Line Integrals

Let C be a smooth, <u>oriented</u> (<u>directed</u>) curve in space. \vec{F} is a continuous vector field. Approximate C by a collection of small line segments (directed) { $\Delta \vec{r_i}$ }. Consider the sum $\sum_i \vec{F}(\xi_i) \cdot \Delta \vec{r_i}$ where ξ_i is a point on the line segment $\Delta \vec{r_i}$ (the concept of <u>work</u>), then take the limit $|\Delta r_i| \to 0$

$$\sum_{i} \vec{F}(\xi_{i}) \cdot \triangle \vec{r}_{i} \quad \rightarrow \quad \int_{C} \vec{F} \cdot d\vec{r}$$

This is called the line integral of \vec{F} over C.

If C is not smooth but is <u>piecewise smooth</u>, composed of smooth curves $C_1, C_2, \dots C_n$, then

$$\int_{C} \vec{F} \cdot d\vec{r} = \sum_{i=1}^{n} \int_{C_{i}} \vec{F} \cdot d\vec{r}.$$

Also, with -C defined to be the curve having the same points but opposite orientation of C,

$$\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}.$$

As $\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k}$ and $d\vec{r} = dx\vec{i} + dy\vec{j} + dz\vec{k}$, another form to write a line integral is

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} F_1 dx + F_2 dy + F_3 dz.$$

Evaluation of Line Integrals

Let $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ be a parameterization of C with domain [a, b], and assume that the <u>parameterization induces</u> the given <u>orientation</u> (direction) of C. Then (the formula for evaluation)

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F} \circ \vec{r}(t) \cdot \frac{d\vec{r}}{dt} dt.$$

- Example A particle moves upward along the circular helix C, parameterized by $\vec{r}(t) = \cos t \vec{i} + \sin t \vec{j} + t \vec{k}$ for $0 \le t \le 2\pi$ under a force given by $\vec{F}(x, y, z) = -zy\vec{i} + zx\vec{j} + xy\vec{k}$. Find the work done on the particle by the force (i.e. the line integral). $2\pi^2$
- Example Assume that the particle in the previous example moves under the same force and with the same initial and terminal points,

but along the line segment C_2 parameterized by

$$\vec{r}(t) = \vec{i} + t\vec{k}$$
 for $0 \le t \le 2\pi$.

Find the work done on the particle by the force. $_{0}$

Note that
$$\int_{C_1} \neq \int_{C_2}$$

The Fundamental Theorem of Line Integrals

<u>Theorem</u> Let C be an oriented curve with initial point (x_0, y_0, z_0) and terminal point (x_1, y_1, z_1) . Let f be a function of three variables that is differentiable at every point on C, and assume that ∇f is continuous on C. Then

$$\int_{C} \vec{\nabla} f \cdot d\vec{r} = f(x_1, y_1, z_1) - f(x_0, y_0, z_0)$$

pf: Use Chain Rule.

Example Let C be the straight line segment from (0,2,0) to (1,0,0) and \vec{F} be the electric field of a point charge q at the origin. Find the work done by \vec{F} on a <u>unit</u> point charge that traverses C.

Path Independence

<u>Definition</u> If a vector field \vec{F} has the property that $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r} \text{ for } \underline{any} \text{ two oriented}$ curves having the <u>same</u> initial and terminal points, its line integrals are called path independent.

Clearly,
$$\vec{F} = \vec{\nabla} f \implies \int_{C} \vec{F} \cdot \vec{dr}$$
 path independent.

(Fundamental Theorem of Line Integrals)

On the other hand, if the line integrals of \vec{F} are path independent, then a potential function of \vec{F} can be found as $f(x, y, z) = \int_C \vec{F} \cdot \vec{dr}$ where C is an arbitrary curve connecting the origin (or any fixed reference point) to (x, y, z).

Therefore,
$$\int_{C} \vec{F} \cdot \vec{dr}$$
 path independent $\implies \vec{F} = \vec{\nabla} f$.
 $pf: \vec{r}(s) = (s, y_0, z_0), \ s \in [x_0, x], \ \partial_x f(x_0, y_0, z_0) = (d/dx) \int_{x_0}^x F_1(s, y_0, z_0) ds$

Example Let $\vec{F} = xy^2 \vec{i} + x^2 y \vec{j}$. a. Evaluate the line integrals $\int_{C_1} \vec{F} \cdot \vec{dr}$ and $\int_{C_2} \vec{F} \cdot \vec{dr}$ where C_1 consists of the line segments connecting (0,0) to $(x_0,0)$ and $(x_0,0)$ to (x_0,y_0) , and C_2 consists of the line segments connecting (0,0) to $(0,y_0)$ and $(0,y_0)$ to (x_0,y_0) . $x_0^2 y_0^2/2$ b. Find a potential function for \vec{F} .

Important Properties of a Conservative Field

<u>Theorem</u> The following statements are equivalent:

- 1. $\vec{F} = \vec{\nabla} f$ for some function f, i.e. conservative.
- 2. $\int_{C} \vec{F} \cdot d\vec{r}$ is independent of path.
- 3. $\int_{C} \vec{F} \cdot d\vec{r} = 0 \text{ for every closed loop } C.$

If the domain of \vec{F} is a region with no holes, then also

4. $\vec{\nabla} \times \vec{F} = 0.$

Green's Theorem

<u>Theorem</u> Let R be a <u>simple</u> region in the xy plane with a piecewise smooth boundary C oriented <u>counterclockwise</u>. Let F_1 and F_2 be functions of two variables having continuous partial derivatives on R. Then

$$\int_{C} F_1(x,y)dx + F_2(x,y)dy = \iint_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)dA$$

<u>Note</u> Writing \vec{F} as $F_1\vec{i} + F_2\vec{j}$ and considering the situation in 3 dimensions, this equation can be expressed as

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{R} (\vec{\nabla} \times \vec{F}) \cdot \vec{k} dA$$

Pf: It is sufficient to show that

$$\int_{C} F_2(x, y) dy = \int_{C} F_2 \vec{j} \cdot d\vec{r} = \iint_{R} \frac{\partial F_2}{\partial x} dA$$

and

$$\int_{C} F_1(x, y) dx = \int_{C} F_1 \vec{i} \cdot d\vec{r} = -\iint_{R} \frac{\partial F_1}{\partial y} dA.$$

Note that the separation is done through writing $\vec{F} = \vec{F_1} + \vec{F_2}$ where $\vec{F_1} = F_1 \vec{i}$ and $\vec{F_2} = F_2 \vec{j}$.

$$-\iint_{R} \frac{\partial F_{1}}{\partial y} dA = -\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \frac{\partial F_{1}}{\partial y} dy dx$$

$$= \int_{a}^{b} [F_1(x, g_1(x)) - F_1(x, g_2(x))] dx$$

The first term is the line integral $\int_{C_1} F_1 \vec{i} \cdot d\vec{r}$ on the curve C_1 parameterized by $\vec{r_1}(x) = x\vec{i}+g_1(x)\vec{j}$. The second term is $-\int_{C_2} F_1 \vec{i} \cdot d\vec{r}$ where C_2 is the curve parameterized and oriented by $\vec{r_2}(t) = x\vec{i} + g_2(x)\vec{j}, x \in [a, b]$.

Example Find $\int_C -x^2 y dx + x^3 dy$ where C is the circle $x^2 + y^2 = 4$, oriented conterclockwise.

— Problem Set 11 —