if ρ(Fn, F ) → 0.

Solution. “⇐=” ρ(Fn, F ) → 0 ensures the existence of εn ↓ 0 such that F (x− εn)− εn ≤ Fn(x) ≤
F (x + εn) + εn for all x. For any x that is continuity point of F ,

0 ← F (x− εn)− εn − (F (x + ε) + ε) ≤ Fn(x)− (F (x + ε) + ε)
≤ Fn(x)− F (x)

≤ Fn(x)− (F (x− ε)− ε) ≤ F (x + εn) + εn − (F (x− εn)− εn) → 0.

“=⇒” Suppose ρ(Fn, F ) 9 0. There exist ε > 0 and xn such that Fn(xn) /∈ [F (xn − ε)− ε, F (xn +
ε) + ε]. Without loss generality, suppose Fn(xn) > F (xn + ε) + ε. There exists a subsequence of xn

tending to either −∞ or a constant, say x. The former implies Fn has probability mass of at least
ε at −∞, which is impossible for our definition of cdf. As continuity points are dense, there exists
one in (x, x + ε), say y. Then, Fn(y) > Fn(xn) > F (y) + ε, meaning that Fn(y) 9 F (y). ¤
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4. ?? Suppose X and Y are independent, and X + Y and X have same distribution. Show that
Y = 0 with probability 1.

Solution. ψX+Y (t) = ψX(t)ψY (t) = ψX(t). Hence ψY (t) = 1 for t in a neighborhood of 0, implying
E(cos(tY )) = 1 for t in a neighborhood of 0. Hence P (Y = 0) = 1. ¤

5. ?? Suppose Xn are independent with mean 0 and E(|Xn|δ) ≤ 1 for some δ > 2. Raise a counter-
example to show Sn/sn 9 N(0, 1), where Sn = X1 + · · ·Xn and s2

n = var(Sn).

Solution. Let P (Xn = 1) = 4−n = P (Xn = −1) and P (Xn = 0) = 1− 2/4n. Then,

P (Sn = 0) ≥ 1−
n∑

i=1

P (Xi 6= 0) = 1−
n∑

i=1

2/4i ≥ 1− 2/3 = 1/3.

Then Sn/sn does not converge to N(0, 1). ¤

6. ?? Suppose X1, ..., Xn are iid with mean 0 and finite positive variance. Use central limit theorem
and Kolmogorov’s 0-1 law to show lim sup Sn/

√
n = ∞ a.s., where Sn = X1 + · · ·+ Xn.

Solution. By Kolmogorov’s 0-1 law, lim sup Sn/
√

n must be c, which is either a constant or ∞ or
−∞. By the CLT, for any constant a,

P (lim sup
n

Sn√
n

> a) = lim
n

P (sup
k≥n

Sk√
kσ

>
a

σ
) ≥ lim

n
P (

Sn√
nσ

>
a

σ
) → P (N(0, 1) >

a

σ
) > 0.

Therefore, lim sup Sn/
√

n = ∞ with probability 1. ¤

7. ? ? ? For positive values of α, if any, does CLT hold for iid symmetric r.v.s with distribution
F (x) = 1− 1/(2xα) for x > 1 and F (x) = 1/2 for x ∈ [0, 1]?

Solution. For x > 1, P (|X| > x) = x−α and

E(|X|21{|X|≤x}}) = 2
∫ x

1

t2dF (t) =
{

2 log x α = 2
α

2−α (x−α+2 − 1) α 6= 2

Therefore, as x →∞.

x2P (|X| > x)
E(|X|21{|X|≤x}}))

→
{

0 for α ≥ 2
α/(2− α) for α < 2

It follows from Theorem 2.3 that when α ≥ 2, CLT holds. ¤

8. ? Show Lindeberg condition implies max1≤i≤n σi/sn → 0, which is equivalent to σn/sn → 0 where
σi > 0 and s2

n = σ2
1 + · · ·+ σ2

n.

Solution. For any ε > 0,

1
s2

n

max
1≤i≤n

σ2
i =

1
s2

n

max
1≤i≤n

E(X2
i 1{|Xi|≤εsn} +

1
s2

n

max
1≤i≤n

E(X2
i 1{|Xi|>εsn}

≤ ε2 +
1
s2

n

n∑

i=1

E(X2
i 1{|Xi|>εsn} → 0, as n →∞.

Since ε > 0 is arbitrary, we have max1≤i≤n σi/sn → 0.

Obviously, max1≤i≤n σi/sn → 0 implies σn/sn → 0. On the other hand, if σn/sn → 0, for any
integer M ,

max
1≤i≤n

σi/sn ≤ max
1≤i≤M

σi/sn + max
M<i≤n

σi/si → max
M<i

σi/si, as n →∞.

Let M →∞, we have max1≤i≤n σi/sn. ¤
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9. ?? Suppose Xn are iid with mean µ and finite variance. Then,
√

n(X̄ − µ)√
1/(n− 1)

∑n
i=1(Xi − X̄)2

→ N(0, 1)

where X̄ = (1/n)
∑n

i=1 Xi. In particular, t-distribution with n degree of freedom tends to standard
normal distribution as n →∞.

Solution. The classical central limit theorem implies
√

n(X̄ − µ)/σ → N(0, 1). Law of large
numbers ensures 1/(n − 1)

∑n
i=1(Xi − X̄)2 → E(X − E(X))2 = σ2 a.s.. Then, the convergence

follows from Slutsky’s theorem. The above statistic follows t-distribution with degree of freedom
n− 1 when Xi follows normal distribution. ¤

10. ??? Raise an example of independent random variables Xn with mean 0 and finite positive variance
σ2

n such that Sn/sn → N(0, 1), but the Lindeberg condition does not hold, where Sn = X1+· · ·+Xn

and s2
n = σ2

1 + · · ·+ σ2
n.

Solution. Xn are independent ∼ N(0, 2n), which is the same as
√

2nN(0, 1). Then, s2
n = 2 + 22 +

· · ·+ 2n = 2n+1 − 2. And, for n ≥ 2,

E(X2
n1{|Xn|>εsn}) = 2nE(Z21{|Z|>ε

√
2−21−n} ≥ .5s2

nE(Z21{|Z|>ε
√

2}) ≥ .5s2
nE(Z21{|Z|>ε

√
2}),

where Z is a standard normal r.v.. Then, Lindeberg condition does not hold. But Sn/sn follows
exactly N(0, 1). ¤


