PART I: APPLICATION OF VECTORS

AND VECTOR-VALUED FUNCTIONS

Lines in Space

Vectors that connect any pair of points on a line l are $\|$. Vector description of a line

Consider the locus of the terminal points of the vectors (first in 2D)

$$
t \vec{A} \quad-\infty<t<\infty
$$

It is a straight line. This line can be displaced to describe any straight line $\|$ to \vec{A}.

The general vector expression for a line in space is:

$$
\vec{r}=\vec{r}_{0}+t \vec{A} \quad-\infty<t<\infty
$$

where \vec{r}_{0} is an arbitrary point on the line and \vec{A} is a vector $\|$ to the line.

Example Find a vector equation of the line that contains $(-1,3,0)$ and is parallel to $2 \bar{i}-3 \bar{j}-\bar{k}$

Example Find a vector equation of the line that passes through the two points: $(1,2,3)$ and $(4,5,6)$.

Note $\vec{r}(t)$ gives the location of a point on the line. It is not parallel to the line. \vec{A} is. Namely, if \vec{P} and \vec{Q} are any two different points on the line, then $\overrightarrow{P Q} \| \vec{A}$.

Parametric equations

$$
\begin{aligned}
& x=x_{0}+t A_{1} \\
& y=y_{0}+t A_{2} \\
& z=z_{0}+t A_{3}
\end{aligned}
$$

Example Find a set of parametric equations for the line of the previous example.

Analytic geometry (AG) description of a line

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2}
\end{array}\right.
$$

Example Find an AG description of the line in the previous example.

Degrees of Freedom / Dimensions

\equiv number of free parameters used to describe the geometrical object

Example Let \vec{A} be a vector in space, the object $t \vec{A}$ $(-\infty<t<\infty)$ has one free parameter, therefore the object has dimension 1.

Example If \vec{A} and \vec{B} are not parallel, and both $\neq \overrightarrow{0}$, what is the object
$t \vec{A}+s \vec{B} \quad-\infty<t<\infty \quad-\infty<s<\infty ?$

Planes in 3D Space

Basic geometrical facts
(i) Two different intersecting lines l_{1}, l_{2} (directions given by \vec{A}, \vec{B} respectively) define a plane through them.
(ii) There is a unique line l_{3} that passes through the point of intersection and is \perp to both lines. A vector $\vec{N} \| l_{3}$ defines a normal to the plane that contains $l_{1}, l_{2} \cdot(\vec{N} \cdot \vec{A}=\vec{N} \cdot \vec{B}=0)$
(iii) There is only one plane that contains a given point and is \perp to a given nonzero vector.

Vector description of a plane

A plane through two intersecting lines l_{1} and l_{2} can be generated as:

$$
\vec{r}=\vec{r}_{0}+t \vec{A}+s \vec{B} \quad-\infty<t<\infty,-\infty<s<\infty
$$

where \vec{r}_{0} is the point of intersection of l_{1}, l_{2}, and \vec{A}, \vec{B} are vectors along l_{1}, l_{2} respectively.

A normal is perpendicular to all directed line segments on the plane as $\vec{N} \cdot(t \vec{A}+s \vec{B})=0$.

Recall (ii) above for the definition of a normal. A vector is a normal to a plane iff it is perpendicular to all vectors associated with the directed line segments on the plane.

Parametric description of a plane:
Decompose the vector equation into components, as (linear) functions of the parameters.

$$
\begin{aligned}
& x=x_{0}+t A_{1}+s B_{1} \\
& y=y_{0}+t A_{2}+s B_{2} \\
& z=z_{0}+t A_{3}+s B_{3}
\end{aligned}
$$

This approach is not used much for planes, but very useful for general surfaces. The coordinates of a point on a surface can be specified as:

$$
\begin{aligned}
& x=f_{1}(t, s) \\
& y=f_{2}(t, s) \\
& z=f_{3}(t, s)
\end{aligned}
$$

These are two-variable functions which make components of a function

$$
f: \mathcal{R}^{2} \rightarrow \mathcal{R}^{3}
$$

AG description of a plane:

Let P be a fixed point on the plane, Q be any point on the plane, and \vec{N} be a normal. Then

$$
\vec{N} \cdot \overrightarrow{P Q}=0
$$

Writing $\vec{P}=\left(x_{0}, y_{0}, z_{0}\right), \vec{Q}=(x, y, z)$, and $\vec{N}=$ (a, b, c), one has

$$
\begin{aligned}
& (a, b, c) \cdot\left[(x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)\right]= \\
& a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
\end{aligned}
$$

The resultant equation is of the form

$$
a x+b y+c z=d .
$$

A normal to the plane can be found easily as

$$
\vec{N}=a \vec{i}+b \vec{j}+c \vec{k} .
$$

Example: Find an equation of the plane that contains the point $(-2,4,5)$ and has normal vector $7 \vec{i}-6 \vec{k}$

Example: Find a unit normal to the plane

$$
x+y+z=1 .
$$

Example: Find the plane through the three points $(0,0,1),(1,0,1),(0,1,1)$.

Quadric Surfaces

Definition: A quadric surface is a surface which contains points that satisfies the 2nd degree polynomial equation (AG description)

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F z x+G x+H y+I z+J=0
$$

where A, \ldots, J are constants.

Quadric surfaces fall into nine major classes. Examples of each are provided as following $(a, b, c>0)$:

1. Ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
2. Hyperboloid of one sheet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
3. Hyperboloid of two sheets $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
4. Elliptic double cone $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$
5. Elliptic paraboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}$
6. Hyperbolic paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}$
7. Elliptic cylinder $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
8. Hyperbolic cylinder $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
9. Parabolic cylinder $\quad x^{2}=\frac{z}{c}$
