PART III: VECTOR FIELDS

[We are getting less and less rigorous!]

Definition A vector field \vec{F} consists of two parts: a collection D of points in space, called the domain, and a rule, which assigns to each point (x, y, z) in D one and only one vector $\vec{F}(x, y, z)$.

Physical examples: electric field, gravity field, fluid flows (water, air)

Plot examples including source \& sink, vortex.

The Gradient of a Scaler Function Creates

a Vector Field

$$
\operatorname{grad} f=\vec{\nabla} f=f_{x} \vec{i}+f_{y} \vec{j}+f_{z} \vec{k}
$$

Definition If a vector field \vec{F} is equal to $\vec{\nabla} f$ for some differentiable function f (of several variables), then \vec{F} is called a conservative vector field, and f is a potential function of \vec{F}.

Note In physics, $-f$ is used as the potential of a force field.

Example Electric field of a point charge q.

$$
\begin{aligned}
& \vec{E}=\frac{q}{r^{2}} \hat{r} \\
& f=\frac{-q}{r}=\frac{-q}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}
\end{aligned}
$$

\hat{r} denotes the unit vector pointing along \vec{r}.

Divergence and Curl

Definition Let $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}$ be a vector field such that $\partial F_{1} / \partial x, \partial F_{2} / \partial y, \partial F_{3} / \partial z$ exist.
Then the divergence of \vec{F}, denoted $\operatorname{div} \vec{F}$ or $\vec{\nabla} \cdot \vec{F}$, is the scalar function defined by

$$
\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

If $\vec{\nabla} \cdot \vec{F}=0$, then \vec{F} is said to be divergence-free.

Source and Sink

Let $\vec{F}(x, y, z)$ be a vector field in space (example: a flow field), then

A point (x, y, z) is a source if $\vec{\nabla} \cdot \vec{F}>0$
A point (x, y, z) is a sink if $\vec{\nabla} \cdot \vec{F}<0$
Example Consider the divergence of the field $\vec{F}=a x \vec{i}$
for cases with $a>,=$, and <0.
Example Consider the field of a uniformly charged sphere

$$
\vec{E}=\left\{\begin{array}{clc}
r \hat{r} & \text { for } & r \leq a \\
\frac{a^{3}}{r^{2}} \hat{r} & \text { for } & r>a
\end{array}\right.
$$

$$
\vec{\nabla} \cdot \vec{E}=\left\{\begin{array}{rrr}
3 & \text { for } & r<a \\
\text { undefined for } & r=a \\
0 \text { for } & r>a
\end{array}\right.
$$

Note The divergence of a radial inverse square field is zero everywhere, except at the center.

Definition Let $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}$ be a vector field such that the first derivatives of F_{1}, F_{2}, F_{3} all exist. Then the curl of F, denoted $\operatorname{curl} \vec{F}$ or $\vec{\nabla} \times \vec{F}$, is defined by

$$
\begin{gathered}
\vec{\nabla} \times \vec{F}(x, y, z)=\left(\frac{\partial}{\partial x} \vec{i}+\frac{\partial}{\partial y} \vec{j}+\frac{\partial}{\partial z} \vec{k}\right) \times \vec{F} \\
=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \vec{i}+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \vec{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \vec{k} .
\end{gathered}
$$

Example Let $\vec{F}(x, y, z)=x z \vec{i}+x y^{2} z \vec{j}-e^{2 y} \vec{k}$. Find $\vec{\nabla} \times \vec{F}$

$$
\left[-\left(2 e^{2 y}+x y^{2}\right) \vec{i}+x \vec{j}+y^{2} z \vec{k}\right]
$$

Definition If $\vec{\nabla} \times \vec{F}=0, \vec{F}$ is said to be irrotational.
Example Consider the flow

$$
\vec{V}=+\Omega r \hat{\theta}
$$

where Ω is a constant (angular velocity).
a. Plot the flow.
b. Find $\vec{\nabla} \times \vec{V}$ and $\vec{\nabla} \cdot \vec{V}$.

Note that since $\hat{\theta}=-\sin \theta \vec{i}+\cos \theta \vec{j}$,
$\vec{V}=\Omega(-y \vec{i}+x \vec{j})$.

Formulas Involving $\vec{\nabla}$

1. $\vec{\nabla}(f+g)=\vec{\nabla} f+\vec{\nabla} g$

$$
\vec{\nabla} \cdot(\vec{F}+\vec{G})=\vec{\nabla} \cdot \vec{F}+\vec{\nabla} \cdot \vec{G}
$$

$\vec{\nabla} \times(\vec{F}+\vec{G})=\vec{\nabla} \times \vec{F}+\vec{\nabla} \times \vec{G}$
2. $\vec{\nabla}(f g)=f \nabla g+(\nabla f) g$
$\vec{\nabla} \cdot(f \vec{G})=f \vec{\nabla} \cdot \vec{G}+(\vec{\nabla} f) \cdot \vec{G}$
$\vec{\nabla} \times(f \vec{G})=f \vec{\nabla} \times \vec{G}+(\vec{\nabla} f) \times G$
Special cases: $f=$ a constant c
3. (no need to memorize the following)

$$
\begin{aligned}
& \vec{\nabla}(\vec{F} \cdot \vec{G})=(\vec{F} \cdot \vec{\nabla}) \vec{G}+(\vec{G} \cdot \vec{\nabla}) \vec{F}+\vec{F} \times(\vec{\nabla} \times \vec{G}) \\
&+\vec{G} \times(\vec{\nabla} \times \vec{F}) \\
& \vec{\nabla} \cdot(\vec{F} \times \vec{G})==\vec{G} \cdot(\vec{\nabla} \times \vec{F})-\vec{F} \cdot(\vec{\nabla} \times \vec{G}) \\
& \vec{\nabla} \times(\vec{F} \times \vec{G})=(\vec{G} \cdot \vec{\nabla}) \vec{F}-(\vec{F} \cdot \vec{\nabla}) \vec{G}+\vec{F}(\vec{\nabla} \cdot \vec{G})-\vec{G}(\vec{\nabla} \cdot \vec{F})
\end{aligned}
$$

3. Theorem: $\vec{\nabla} \times(\vec{\nabla} f)=\overrightarrow{0} \quad($ curl grad $=0)$

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=0 \quad(\text { div curl }=0)
$$

Example For $r \neq 0$ the curl of the electric field $\vec{E}=\frac{q}{r^{2}} \hat{r}$ is $\overrightarrow{0}$.

Note $\underset{\overrightarrow{0}}{\vec{\nabla}} \times(\vec{\nabla} \times \vec{F})=\vec{\nabla}(\vec{\nabla} \cdot \vec{F})-\nabla^{2} \vec{F}$ is generally not
Example Show that the field of the example in the previous subsection is the curl of another vector field:

$$
\begin{aligned}
& \vec{V}=\Omega r \hat{\theta}=\Omega(-y \vec{i}+x \vec{j})=\Omega \vec{\nabla} \times\left(-\frac{r^{2}}{2} \vec{k}\right), \\
& \text { So that } \vec{\nabla} \times \vec{\nabla} \times\left(-\frac{r^{2}}{2} \Omega \vec{k}\right)=2 \Omega \vec{k}
\end{aligned}
$$

