PRELIMINARIES

Some Useful Notations

\exists	there exists
\forall	for all
$\Rightarrow \quad$ implies	
\Leftrightarrow	equivalent to (iff)
$\in \quad$ belongs to	
$\{x \mid q(x)\} \quad$ set specification	
$A \subset B \quad$ A is a subset of B	
$A \cup B \quad$ the union of A and B	
$A \cap B \quad$ the intersection of A and B	

Points and Sets in \mathcal{R}^{n}
What is \mathcal{R}^{n} ?
\mathcal{R}^{n} is the set $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}\right.$ are real numbers $\}$.
An element, or a point, of \mathcal{R}^{n} is an n-tuple
$\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
\mathcal{R}^{n} is the Cartesian product of $\mathrm{n} \mathcal{R}$.
Example $\mathcal{R}^{2}=\mathcal{R} \times \mathcal{R}=\{(x, y) \mid x, y$ belong to $\mathcal{R}\}$

Recall the following way to construct the product of two sets

Definition The Cartesian product of two sets X and Y is the set

 $X \times Y=\{(x, y) \mid x$ belongs to X and y belongs to $Y\}$.A rectangular region in \mathcal{R}^{n} can be constructed as the Cartesian product of n intervals.

Example $[a, b] \times[c, d]=\{(x, y) \mid a \leq x \leq b \& c \leq y \leq$ d\} It is a closed subset of \mathcal{R}^{2}.

Rectangular (Cartesian) Coordinates

In Analytic Geometry, the location of a point in three-dimensional space can be determined by its coordinates with respect to a coordinate system.

Usually the system is rectangular; it means that the coordinate axes are perpendicular to each other.

Arrangement of the axes in 3D is according to the "Right-Hand Rule".

Important Open Sets

In the one dimensional case, Open neighborhoods

$$
N_{\delta}\left(x_{0}\right)=\left\{x| | x-x_{0} \mid<\delta\right\}
$$

and deleted open neighborhoods

$$
\bar{N}_{\delta}\left(x_{0}\right)=\left\{x\left|0<\left|x-x_{0}\right|<\delta\right\}\right.
$$

are needed in defining 'limit'.

Definition We say that 'the number l is the limit of $f(x)$ as x approaches $x_{0}{ }^{\prime}$ and write

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} f(x)=l \text { if for any } \varepsilon>0 \exists \delta>0 \text { such } \\
& \text { that } x \in \bar{N}_{\delta}\left(x_{0}\right) \Rightarrow f(x) \in N_{\varepsilon}(l)
\end{aligned}
$$

The corresponding open sets in two dimensions are:
(i) An open disk in \mathcal{R}^{2}, centered at $\left(x_{0}, y_{0}\right)$ and with radius δ, is the set

$$
D_{\delta}\left(x_{0}, y_{0}\right)=\left\{(x, y) \mid \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta\right\}
$$

(ii) A deleted open disk centered at $\left(x_{0}, y_{0}\right)$ with radius δ is the set

$$
\bar{D}_{\delta}\left(x_{0}, y_{0}\right)=\left\{(x, y) \mid 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta\right\} .
$$

Elementary Functions

$x^{n}, \sin x$ and $\cos x, e^{x}(\exp x)$ and $\ln x$
They are continuous and differentiable (infinitely many times) in their natural domains.

Vectors and Scalars

A vector is described by two things: a direction and a magnitude.

Example What are supposed to be vectors?
displacement, velocity, force, angular velocity, ...

A vector is denoted by $\overrightarrow{P Q}$ or \vec{A}, or \bar{A}. Its magnitude (or length) is denoted by $|\overrightarrow{P Q}|$ or $|\vec{A}|$, or simply $A . P$ is the initial point; Q is the terminal point.

Abstract vectors discard the exact "locations" of the initial/terminal points. A vector can be concieved as a pointed stick which can be translated freely as long as the direction and length are unchanged.

A scalar is simply a real number; it is usually denoted by a lower-case alphabet.

Displacement vectors (or pointed sticks) can be used to illustrate the basic properties of general vectors.

Fundamental Properties \& Operations of Vectors

1. Equality: $\vec{A}=\vec{B}$
iff they have the same magnitude \& direction locations of the initial points are irrelevant
2. Parallel vectors: $\vec{A} \| \vec{B}$
iff they have the same (or opposite) direction
3. Negative vector: $-\vec{A}$
has the same magnitude as \vec{A}, but opposite direction 4. Addition: $\vec{A}+\vec{B}$
defined by the triangle rule
4. Subtraction: $\vec{A}-\vec{B}$
defined as $=\vec{A}+(-\vec{B})$
therefore, $\vec{A}-\vec{A}=\overrightarrow{0}$ (zero vector)
5. Multiplication by a scalar: $m \vec{A}$
is a vector with magnitude $|m||\vec{A}|$ and direction the same or opposite to \vec{A} according as m is >0 or <0. If $m=0, m \vec{A}=\overrightarrow{0}$.

Thus, for non-zero m and $\vec{A}, m \vec{A} \| \vec{A}$.
Note Suppose that \vec{A} and $\vec{B} \neq \overrightarrow{0} . \vec{A} \| \vec{B}$ iff $\exists m \neq 0$ such that $m \vec{A}=\vec{B}$.
$\overrightarrow{0}$ is not parallel to any other vector.

The Algebra of Vectors

If $\vec{A}, \vec{B}, \vec{C}$ are vectors, and m, n are scalars, then:

1. $\vec{A}+\vec{B}=\vec{B}+\vec{A}$
commutative law for vector addition
2. $\vec{A}+(\vec{B}+\vec{C})=(\vec{A}+\vec{B})+\vec{C}$
associative law for vector addition
3. $m(n \vec{A})=(m n) \vec{A}=n(m \vec{A})$
associate law for scalar multiplication
4. $(m+n) \vec{A}=m \vec{A}+n \vec{A}$
distributive law for scalar multiplication
5. $m(\vec{A}+\vec{B})=m \vec{A}+m \vec{B}$
distributive law for scalar multiplication

$\underline{\text { Unit Vectors }}$

- vectors with unit length

Normalizing a vector
If $|A| \neq 0, \quad \hat{A}=\frac{\vec{A}}{|\vec{A}|}$ is the unit vector along the same direction as \vec{A}.

Rectangular Unit Vectors

$$
\left.\begin{array}{l}
\vec{i} \| \\
\vec{x} \text {-axis } \\
\vec{j} \| \\
\vec{k} \| \\
\text { y-axis } \\
\text { z-axis }
\end{array}\right\} \perp \text { to each other }
$$

Similar to the coordinate axes, $\vec{i}, \vec{j}, \vec{k}$ form a righthanded system.

They are called the basic unit vectors.

Correspondence Between Vectors and Points in \mathcal{R}^{n}

As long as the coordinate system is fixed, the correspondence between points in real space and the 3 -tuples of coordinates are 1-1 and onto.

Recall that two vectors \vec{A} and \vec{B} are considered equal iff they have the same magnitude and direction, regardless of the initial point. Any vector \vec{A} in 3 (or n) dimensions can then be represented with initial point placed at the origin O of a rectangular coordinate system. The terminal point will then fall on some point with label $\left(A_{1}, A_{2}, A_{3}\right)$ in the coordinate system. The numbers A_{1}, A_{2}, A_{3} are called the x, y, z components of \vec{A}; they describe \vec{A} completely and uniquely.

The basic unit vectors can be specified as:

$$
\vec{i}=(1,0,0), \quad \vec{j}=(0,1,0), \quad \vec{k}=(0,0,1)
$$

\vec{A} can be written as

$$
\vec{A}=A_{1} \vec{i}+A_{2} \vec{j}+A_{3} \vec{k}
$$

where $A_{1} \vec{i}, A_{2} \vec{j}$, and $A_{3} \vec{k}$ are vector components of \vec{A}. The magnitude of \vec{A} can be computed as

$$
|\vec{A}|=\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}}
$$

Vector Operations in Terms of Components

Vector addition

$$
\vec{A}+\vec{B}=\left(A_{1}+B_{1}\right) \vec{i}+\left(A_{2}+B_{2}\right) \vec{j}+\left(A_{3}+B_{3}\right) \vec{k}
$$

Scalar multiplication

$$
m \vec{A}=\left(m A_{1}\right) \vec{i}+\left(m A_{2}\right) \vec{j}+\left(m A_{3}\right) \vec{k}
$$

Directed Line Segment

A 'directed line segment' is a straight line segment joining two points in space. The direction is from the initial point
$P=\left(P_{1}, P_{2}, P_{3}\right)$ to the terminal point $Q=\left(Q_{1}, Q_{2}, Q_{3}\right)$. The 'directed line segment vector' is

$$
\overrightarrow{P Q}=\left(Q_{1}-P_{1}\right) \vec{i}+\left(Q_{2}-P_{2}\right) \vec{j}+\left(Q_{3}-P_{3}\right) \vec{k}
$$

Example 1. Find $\overrightarrow{P Q}$ if $P=(1,2,3), Q=(4,5,6)$
2. Find a unit vector $\| \overrightarrow{P Q}$
3. Check if $\vec{A} \| \vec{B}$
(a) $\vec{A}=\vec{i}+\vec{j}+\vec{k}, \vec{B}=\sqrt{2 i}+\sqrt{2} \vec{j}+\sqrt{2} \vec{k}$
(b) $\vec{A}=\vec{i}+\vec{j}+\vec{k}, \vec{B}=\sqrt{2} \vec{i}+\sqrt{2} \vec{j}$

Dot (or Scalar, or Inner) Product

Definition The dot product of two vectors \vec{A}, \vec{B} is the real number
$\vec{A} \cdot \vec{B}=|A||B| \cos \theta \quad 0 \leq \theta \leq \pi$.
θ is the angle between \vec{A} and \vec{B}.

Projection
Let $\hat{B}=\vec{B} /\|\vec{B}\|$. The scalar projection of \vec{A} onto \vec{B} is

$$
\vec{A} \cdot \hat{B}=(\vec{A} \cdot \vec{B}) /\|\vec{B}\| .
$$

It is the 'shadow' of \vec{A} on a line L along \vec{B}.

The vector projection of \vec{A} onto \vec{B} is the vector

$$
\operatorname{proj}_{\vec{B}} \vec{A}=(\vec{A} \cdot \hat{B}) \hat{B}
$$

It is the unit vector along \vec{B} multiplied by the scalar projection of \vec{A} onto \vec{B}.

Basic properties of the dot product

1. $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A} \quad$ commutative
2. $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$
distributive (pf: use projections of \vec{B}, \vec{C} onto \vec{A})
3. $m(\vec{A} \cdot \vec{B})=(m \vec{A}) \cdot \vec{B}=\vec{A} \cdot(m \vec{B}) \quad m$ a scalar
4. $\vec{i} \cdot \vec{i}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1$
$\vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{k}=\vec{k} \cdot \vec{i}=0$
5. If $\vec{A}=A_{1} \vec{i}+A_{2} \vec{j}+A_{3} \vec{k}, B=B_{1} \vec{i}+B_{2} \vec{j}+B_{3} \vec{k}$, then $\vec{A} \cdot \vec{B}=A_{1} B_{1}+A_{2} B_{2}+A_{3} B_{3}$

Example Find the dot product of

$$
\vec{i}+\vec{j}+\vec{k} \text { and } \vec{i}+2 \vec{j}-3 \vec{k}
$$

6. If both $\vec{A}, \vec{B} \neq \overrightarrow{0}$, then $A \perp B \quad$ iff $\quad \vec{A} \cdot \vec{B}=0$

Example The components of \vec{A} are scalar projections of \vec{A} on the coordinate unit vectors.

Example Let $\vec{A}=\vec{i}+\vec{j}+\vec{k}$ and $\vec{B}=\vec{i}+\vec{j}$. Find the scalar projection of \vec{A} on \vec{B}. What about \vec{B} on \vec{A} ? Plot the vectors and note their positions. What is θ ? $\left(35.3^{\circ}\right)$

$\underline{\text { Cross (or Vector) Product }}$

Definition Let \vec{u} be a unit vector perpendicular to the plane containing \vec{A}, \vec{B} and such that \vec{A}, \vec{B}, \vec{u} form a right-handed system.
Then the cross product $\vec{A} \times \vec{B}$ can be defined as

$$
\vec{A} \times \vec{B}=|A||B| \sin \theta \quad \vec{u} \quad 0 \leq \theta \leq \pi
$$

where θ is the angle between \vec{A} and \vec{B}.

Basic properties of the cross product

1. $\vec{A} \times \vec{B} \perp$ both \vec{A} and \vec{B}
2. $|\vec{A} \times \vec{B}|=$ area of a parallelogram with sides \vec{A} and \vec{B}.
3. $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A} \quad$ not commutative $\Longrightarrow \vec{A} \times \vec{A}=\overrightarrow{0}$
4. $\vec{A} \times(\vec{B}+\vec{C})=\vec{A} \times \vec{B}+\vec{A} \times \vec{C} \quad$ distributive use parallelograms in $2 d$
5. $m(\vec{A} \times \vec{B})=(m \vec{A}) \times \vec{B}=\vec{A} \times(m \vec{B})$ m a scalar
6. If both $\vec{A}, \vec{B} \neq 0$, then $\vec{A} \| \vec{B}$ iff $\vec{A} \times \vec{B}=\overrightarrow{0}$
7. $\vec{i} \times \vec{i}=\vec{j} \times \vec{j}=\vec{k} \times \vec{k}=0$
$\vec{i} \times \vec{j}=\vec{k}, \quad \vec{j} \times \vec{k}=\vec{i}, \quad \vec{k} \times \vec{i}=\vec{j}$
How to remember cross products of the basic unit vectors?
Use cyclic ordering of $\vec{i}, \vec{j}, \vec{k}$
8. If $\vec{A}=A_{1} \vec{i}+A_{2} \vec{j}+A_{3} \vec{k}$,

$$
\vec{B}=B_{1} \vec{i}+B_{2} \vec{j}+B_{3} \vec{k}, \quad \text { then }
$$

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3}
\end{array}\right|
$$

You don't need to use the determinant if you do the cross products of the basic unit vectors directly.

Example Let $\bar{A}=4 \bar{i}-\bar{j}+3 \bar{k}$ and $\bar{B}=2 \bar{i}+\bar{j}-\bar{k}$. Find a vector perpendicular to \bar{A} and \bar{B}. $-2 \vec{i}+10 \vec{j}+6 \vec{k}$

Triple Products

Scalar triple product
$\vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{lll}A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3}\end{array}\right|$
$\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B})$
$|\vec{A} \cdot(\vec{B} \times \vec{C})|=$ volume of a parallelepiped with \vec{A}, \vec{B}, and \vec{C} as edges

Vector triple product

$$
\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C}
$$

Example: $\vec{k} \times(\vec{j} \times \vec{k})$ do both sides of the formula

