# Advanced Probability Theory (Math541)

#### Instructor: Kani Chen

(Classic)/Modern Probability Theory (1900-1960)

э

<ロ> <回> <回> <回> < 回> < 回> < □> <

(16th-19th century)

• Gerolamo Cardano (1501-1576) "Liber de Ludo Aleae" (games of chance)

< 回 > < 三 > < 三 > 、

(16th-19th century)

- Gerolamo Cardano (1501-1576) "Liber de Ludo Aleae" (games of chance)
- Galilei Galileo (1564-1642)

< 回 > < 三 > < 三 > 、

(16th-19th century)

- Gerolamo Cardano (1501-1576) "Liber de Ludo Aleae" (games of chance)
- Galilei Galileo (1564-1642)
- Pierre de Fermat (1601-1665) and Blaise Pascal (1623-1662)

(16th-19th century)

- Gerolamo Cardano (1501-1576)
  "Liber de Ludo Aleae" (games of chance)
- Galilei Galileo (1564-1642)
- Pierre de Fermat (1601-1665) and Blaise Pascal (1623-1662)
- Jakob Bernoulli (1654 -1705) Bernoulli trial/distribution/r.v/numbers
   Daniel (1700-1782) (utility function)
   Johann (1667-1748) (L'Hopital rule)

A D A D A D A

• Abraham de Moivre (1667-1754) "Doctrine of Chances"

æ

イロン イ理 とく ヨン イヨン

- Abraham de Moivre (1667-1754) "Doctrine of Chances"
- Pierre-Simon Laplace (1749-1827) Laplace transform
   De Moivre-Laplace Theorem (the central limit theorem)

< 同 > < 回 > < 回 > <

- Abraham de Moivre (1667-1754) "Doctrine of Chances"
- Pierre-Simon Laplace (1749-1827) Laplace transform
   De Moivre-Laplace Theorem (the central limit theorem)
- Simeon Denis Poisson (1781-1840). Poisson distribution/process, the law of rare events

A D A D A D A

- Abraham de Moivre (1667-1754) "Doctrine of Chances"
- Pierre-Simon Laplace (1749-1827) Laplace transform
   De Moivre-Laplace Theorem (the central limit theorem)
- Simeon Denis Poisson (1781-1840). Poisson distribution/process, the law of rare events
- Emile Borel (1871-1956). Borel sets/measurable, Borel-Cantelli lemma, Borel strong law.

# Foundation of modern probability:

• Keynes, J. M. (1921): A Treatise on Probability.

э

イロン イロン イヨン イヨン

# Foundation of modern probability:

- Keynes, J. M. (1921): A Treatise on Probability.
- von Mises, R. (1928): Probability, Statistics and Truth. (1931): Mathematical Theory of Probability and Statistics.

< 回 > < 三 > < 三 >

# Foundation of modern probability:

- Keynes, J. M. (1921): A Treatise on Probability.
- von Mises, R. (1928): Probability, Statistics and Truth. (1931): Mathematical Theory of Probability and Statistics.
- Kolmogorov, A. (1933): Foundations of the Theory of Probability. Kolmogorov's axioms: Probability space trio: (Ω, F, P).

A D A D A D A

(Chapter 1 begins)

Sets, set operations (∩, ∪ and complement), set of sets/subsets, algebra, *σ*-algebra, measurable space (Ω, *F*), product space ...

P

(Chapter 1 begins)

- Sets, set operations (∩, ∪ and complement), set of sets/subsets, algebra, *σ*-algebra, measurable space (Ω, *F*), product space ...
- measures, probabilities, product measure, independence of events, conditional probabilities, conditional expectation with respect to *σ*-algebra.

(Chapter 1 begins)

- Sets, set operations (∩, ∪ and complement), set of sets/subsets, algebra, *σ*-algebra, measurable space (Ω, *F*), product space ...
- measures, probabilities, product measure, independence of events, conditional probabilities, conditional expectation with respect to *σ*-algebra.
- Transformation/map, measurable transformation/map, random variables/elements defined through mapping  $X = X(\omega)$ .

(Chapter 1 begins)

- Sets, set operations (∩, ∪ and complement), set of sets/subsets, algebra, *σ*-algebra, measurable space (Ω, *F*), product space ...
- measures, probabilities, product measure, independence of events, conditional probabilities, conditional expectation with respect to *σ*-algebra.
- Transformation/map, measurable transformation/map, random variables/elements defined through mapping  $X = X(\omega)$ .
- Expectation/integral.

(Chapter 1 begins)

- Sets, set operations (∩, ∪ and complement), set of sets/subsets, algebra, *σ*-algebra, measurable space (Ω, *F*), product space ...
- measures, probabilities, product measure, independence of events, conditional probabilities, conditional expectation with respect to *σ*-algebra.
- Transformation/map, measurable transformation/map, random variables/elements defined through mapping  $X = X(\omega)$ .
- Expectation/integral.
- Caratheodory's extension theorem, Kolmogorov's extension theorem, Dynkin's  $\pi \lambda$  theorem, The Radon-Nikodym Theorem.

3

・ロト ・四ト ・ヨト ・ヨト

#### **Convergence.**

 Convergence modes: convergence almost sure (strong), in probability, in L<sup>p</sup> (most commonly, L<sup>1</sup> or L<sup>2</sup>), in distribution/law (weak). The relations of the convergence modes.

< 回 > < 回 > < 回 >

#### **Convergence.**

 Convergence modes: convergence almost sure (strong), in probability, in L<sup>p</sup> (most commonly, L<sup>1</sup> or L<sup>2</sup>), in distribution/law (weak). The relations of the convergence modes.

 Dominated convergence theorem, (extension to uniformly integrable r.v.s.) monotone convergence theorem. Fatou's lemma.

回 ト イヨ ト イヨト

## Law of Large numbers.

 $X_1, ..., X_n, ...$  are iid random variables with mean  $\mu$ . Let  $S_n = \sum_{i=1}^n X_i$ . • Weak law of Large numbers:

$$S_n/n \rightarrow \mu$$
, in probability.

i.e., for any  $\epsilon > 0$ ,

$$P(|S_n/n - \mu| > \epsilon) \rightarrow 0.$$

э

## Law of Large numbers.

 $X_1, ..., X_n, ...$  are iid random variables with mean  $\mu$ . Let  $S_n = \sum_{i=1}^n X_i$ . • Weak law of Large numbers:

$$S_n/n \rightarrow \mu$$
, in probability.

i.e., for any  $\epsilon > 0$ ,

$$P(|S_n/n-\mu| > \epsilon) \to 0.$$

Kolmogorov's Strong law of Large numbers:

 $S_n/n \rightarrow \mu$ , almost surely.

# Law of Large numbers.

 $X_1, ..., X_n, ...$  are iid random variables with mean  $\mu$ . Let  $S_n = \sum_{i=1}^n X_i$ . • Weak law of Large numbers:

$$S_n/n \rightarrow \mu$$
, in probability.

i.e., for any  $\epsilon > 0$ ,

$$P(|S_n/n-\mu| > \epsilon) \to 0.$$

Kolmogorov's Strong law of Large numbers:

 $S_n/n \rightarrow \mu$ , almost surely.

Consistency in statistical estimation.

# Large deviation (strengthening weak law)

For fixed t > 0, how fast is  $P(S_n/n - \mu > t) \rightarrow 0$ ?

Under regularity conditions,

$$\frac{1}{n}\log P(S_n/n-\mu>t)\approx \gamma(t),$$

where  $\gamma$  is determined by the common distribution of  $X_i$ .

# Large deviation (strengthening weak law)

For fixed t > 0, how fast is  $P(S_n/n - \mu > t) \rightarrow 0$ ?

Under regularity conditions,

$$\frac{1}{n}\log P(S_n/n-\mu>t)\approx \gamma(t),$$

where  $\gamma$  is determined by the common distribution of  $X_i$ .

• Special case,  $X_i$  are iid N(0, 1), then  $\gamma(t) = -t^2/2$ . Note that  $1 - \Phi(x) \approx \phi(x)/x$ .

Law of iterated logarithm (strengthening strong law)

 $S_n/n - \mu \rightarrow 0$  a.s.

Is there a proper  $a_n$  such that the "limit" of  $S_n/a_n$  is nonzero finite?

• Kolmogorov's law of iterated logarithm.

$$\limsup_{n o \infty} rac{{\sf S}_n/n-\mu}{\sqrt{2\sigma^2 n \log\log(n)}} o {\sf 1}, \quad {\sf a.s.}$$

where  $\sigma^2 = var(X_i)$ .

3

Law of iterated logarithm (strengthening strong law)

 $S_n/n - \mu \rightarrow 0$  a.s. Is there a proper  $a_n$  such that the "limit" of  $S_n/a_n$  is nonzero finite?

• Kolmogorov's law of iterated logarithm.

$$\limsup_{n o \infty} rac{{\sf S}_n/n-\mu}{\sqrt{2\sigma^2 n \log\log(n)}} o {\sf 1}, \quad {\sf a.s.}$$

where  $\sigma^2 = var(X_i)$ .

Marcinkiewicz-Zygmund strong law: for 0

$$\frac{S_n-nc}{n^{1/p}}\to 0, \quad \text{a.s.},$$

if and only if  $E(|X_i|^p) < \infty$ , where  $c = \mu$  for  $1 \le p < 2$ .

#### Convergence of Series.

The convergence of  $S_n$  for independent  $X_1, ..., X_n$ .

• Khintchine's convergence theorem: if  $E(X_i) = 0$  and  $\sum_n var(X_n) < \infty$ , then  $S_n$  converges a.s. as well as in  $L^2$ .

#### Convergence of Series.

The convergence of  $S_n$  for independent  $X_1, ..., X_n$ .

- Khintchine's convergence theorem: if  $E(X_i) = 0$  and  $\sum_n var(X_n) < \infty$ , then  $S_n$  converges a.s. as well as in  $L^2$ .
- Kolmogorov's three series theorem:  $S_n$  converges a.s. if and only if  $\sum_n P(|X_n| > 1) < \infty$ ,  $\sum_n E(X_n \mathbf{1}_{\{|X_n| \le 1\}}) < \infty$ , and  $\sum_n var(X_n \mathbf{1}_{\{|X_n| \le 1\}}) < \infty$ .

3

#### Convergence of Series.

The convergence of  $S_n$  for independent  $X_1, ..., X_n$ .

- Khintchine's convergence theorem: if  $E(X_i) = 0$  and  $\sum_n var(X_n) < \infty$ , then  $S_n$  converges a.s. as well as in  $L^2$ .
- Kolmogorov's three series theorem:  $S_n$  converges a.s. if and only if  $\sum_n P(|X_n| > 1) < \infty$ ,  $\sum_n E(X_n \mathbf{1}_{\{|X_n| \le 1\}}) < \infty$ , and  $\sum_n var(X_n \mathbf{1}_{\{|X_n| \le 1\}}) < \infty$ .
- Kronecker Lemma:

If  $0 < b_n \uparrow \infty$  and  $\sum_n (a_n/b_n) < \infty$  then  $\sum_{j=1}^n a_j/b_n \to 0$ . A technique to show law of large numbers via convergence of series.

3

# The central limit theorem (Chapter 2).

De Moivre-Lapalace Theorem For  $X_1, X_2$ ... independent, under proper conditions,

$$\begin{split} \frac{S_n - E(S_n)}{\sqrt{\text{var}(S_n)}} &\to N(0, 1) \quad \text{in distribution.} \\ i.e., \qquad P\Big(\frac{S_n - E(S_n)}{\sqrt{\text{var}(S_n)}} < x\Big) \to P(N(0, 1) < x) \end{split}$$

for all x.

Lyapunov.

Э.

< 四 > < 回 > < 回 > < 回 > <</li>

- Lyapunov.
- Lindeberg (1922) condition: X<sub>j</sub> is mean 0 with variance σ<sup>2</sup><sub>j</sub>, such that

$$\sum_{j=1}^{n} E(X_j^2 \mathbf{1}_{\{|X_j| > \epsilon s_n\}}) = o(s_n^2)$$

for all 
$$\epsilon > 0$$
, where  $s_n^2 = \sum_{j=1}^n \sigma_j^2$ .

э

- Lyapunov.
- Lindeberg (1922) condition: X<sub>j</sub> is mean 0 with variance σ<sup>2</sup><sub>j</sub>, such that

$$\sum_{j=1}^{n} E(X_{j}^{2} \mathbf{1}_{\{|X_{j}| > \epsilon s_{n}\}}) = o(s_{n}^{2})$$

for all  $\epsilon > 0$ , where  $s_n^2 = \sum_{j=1}^n \sigma_j^2$ .

Feller (1935): If CLT holds, *σ<sub>n</sub>/s<sub>n</sub>* → 0 and *s<sub>n</sub>* → ∞, then the above Lindeberg condition holds.

- Lyapunov.
- Lindeberg (1922) condition: X<sub>j</sub> is mean 0 with variance σ<sup>2</sup><sub>j</sub>, such that

$$\sum_{j=1}^{n} E(X_{j}^{2} \mathbf{1}_{\{|X_{j}| > \epsilon s_{n}\}}) = o(s_{n}^{2})$$

for all  $\epsilon > 0$ , where  $s_n^2 = \sum_{j=1}^n \sigma_j^2$ .

- Feller (1935): If CLT holds, *σ<sub>n</sub>/s<sub>n</sub>* → 0 and *s<sub>n</sub>* → ∞, then the above Lindeberg condition holds.
- Extensions to martingales, Markov process ...

Lyapunov.

Lindeberg (1922) condition: X<sub>j</sub> is mean 0 with variance σ<sup>2</sup><sub>j</sub>, such that

$$\sum_{j=1}^{n} E(X_{j}^{2} \mathbf{1}_{\{|X_{j}| > \epsilon s_{n}\}}) = o(s_{n}^{2})$$

for all  $\epsilon > 0$ , where  $s_n^2 = \sum_{j=1}^n \sigma_j^2$ .

- Feller (1935): If CLT holds, *σ<sub>n</sub>/s<sub>n</sub>* → 0 and *s<sub>n</sub>* → ∞, then the above Lindeberg condition holds.
- Extensions to martingales, Markov process ...
- Inference in statistics (accuracy justification of estimation: confidence interval, test of hypothesis.)

### Rate of convergence to normality

Suppose  $X_1, ..., X_n$  are iid.

Berry-Esseen Bound:

$$\left| P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} < x\right) - P(N(0, 1) < x) \right| \le \frac{c\gamma/\sigma^3}{n^{1/2}}$$

for all x, where  $\gamma = E(|X_i|^3)$  and c is a *universal* constant.

#### Rate of convergence to normality

Suppose  $X_1, ..., X_n$  are iid.

Berry-Esseen Bound:

$$\left| P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} < x\right) - P(N(0, 1) < x) \right| \le \frac{c\gamma/\sigma^3}{n^{1/2}}$$

for all *x*, where  $\gamma = E(|X_i|^3)$  and *c* is a *universal* constant.

• Extensions, e.g., to non iid cases, etc..

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Rate of convergence to normality

Suppose  $X_1, ..., X_n$  are iid.

Berry-Esseen Bound:

$$\left| P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} < x\right) - P(N(0, 1) < x) \right| \le \frac{c\gamma/\sigma^3}{n^{1/2}}$$

for all x, where  $\gamma = E(|X_i|^3)$  and c is a *universal* constant.

- Extensions, e.g., to non iid cases, etc..
- Edgeworth expansion.

伺い イヨト イヨト・

# Random Walk (Chapter 3)

Given  $X_1, X_2, ...$  iid, we study the behavior  $\{S_1, S_2, ...\}$  as a sequence of random variables.

#### Stopping times.

*T* is an integer-valued r.v. such that T = n only depends on the values of  $X_1, ..., X_n$ , on, in other words, the values  $S_1, ..., S_n$ .

# Random Walk (Chapter 3)

Given  $X_1, X_2, ...$  iid, we study the behavior  $\{S_1, S_2, ...\}$  as a sequence of random variables.

• Stopping times.

*T* is an integer-valued r.v. such that T = n only depends on the values of  $X_1, ..., X_n$ , on, in other words, the values  $S_1, ..., S_n$ .

Wald's identity/equation:
 Under proper conditions, E(S<sub>T</sub>) = μE(T).

# Random Walk (Chapter 3)

Given  $X_1, X_2, ...$  iid, we study the behavior  $\{S_1, S_2, ...\}$  as a sequence of random variables.

Stopping times.

*T* is an integer-valued r.v. such that T = n only depends on the values of  $X_1, ..., X_n$ , on, in other words, the values  $S_1, ..., S_n$ .

- Wald's identity/equation: Under proper conditions, E(S<sub>T</sub>) = μE(T).
- Interpretation: if  $X_i$  is the gain/loss of the *i*-th game, which is fair in the sense that  $E(X_i) = 0$ . Then  $S_n$  is the cumulative gain/loss in the first *n* games. Under proper conditions, any exit strategy (stopping time) shall still break even.

3

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

#### **Tool box:**

Indicator functions.

(e.g., Borel-Cantelli Lemma  $\rightarrow$  Borel's strong law of large numbers

 $\rightarrow$  Kolmogorov's 0-1 law.)

э

#### **Tool box:**

Indicator functions.

(e.g., Borel-Cantelli Lemma  $\rightarrow$  Borel's strong law of large numbers

- $\rightarrow$  Kolmogorov's 0-1 law.)
- Truncation.

э

### **Tool box:**

Indicator functions.

(e.g., Borel-Cantelli Lemma  $\rightarrow$  Borel's strong law of large numbers  $\rightarrow$  Kolmogorov's 0-1 law.)

- Truncation.
- Characteristic functions/moment generating functions. (in proving the CLT and its convergence rates)

P + 4 = + 4 = +



• Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.

э

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.

э

A (B) > A (B) > A (B) >

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.
- Kolmogorov.

э

< 回 > < 回 > < 回 >

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.
- Kolmogorov.
- Exponential: Berstein, Bennett, Hoeffding,

< 回 > < 回 > < 回 >

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.
- Kolmogorov.
- Exponential: Berstein, Bennett, Hoeffding,
- Doob (for martingale).

- Jensen, Holder, Cauchy-Schwartz, Lyapunov, Minkowski.
- Markov, Chebyshev.
- Kolmogorov.
- Exponential: Berstein, Bennett, Hoeffding,
- Doob (for martingale).
- Khintchine, Marcinkiewicz-Zygmund, Burkholder-Gundy,

# Martingales (Chapter 4).

- 1. Conditional expectation with respect to  $\sigma$ -algebra.
- 2. Definition of martingales,
- 3. Inequalities.
- 4. Optional sampling theorem.
- 5. Martingale convergence theorem.