
Line Integrals

Let C be a smooth, oriented (directed) curve in space. ~F

is a continuous vector field. Approximate C by a collec-

tion of small line segments (directed) {4~ri}. Consider

the sum
∑
i

~F (ξi)·4~ri where ξi is a point on the line

segment 4~ri (the concept of work), then take the limit

|4ri| → 0

∑
i

~F (ξi)·4~ri →

∫

C

~F · d~r

This is called the line integral of ~F over C.

If C is not smooth but is piecewise smooth, com-

posed of smooth curves C1, C2, · · ·Cn, then

∫

C

~F · d~r =

n∑
i=1

∫

Ci

~F · d~r.

Also, with −C defined to be the curve having the

same points but opposite orientation of C,

∫

−C

~F · d~r = −

∫

C

~F · d~r.
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As ~F = F1
~i+F2

~j+F3
~k and d~r = dx~i+dy~j+dz~k, another

form to write a line integral is

∫

C

~F · d~r =

∫

C

F1dx + F2dy + F3dz.

Evaluation of Line Integrals

Let ~r(t) = x(t)~i + y(t)~j + z(t)~k be a parameter-

ization of C with domain [a, b], and assume that the

parameterization induces the given orientation

(direction) of C. Then (the formula for evaluation)

∫

C

~F · d~r =

∫ b

a

~F ◦ ~r(t)·
d~r

dt
dt .

Example A particle moves upward along the circular

helix C, parameterized by ~r(t) = cos t~i +

sin t~j + t~k for 0 ≤ t ≤ 2π under a force

given by ~F (x, y, z) = −zy~i + zx~j + xy~k.

Find the work done on the particle by the

force (i.e. the line integral). 2π2

Example Assume that the particle in the previous

example moves under the same force and

with the same initial and terminal points,
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but along the line segment C2 parameter-

ized by

~r(t) =~i + t~k for 0 ≤ t ≤ 2π.

Find the work done on the particle by the

force. 0

Note that

∫

C1

6=

∫

C2

The Fundamental Theorem of Line Integrals

Theorem Let C be an oriented curve with initial

point (x0, y0, z0) and terminal point

(x1, y1, z1). Let f be a function of three

variables that is differentiable at every

point on C, and assume that ~∇f is contin-

uous on C. Then∫

C

~∇f · d~r = f(x1, y1, z1) − f(x0, y0, z0)

pf: Use Chain Rule.

Example Let C be the straight line segment from

(0, 2, 0) to (1, 0, 0) and ~F be the electric

field of a point charge q at the origin. Find

the work done by ~F on a unit point charge

that traverses C. −q/2

3



Path Independence

Definition If a vector field ~F has the property that∫
C1

~F · d~r =
∫

C2

~F · d~r for any two oriented

curves having the same initial and termi-

nal points, its line integrals are called

path independent.

Clearly, ~F = ~∇f =⇒

∫

C

~F · ~dr path independent.

(Fundamental Theorem of Line Integrals)

On the other hand, if the line integrals of ~F are path

independent, then a potential function of ~F can be found

as f(x, y, z) =
∫
C

~F · ~dr where C is an arbitrary curve

connecting the origin (or any fixed reference point) to

(x, y, z).

Therefore,

∫

C

~F · ~dr path independent =⇒ ~F = ~∇f .

pf: ~r(s)=(s,y0,z0), s∈[x0,x], ∂xf(x0,y0,z0)=(d/dx)

∫ x

x0

F1(s,y0,z0)ds
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Example Let ~F = xy2~i + x2y~j.

a. Evaluate the line integrals
∫

C1

~F · ~dr and

∫
C2

~F · ~dr where C1 consists of the line seg-

ments connecting (0, 0) to (x0, 0) and

(x0, 0) to (x0, y0), and C2 consists of the

line segments connecting (0, 0) to (0, y0)

and (0, y0) to (x0, y0). x2
0

y2
0

/2

b. Find a potential function for ~F .

Important Properties of a Conservative Field

Theorem The following statements are equivalent:

1. ~F = ~∇f for some function f , i.e. con-

servative.

2.

∫

C

~F · d~r is independent of path.

3.

∫

C

~F · d~r = 0 for every closed loop C.

If the domain of ~F is a region with no holes,

then also

4. ~∇× ~F = 0.
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Green’s Theorem

Theorem Let R be a simple region in the xy plane

with a piecewise smooth boundary C ori-

ented counterclockwise. Let F1 and F2 be

functions of two variables having continu-

ous partial derivatives on R. Then

∫

C

F1(x, y)dx + F2(x, y)dy =

∫∫

R

(
∂F2

∂x
−

∂F1

∂y
)dA

Note Writing ~F as F1
~i + F2

~j and considering the sit-

uation in 3 dimensions, this equation can be ex-

pressed as

∫

C

~F · d~r =

∫∫

R

(~∇× ~F ) · ~kdA

Pf: It is sufficient to show that∫

C

F2(x, y)dy =

∫

C

F2
~j · d~r =

∫∫

R

∂F2

∂x
dA

and∫

C

F1(x, y)dx =

∫

C

F1
~i ·d~r = −

∫∫

R

∂F1

∂y
dA.
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Note that the separation is done through

writing ~F = ~F1 + ~F2 where ~F1 = F1
~i and

~F2 = F2
~j.

−

∫∫

R

∂F1

∂y
dA = −

∫ b

a

∫ g2(x)

g1(x)

∂F1

∂y
dydx

=

∫ b

a

[F1(x, g1(x)) − F1(x, g2(x))]dx

The first term is the line integral
∫

C1
F1

~i·d~r

on the curve C1 parameterized by ~r1(x) =

x~i+g1(x)~j. The second term is −
∫
C2

F1
~i·d~r

where C2 is the curve parameterized and

oriented by ~r2(t) = x~i + g2(x)~j, x ∈ [a, b].

Example Find
∫
C

−x2ydx + x3dy where C is the cir-

cle x2 + y2 = 4, oriented conterclockwise.

16π (both ways)

—– Problem Set 11 —–
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