Solution to Homework 4 DIY Problems.

1. $\star \star \star$ Suppose $F_n, n \ge 1$ is a tight sequence of distribution functions. Show that their characteristic functions ψ_n are equi-continuous, i.e., for any $\epsilon > 0$, there exists $\delta > 0$, such that $|\psi_n(t) - \psi_n(s)| < \epsilon$ for all n and all $|t - s| < \delta$.

Solution. For all t, s such that $|t - s| \leq \delta$,

$$\sup_{n} |\psi_{n}(t) - \psi_{n}(s)| \leq \sup_{n} |E(e^{itX_{n}} 1_{\{|X_{n}| \leq M\}}) - E(e^{isX_{n}} 1_{\{|X_{n}| \leq M\}})| + 2\sup_{n} P(|X_{n}| > M)$$

$$\leq M|t - s| + 2\sup_{n} P(|X_{n}| > M) \leq M\delta + 2\sup_{n} P(|X_{n}| > M) \to 0,$$

as $\delta \to 0$ and then $M \to 0$.

2. $\star\star$ The Levy concentration function is defined, for a r.v. X (or essentially its distribution) as

$$Q_X(a) = \sup_x P(X \in [x, x+a)), \qquad a \ge 0$$

Prove that $Q_X(a/2)Q_Y(a/2) \leq Q_{X+Y}(a) \leq \min(Q_X(a), Q_Y(a))$ for two independent r.v.s. X and Y.

Solution. By the independence of X and Y,

$$Q_X(a/2)Q_Y(a/2) = \sup_x P(X \in [x, x + a/2)) \sup_y P(Y \in [y, y + a/2))$$

$$\leq \sup_{x,y} P(X \in [x, x + a/2)), \ Y \in [y, y + a/2))$$

$$\leq \sup_x P(X + Y \in [t, t + a)) = Q_{X+Y}(a);$$

and

$$Q_{X+Y}(a) = \sup_{x} P(X+Y \in [x, x+a)) = \sup_{x} \int P(X+t \in [x, x+a)) dF_Y(t)$$

$$\leq \sup_{y} P(X \in [y, y+a)) = Q_X(a).$$

Likewise, $Q_{X+Y}(a) \leq Q_Y(a)$.

3.
$$\star\star$$
 The Levy metric is defined, between two distribution functions F and G, as

$$\rho(F,G) = \inf\{\epsilon > 0 : F(x-\epsilon) - \epsilon \le G(x) \le F(x+\epsilon) + \epsilon \text{ for all } x\}$$

Show that F_n converges to F weakly if and only if $\rho(F_n, F) \to 0$.

Solution. " \Leftarrow " $\rho(F_n, F) \to 0$ ensures the existence of $\epsilon_n \downarrow 0$ such that $F(x - \epsilon_n) - \epsilon_n \leq F_n(x) \leq F(x + \epsilon_n) + \epsilon_n$ for all x. For any x that is continuity point of F,

$$0 \leftarrow F(x - \epsilon_n) - \epsilon_n - (F(x + \epsilon) + \epsilon) \le F_n(x) - (F(x + \epsilon) + \epsilon)$$

$$\le F_n(x) - F(x)$$

$$\le F_n(x) - (F(x - \epsilon) - \epsilon) \le F(x + \epsilon_n) + \epsilon_n - (F(x - \epsilon_n) - \epsilon_n) \to 0.$$

" \Longrightarrow " Suppose $\rho(F_n, F) \not\rightarrow 0$. There exist $\epsilon > 0$ and x_n such that $F_n(x_n) \notin [F(x_n - \epsilon) - \epsilon, F(x_n + \epsilon) + \epsilon]$. Without loss generality, suppose $F_n(x_n) > F(x_n + \epsilon) + \epsilon$. There exists a subsequence of x_n tending to either $-\infty$ or a constant, say x. The former implies F_n has probability mass of at least ϵ at $-\infty$, which is impossible for our definition of cdf. As continuity points are dense, there exists one in $(x, x + \epsilon)$, say y. Then, $F_n(y) > F_n(x_n) > F(y) + \epsilon$, meaning that $F_n(y) \not\rightarrow F(y)$.

4. ****** Suppose X and Y are independent, and X + Y and X have same distribution. Show that Y = 0 with probability 1.

Solution. $\psi_{X+Y}(t) = \psi_X(t)\psi_Y(t) = \psi_X(t)$. Hence $\psi_Y(t) = 1$ for t in a neighborhood of 0, implying $E(\cos(tY)) = 1$ for t in a neighborhood of 0. Hence P(Y = 0) = 1.

5. $\star\star$ Suppose X_n are independent with mean 0 and $E(|X_n|^{\delta}) \leq 1$ for some $\delta > 2$. Raise a counterexample to show $S_n/s_n \not\rightarrow N(0,1)$, where $S_n = X_1 + \cdots + X_n$ and $s_n^2 = \operatorname{var}(S_n)$.

Solution. Let $P(X_n = 1) = 4^{-n} = P(X_n = -1)$ and $P(X_n = 0) = 1 - 2/4^n$. Then,

$$P(S_n = 0) \ge 1 - \sum_{i=1}^n P(X_i \ne 0) = 1 - \sum_{i=1}^n 2/4^i \ge 1 - 2/3 = 1/3$$

Then S_n/s_n does not converge to N(0,1).

6. ****** Suppose $X_1, ..., X_n$ are iid with mean 0 and finite positive variance. Use central limit theorem and Kolmogorov's 0-1 law to show $\limsup S_n/\sqrt{n} = \infty$ a.s., where $S_n = X_1 + \cdots + X_n$.

Solution. By Kolmogorov's 0-1 law, $\limsup S_n/\sqrt{n}$ must be c, which is either a constant or ∞ or $-\infty$. By the CLT, for any constant a,

$$P(\limsup_{n} \frac{S_n}{\sqrt{n}} > a) = \lim_{n} P(\sup_{k \ge n} \frac{S_k}{\sqrt{k\sigma}} > \frac{a}{\sigma}) \ge \lim_{n} P(\frac{S_n}{\sqrt{n\sigma}} > \frac{a}{\sigma}) \to P(N(0,1) > \frac{a}{\sigma}) > 0.$$

Therefore, $\limsup S_n/\sqrt{n} = \infty$ with probability 1.

7. $\star \star \star$ For positive values of α , if any, does CLT hold for iid symmetric r.v.s with distribution $F(x) = 1 - 1/(2x^{\alpha})$ for x > 1 and F(x) = 1/2 for $x \in [0, 1]$? Solution. For x > 1, $P(|X| > x) = x^{-\alpha}$ and

$$E(|X|^{2}1_{\{|X| \le x\}\}}) = 2\int_{1}^{x} t^{2}dF(t) = \begin{cases} 2\log x & \alpha = 2\\ \frac{\alpha}{2-\alpha}(x^{-\alpha+2}-1) & \alpha \ne 2 \end{cases}$$

Therefore, as $x \to \infty$.

$$\frac{x^2 P(|X| > x)}{E(|X|^2 1_{\{|X| \le x\}})} \to \begin{cases} 0 & \text{for } \alpha \ge 2\\ \alpha/(2-\alpha) & \text{for } \alpha < 2 \end{cases}$$

It follows from Theorem 2.3 that when $\alpha \geq 2$, CLT holds.

8. * Show Lindeberg condition implies $\max_{1 \le i \le n} \sigma_i / s_n \to 0$, which is equivalent to $\sigma_n / s_n \to 0$ where $\sigma_i > 0$ and $s_n^2 = \sigma_1^2 + \cdots + \sigma_n^2$. Solution. For any $\epsilon > 0$,

$$\begin{aligned} \frac{1}{s_n^2} \max_{1 \le i \le n} \sigma_i^2 &= \frac{1}{s_n^2} \max_{1 \le i \le n} E(X_i^2 \mathbbm{1}_{\{|X_i| \le \epsilon s_n\}} + \frac{1}{s_n^2} \max_{1 \le i \le n} E(X_i^2 \mathbbm{1}_{\{|X_i| > \epsilon s_n\}}) \\ &\le \quad \epsilon^2 + \frac{1}{s_n^2} \sum_{i=1}^n E(X_i^2 \mathbbm{1}_{\{|X_i| > \epsilon s_n\}} \to 0, \quad \text{as } n \to \infty. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, we have $\max_{1 \le i \le n} \sigma_i / s_n \to 0$.

Obviously, $\max_{1 \le i \le n} \sigma_i / s_n \to 0$ implies $\sigma_n / s_n \to 0$. On the other hand, if $\sigma_n / s_n \to 0$, for any integer M,

$$\max_{1 \le i \le n} \sigma_i / s_n \le \max_{1 \le i \le M} \sigma_i / s_n + \max_{M < i \le n} \sigma_i / s_i \to \max_{M < i} \sigma_i / s_i, \quad \text{as } n \to \infty.$$

Let $M \to \infty$, we have $\max_{1 \le i \le n} \sigma_i / s_n$.

9. $\star\star$ Suppose X_n are iid with mean μ and finite variance. Then,

$$\frac{\sqrt{n}(X-\mu)}{\sqrt{1/(n-1)\sum_{i=1}^{n}(X_i-\bar{X})^2}} \to N(0,1)$$

where $\bar{X} = (1/n) \sum_{i=1}^{n} X_i$. In particular, *t*-distribution with *n* degree of freedom tends to standard normal distribution as $n \to \infty$.

Solution. The classical central limit theorem implies $\sqrt{n}(\bar{X} - \mu)/\sigma \to N(0, 1)$. Law of large numbers ensures $1/(n-1)\sum_{i=1}^{n}(X_i - \bar{X})^2 \to E(X - E(X))^2 = \sigma^2$ a.s.. Then, the convergence follows from Slutsky's theorem. The above statistic follows *t*-distribution with degree of freedom n-1 when X_i follows normal distribution.

10. *** Raise an example of independent random variables X_n with mean 0 and finite positive variance σ_n^2 such that $S_n/s_n \to N(0, 1)$, but the Lindeberg condition does not hold, where $S_n = X_1 + \cdots + X_n$ and $s_n^2 = \sigma_1^2 + \cdots + \sigma_n^2$.

Solution. X_n are independent $\sim N(0, 2^n)$, which is the same as $\sqrt{2^n}N(0, 1)$. Then, $s_n^2 = 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 2$. And, for $n \ge 2$,

$$E(X_n^2 \mathbb{1}_{\{|X_n| > \epsilon s_n\}}) = 2^n E(Z^2 \mathbb{1}_{\{|Z| > \epsilon \sqrt{2-2^{1-n}}\}} \ge .5s_n^2 E(Z^2 \mathbb{1}_{\{|Z| > \epsilon \sqrt{2}\}}) \ge .5s_n^2 E(Z^2 \mathbb{1}_{\{|Z| > \epsilon \sqrt{2}\}}),$$

where Z is a standard normal r.v.. Then, Lindeberg condition does not hold. But S_n/s_n follows exactly N(0, 1).