Advanced Probability Theory (Math541)

Instructor: Kani Chen

(Classic)/Modern Probability Theory (1900-1960)

Primitive/Classic Probability:

(16th-19th century)

- Gerolamo Cardano (1501-1576) "Liber de Ludo Aleae" (games of chance)

Primitive/Classic Probability:

(16th-19th century)

- Gerolamo Cardano (1501-1576)
"Liber de Ludo Aleae" (games of chance)
- Galilei Galileo (1564-1642)

Primitive/Classic Probability:

(16th-19th century)

- Gerolamo Cardano (1501-1576) "Liber de Ludo Aleae" (games of chance)
- Galilei Galileo (1564-1642)
- Pierre de Fermat (1601-1665) and Blaise Pascal (1623-1662)

Primitive/Classic Probability:

(16th-19th century)

- Gerolamo Cardano (1501-1576) "Liber de Ludo Aleae" (games of chance)
- Galilei Galileo (1564-1642)
- Pierre de Fermat (1601-1665) and Blaise Pascal (1623-1662)
- Jakob Bernoulli (1654-1705) Bernoulli trial/distribution/r.v/numbers
Daniel (1700-1782) (utility function) Johann (1667-1748) (L'Hopital rule)
- Abraham de Moivre (1667-1754) "Doctrine of Chances"
- Abraham de Moivre (1667-1754) "Doctrine of Chances"
- Pierre-Simon Laplace (1749-1827)

Laplace transform
De Moivre-Laplace Theorem (the central limit theorem)

- Abraham de Moivre (1667-1754) "Doctrine of Chances"
- Pierre-Simon Laplace (1749-1827)

Laplace transform
De Moivre-Laplace Theorem (the central limit theorem)

- Simeon Denis Poisson (1781-1840).

Poisson distribution/process, the law of rare events

- Abraham de Moivre (1667-1754) "Doctrine of Chances"
- Pierre-Simon Laplace (1749-1827)

Laplace transform
De Moivre-Laplace Theorem (the central limit theorem)

- Simeon Denis Poisson (1781-1840).

Poisson distribution/process, the law of rare events

- Emile Borel (1871-1956). Borel sets/measurable, Borel-Cantelli lemma, Borel strong law.

Foundation of modern probability:

- Keynes, J. M. (1921): A Treatise on Probability.

Foundation of modern probability:

- Keynes, J. M. (1921): A Treatise on Probability.
- von Mises, R. (1928): Probability, Statistics and Truth. (1931): Mathematical Theory of Probability and Statistics.

Foundation of modern probability:

- Keynes, J. M. (1921): A Treatise on Probability.
- von Mises, R. (1928): Probability, Statistics and Truth. (1931): Mathematical Theory of Probability and Statistics.
- Kolmogorov, A. (1933): Foundations of the Theory of Probability. Kolmogorov's axioms: Probability space trio: (Ω, \mathcal{F}, P).

Measure-theoretic Probabilities

(Chapter 1 begins)

- Sets, set operations (\cap, \cup and complement), set of sets/subsets, algebra, σ-algebra, measurable space (Ω, \mathcal{F}), product space ...

Measure-theoretic Probabilities

(Chapter 1 begins)

- Sets, set operations (\cap, \cup and complement), set of sets/subsets, algebra, σ-algebra, measurable space (Ω, \mathcal{F}), product space ...
- measures, probabilities, product measure, independence of events, conditional probabilities, conditional expectation with respect to σ-algebra.

Measure-theoretic Probabilities

(Chapter 1 begins)

- Sets, set operations (\cap, \cup and complement), set of sets/subsets, algebra, σ-algebra, measurable space (Ω, \mathcal{F}), product space ...
- measures, probabilities, product measure, independence of events, conditional probabilities, conditional expectation with respect to σ-algebra.
- Transformation/map, measurable transformation/map, random variables/elements defined through mapping $X=X(\omega)$.

Measure-theoretic Probabilities

(Chapter 1 begins)

- Sets, set operations (\cap, \cup and complement), set of sets/subsets, algebra, σ-algebra, measurable space (Ω, \mathcal{F}), product space ...
- measures, probabilities, product measure, independence of events, conditional probabilities, conditional expectation with respect to σ-algebra.
- Transformation/map, measurable transformation/map, random variables/elements defined through mapping $X=X(\omega)$.
- Expectation/integral.

Measure-theoretic Probabilities

(Chapter 1 begins)

- Sets, set operations (\cap, \cup and complement), set of sets/subsets, algebra, σ-algebra, measurable space (Ω, \mathcal{F}), product space ...
- measures, probabilities, product measure, independence of events, conditional probabilities, conditional expectation with respect to σ-algebra.
- Transformation/map, measurable transformation/map, random variables/elements defined through mapping $X=X(\omega)$.
- Expectation/integral.
- Caratheodory's extension theorem, Kolmogorov's extension theorem, Dynkin's $\pi-\lambda$ theorem, The Radon-Nikodym Theorem.

Convergence.

- Convergence modes: convergence almost sure (strong), in probability, in L^{p} (most commonly, L^{1} or L^{2}), in distribution/law (weak).
The relations of the convergence modes.

Convergence.

- Convergence modes: convergence almost sure (strong), in probability,
in L^{p} (most commonly, L^{1} or L^{2}), in distribution/law (weak).
The relations of the convergence modes.
- Dominated convergence theorem, (extension to uniformly integrable r.v.s.) monotone convergence theorem.
Fatou's lemma.

Law of Large numbers.

$X_{1}, \ldots, X_{n}, \ldots$ are iid random variables with mean μ. Let $S_{n}=\sum_{i=1}^{n} X_{i}$.

- Weak law of Large numbers:

$$
S_{n} / n \rightarrow \mu, \quad \text { in probability. }
$$

i.e., for any $\epsilon>0$,

$$
P\left(\left|S_{n} / n-\mu\right|>\epsilon\right) \rightarrow 0
$$

Law of Large numbers.

$X_{1}, \ldots, X_{n}, \ldots$ are iid random variables with mean μ. Let $S_{n}=\sum_{i=1}^{n} X_{i}$.

- Weak law of Large numbers:

$$
S_{n} / n \rightarrow \mu, \quad \text { in probability. }
$$

i.e., for any $\epsilon>0$,

$$
P\left(\left|S_{n} / n-\mu\right|>\epsilon\right) \rightarrow 0 .
$$

- Kolmogorov's Strong law of Large numbers:

$$
S_{n} / n \rightarrow \mu, \quad \text { almost surely. }
$$

Law of Large numbers.

$X_{1}, \ldots, X_{n}, \ldots$ are iid random variables with mean μ. Let $S_{n}=\sum_{i=1}^{n} X_{i}$.

- Weak law of Large numbers:

$$
S_{n} / n \rightarrow \mu, \quad \text { in probability. }
$$

i.e., for any $\epsilon>0$,

$$
P\left(\left|S_{n} / n-\mu\right|>\epsilon\right) \rightarrow 0 .
$$

- Kolmogorov's Strong law of Large numbers:

$$
S_{n} / n \rightarrow \mu, \quad \text { almost surely. }
$$

- Consistency in statistical estimation.

Large deviation (strengthening weak law)

For fixed $t>0$, how fast is $P\left(S_{n} / n-\mu>t\right) \rightarrow 0$?

- Under regularity conditions,

$$
\frac{1}{n} \log P\left(S_{n} / n-\mu>t\right) \approx \gamma(t)
$$

where γ is determined by the commmon distribution of X_{i}.

Large deviation (strengthening weak law)

For fixed $t>0$, how fast is $P\left(S_{n} / n-\mu>t\right) \rightarrow 0$?

- Under regularity conditions,

$$
\frac{1}{n} \log P\left(S_{n} / n-\mu>t\right) \approx \gamma(t)
$$

where γ is determined by the commmon distribution of X_{i}.

- Special case, X_{i} are iid $N(0,1)$, then $\gamma(t)=-t^{2} / 2$. Note that $1-\Phi(x) \approx \phi(x) / x$.

Law of iterated logarithm (strengthening strong law)

$S_{n} / n-\mu \rightarrow 0$ a.s.
Is there a proper a_{n} such that the "limit" of S_{n} / a_{n} is nonzero finite?

- Kolmogorov's law of iterated logarithm.

$$
\limsup _{n \rightarrow \infty} \frac{S_{n} / n-\mu}{\sqrt{2 \sigma^{2} n \log \log (n)}} \rightarrow 1, \quad \text { a.s. }
$$

where $\sigma^{2}=\operatorname{var}\left(X_{i}\right)$.

Law of iterated logarithm (strengthening strong law)

$S_{n} / n-\mu \rightarrow 0$ a.s.
Is there a proper a_{n} such that the "limit" of S_{n} / a_{n} is nonzero finite?

- Kolmogorov's law of iterated logarithm.

$$
\limsup _{n \rightarrow \infty} \frac{S_{n} / n-\mu}{\sqrt{2 \sigma^{2} n \log \log (n)}} \rightarrow 1, \quad \text { a.s. }
$$

where $\sigma^{2}=\operatorname{var}\left(X_{i}\right)$.

- Marcinkiewicz-Zygmund strong law: for $0<p<2$,

$$
\frac{S_{n}-n c}{n^{1 / p}} \rightarrow 0, \quad \text { a.s. }
$$

if and only if $E\left(\left|X_{i}\right|^{p}\right)<\infty$, where $c=\mu$ for $1 \leq p<2$.

Convergence of Series.

The convergence of S_{n} for independent X_{1}, \ldots, X_{n}.

- Khintchine's convergence theorem: if $E\left(X_{i}\right)=0$ and $\sum_{n} \operatorname{var}\left(X_{n}\right)<\infty$, then S_{n} converges a.s. as well as in L^{2}.

Convergence of Series.

The convergence of S_{n} for independent X_{1}, \ldots, X_{n}.

- Khintchine's convergence theorem: if $E\left(X_{i}\right)=0$ and $\sum_{n} \operatorname{var}\left(X_{n}\right)<\infty$, then S_{n} converges a.s. as well as in L^{2}.
- Kolmogorov's three series theorem:
S_{n} converges a.s. if and only if $\sum_{n} P\left(\left|X_{n}\right|>1\right)<\infty$, $\sum_{n} E\left(X_{n} 1_{\left\{\left|X_{n}\right| \leq 1\right\}}\right)<\infty$, and $\sum_{n} \operatorname{var}\left(X_{n} 1_{\left\{\left|X_{n}\right| \leq 1\right\}}\right)<\infty$.

Convergence of Series.

The convergence of S_{n} for independent X_{1}, \ldots, X_{n}.

- Khintchine's convergence theorem: if $E\left(X_{i}\right)=0$ and $\sum_{n} \operatorname{var}\left(X_{n}\right)<\infty$, then S_{n} converges a.s. as well as in L^{2}.
- Kolmogorov's three series theorem:
S_{n} converges a.s. if and only if $\sum_{n} P\left(\left|X_{n}\right|>1\right)<\infty$, $\sum_{n} E\left(X_{n} 1_{\left\{\left|X_{n}\right| \leq 1\right\}}\right)<\infty$, and $\sum_{n} \operatorname{var}\left(X_{n} 1_{\left\{\left|X_{n}\right| \leq 1\right\}}\right)<\infty$.
- Kronecker Lemma:

If $0<b_{n} \uparrow \infty$ and $\sum_{n}\left(a_{n} / b_{n}\right)<\infty$ then $\sum_{j=1}^{n} a_{j} / b_{n} \rightarrow 0$. A technique to show law of large numbers via convergence of series.

The central limit theorem (Chapter 2).

De Moivre-Lapalace Theorem
For $X_{1}, X_{2} \ldots$ independent, under proper conditions,

$$
\begin{gathered}
\quad \frac{S_{n}-E\left(S_{n}\right)}{\sqrt{\operatorname{var}\left(S_{n}\right)}} \rightarrow N(0,1) \text { in distribution. } \\
\text { i.e., } \quad P\left(\frac{S_{n}-E\left(S_{n}\right)}{\sqrt{\operatorname{var}\left(S_{n}\right)}}<x\right) \rightarrow P(N(0,1)<x)
\end{gathered}
$$

for all x.

The conditions and extensions

- Lyapunov.

The conditions and extensions

- Lyapunov.
- Lindeberg (1922) condition: X_{j} is mean 0 with variance σ_{j}^{2}, such that

$$
\sum_{j=1}^{n} E\left(X_{j}^{2} 1_{\left\{\left|X_{j}\right|>\epsilon s_{n}\right\}}\right)=o\left(s_{n}^{2}\right)
$$

for all $\epsilon>0$, where $s_{n}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2}$.

The conditions and extensions

- Lyapunov.
- Lindeberg (1922) condition: X_{j} is mean 0 with variance σ_{j}^{2}, such that

$$
\sum_{j=1}^{n} E\left(X_{j}^{2} 1_{\left\{\left|X_{j}\right|>\epsilon S_{n}\right\}}\right)=o\left(s_{n}^{2}\right)
$$

for all $\epsilon>0$, where $s_{n}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2}$.

- Feller (1935): If CLT holds, $\sigma_{n} / s_{n} \rightarrow 0$ and $s_{n} \rightarrow \infty$, then the above Lindeberg condition holds.

The conditions and extensions

- Lyapunov.
- Lindeberg (1922) condition: X_{j} is mean 0 with variance σ_{j}^{2}, such that

$$
\sum_{j=1}^{n} E\left(X_{j}^{2} 1_{\left\{\left|X_{j}\right|>\epsilon S_{n}\right\}}\right)=o\left(s_{n}^{2}\right)
$$

for all $\epsilon>0$, where $s_{n}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2}$.

- Feller (1935): If CLT holds, $\sigma_{n} / s_{n} \rightarrow 0$ and $s_{n} \rightarrow \infty$, then the above Lindeberg condition holds.
- Extensions to martingales, Markov process ...

The conditions and extensions

- Lyapunov.
- Lindeberg (1922) condition: X_{j} is mean 0 with variance σ_{j}^{2}, such that

$$
\sum_{j=1}^{n} E\left(X_{j}^{2} 1_{\left\{\left|X_{j}\right|>\epsilon S_{n}\right\}}\right)=o\left(s_{n}^{2}\right)
$$

for all $\epsilon>0$, where $s_{n}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2}$.

- Feller (1935): If CLT holds, $\sigma_{n} / s_{n} \rightarrow 0$ and $s_{n} \rightarrow \infty$, then the above Lindeberg condition holds.
- Extensions to martingales, Markov process ...
- Inference in statistics (accuracy justification of estimation: confidence interval, test of hypothesis.)

Rate of convergence to normality

Suppose X_{1}, \ldots, X_{n} are iid.

- Berry-Esseen Bound:

$$
\left|P\left(\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}}<x\right)-P(N(0,1)<x)\right| \leq \frac{c \gamma / \sigma^{3}}{n^{1 / 2}}
$$

for all x, where $\gamma=E\left(\left|X_{i}\right|^{3}\right)$ and c is a universal constant.

Rate of convergence to normality

Suppose X_{1}, \ldots, X_{n} are iid.

- Berry-Esseen Bound:

$$
\left|P\left(\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}}<x\right)-P(N(0,1)<x)\right| \leq \frac{c \gamma / \sigma^{3}}{n^{1 / 2}}
$$

for all x, where $\gamma=E\left(\left|X_{i}\right|^{3}\right)$ and c is a universal constant.

- Extensions, e.g., to non iid cases, etc..

Rate of convergence to normality

Suppose X_{1}, \ldots, X_{n} are iid.

- Berry-Esseen Bound:

$$
\left|P\left(\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}}<x\right)-P(N(0,1)<x)\right| \leq \frac{c \gamma / \sigma^{3}}{n^{1 / 2}}
$$

for all x, where $\gamma=E\left(\left|X_{i}\right|^{3}\right)$ and c is a universal constant.

- Extensions, e.g., to non iid cases, etc..
- Edgeworth expansion.

Random Walk (Chapter 3)

Given X_{1}, X_{2}, \ldots iid, we study the behavior $\left\{S_{1}, S_{2}, \ldots\right\}$ as a sequence of random variables.

- Stopping times.
T is an integer-valued r.v. such that $T=n$ only depends on the values of X_{1}, \ldots, X_{n}, on, in other words, the values S_{1}, \ldots, S_{n}.

Random Walk (Chapter 3)

Given X_{1}, X_{2}, \ldots iid, we study the behavior $\left\{S_{1}, S_{2}, \ldots\right\}$ as a sequence of random variables.

- Stopping times.
T is an integer-valued r.v. such that $T=n$ only depends on the values of X_{1}, \ldots, X_{n}, on, in other words, the values S_{1}, \ldots, S_{n}.
- Wald's identity/equation:

Under proper conditions, $E\left(S_{T}\right)=\mu E(T)$.

Random Walk (Chapter 3)

Given X_{1}, X_{2}, \ldots iid, we study the behavior $\left\{S_{1}, S_{2}, \ldots\right\}$ as a sequence of random variables.

- Stopping times.
T is an integer-valued r.v. such that $T=n$ only depends on the values of X_{1}, \ldots, X_{n}, on, in other words, the values S_{1}, \ldots, S_{n}.
- Wald's identity/equation:

Under proper conditions, $E\left(S_{T}\right)=\mu E(T)$.

- Interpretation: if X_{i} is the gain/loss of the i-th game, which is fair in the sense that $E\left(X_{i}\right)=0$. Then S_{n} is the cumulative gain/loss in the first n games. Under proper conditions, any exit strategy (stopping time) shall still break even.

Tool box:

- Indicator functions.
(e.g.,Borel-Cantelli Lemma \rightarrow Borel's strong law of large numbers
\rightarrow Kolmogorov's 0-1 law.)

Tool box:

- Indicator functions.
(e.g.,Borel-Cantelli Lemma \rightarrow Borel's strong law of large numbers
\rightarrow Kolmogorov's 0-1 law.)
- Truncation.

Tool box:

- Indicator functions.
(e.g.,Borel-Cantelli Lemma \rightarrow Borel's strong law of large numbers
\rightarrow Kolmogorov's 0-1 law.)
- Truncation.
- Characteristic functions/moment generating functions. (in proving the CLT and its convergence rates)

Inequalities

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.

Inequalities

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.

Inequalities

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.
- Kolmogorov.

Inequalities

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.
- Kolmogorov.
- Exponential: Berstein, Bennett, Hoeffding,

Inequalities

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.
- Kolmogorov.
- Exponential: Berstein, Bennett, Hoeffding,
- Doob (for martingale).

Inequalities

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.
- Kolmogorov.
- Exponential: Berstein, Bennett, Hoeffding,
- Doob (for martingale).
- Khintchine, Marcinkiewicz-Zygmund, Burkholder-Gundy,

Martingales (Chapter 4).

1. Conditional expectation with respect to σ-algebra.
2. Definition of martingales,
3. Inequalities.
4. Optional sampling theorem.
5. Martingale convergence theorem.
