Line Integrals

Let C be a smooth, oriented (directed) curve in space. \vec{F} is a continuous vector field. Approximate C by a collection of small line segments (directed) $\left\{\triangle \vec{r}_{i}\right\}$. Consider the sum $\sum_{i} \vec{F}\left(\xi_{i}\right) \cdot \triangle \vec{r}_{i}$ where ξ_{i} is a point on the line segment $\triangle \vec{r}_{i}$ (the concept of work), then take the limit $\left|\triangle r_{i}\right| \rightarrow 0$

$$
\sum_{i} \vec{F}\left(\xi_{i}\right) \cdot \triangle \vec{r}_{i} \rightarrow \int_{C} \vec{F} \cdot d \vec{r}
$$

This is called the line integral of \vec{F} over C.
If C is not smooth but is piecewise smooth, composed of smooth curves $C_{1}, C_{2}, \cdots C_{n}$, then

$$
\int_{C} \vec{F} \cdot d \vec{r}=\sum_{i=1}^{n} \int_{C_{i}} \vec{F} \cdot d \vec{r} .
$$

Also, with $-C$ defined to be the curve having the same points but opposite orientation of C,

$$
\int_{-C} \vec{F} \cdot d \vec{r}=-\int_{C} \vec{F} \cdot d \vec{r}
$$

As $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}$ and $d \vec{r}=d x \vec{i}+d y \vec{j}+d z \vec{k}$, another form to write a line integral is

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} F_{1} d x+F_{2} d y+F_{3} d z .
$$

Evaluation of Line Integrals

Let $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$ be a parameterization of C with domain $[a, b]$, and assume that the parameterization induces the given orientation
(direction) of C. Then (the formula for evaluation)

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F} \circ \vec{r}(t) \cdot \frac{d \vec{r}}{d t} d t
$$

Example A particle moves upward along the circular helix C, parameterized by $\vec{r}(t)=\cos t \vec{i}+$ $\sin t \vec{j}+t \vec{k}$ for $0 \leq t \leq 2 \pi$ under a force given by $\vec{F}(x, y, z)=-z y \vec{i}+z x \vec{j}+x y \vec{k}$. Find the work done on the particle by the force (i.e. the line integral). $2 \pi^{2}$

Example Assume that the particle in the previous example moves under the same force and with the same initial and terminal points,
but along the line segment C_{2} parameterized by

$$
\vec{r}(t)=\vec{i}+t \vec{k} \quad \text { for } \quad 0 \leq t \leq 2 \pi .
$$

Find the work done on the particle by the force. 0

Note that $\int_{C_{1}} \neq \int_{C_{2}}$

The Fundamental Theorem of Line Integrals

Theorem Let C be an oriented curve with initial point $\left(x_{0}, y_{0}, z_{0}\right)$ and terminal point $\left(x_{1}, y_{1}, z_{1}\right)$. Let f be a function of three variables that is differentiable at every point on C, and assume that $\vec{\nabla} f$ is continuous on C. Then

$$
\int_{C} \vec{\nabla} f \cdot d \vec{r}=f\left(x_{1}, y_{1}, z_{1}\right)-f\left(x_{0}, y_{0}, z_{0}\right)
$$

pf: Use Chain Rule.
Example Let C be the straight line segment from $(0,2,0)$ to $(1,0,0)$ and \vec{F} be the electric field of a point charge q at the origin. Find the work done by \vec{F} on a unit point charge that traverses C.

Path Independence

Definition If a vector field \vec{F} has the property that $\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{2}} \vec{F} \cdot d \vec{r}$ for any two oriented curves having the same initial and terminal points, its line integrals are called path independent.

Clearly, $\vec{F}=\vec{\nabla} f \Longrightarrow \int_{C} \vec{F} \cdot \overrightarrow{d r} \quad$ path independent.
(Fundamental Theorem of Line Integrals)

On the other hand, if the line integrals of \vec{F} are path independent, then a potential function of \vec{F} can be found as $f(x, y, z)=\int_{C} \vec{F} \cdot \overrightarrow{d r}$ where C is an arbitrary curve connecting the origin (or any fixed reference point) to (x, y, z).

Therefore, $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ path independent $\Longrightarrow \vec{F}=\vec{\nabla} f$. $p f: \vec{r}(s)=\left(s, y_{0}, z_{0}\right), s \in\left[x_{0}, x\right], \partial_{x} f\left(x_{0}, y_{0}, z_{0}\right)=(d / d x) \int_{x_{0}}^{x} F_{1}\left(s, y_{0}, z_{0}\right) d s$

Example Let $\vec{F}=x y^{2} \vec{i}+x^{2} y \vec{j}$.
a. Evaluate the line integrals $\int_{C_{1}} \vec{F} \cdot \overrightarrow{d r}$ and
$\int_{C_{2}} \vec{F} \cdot \overrightarrow{d r}$ where C_{1} consists of the line segments connecting $(0,0)$ to $\left(x_{0}, 0\right)$ and $\left(x_{0}, 0\right)$ to $\left(x_{0}, y_{0}\right)$, and C_{2} consists of the line segments connecting $(0,0)$ to $\left(0, y_{0}\right)$ and $\left(0, y_{0}\right)$ to $\left(x_{0}, y_{0}\right)$. $x_{0}^{2} y_{0}^{2} / 2$
b. Find a potential function for \vec{F}.

Important Properties of a Conservative Field

Theorem The following statements are equivalent:

1. $\vec{F}=\vec{\nabla} f$ for some function f, i.e. conservative.
2. $\int_{C} \vec{F} \cdot d \vec{r}$ is independent of path.
3. $\int_{C} \vec{F} \cdot d \vec{r}=0$ for every closed loop C.

If the domain of \vec{F} is a region with no holes, then also
4. $\vec{\nabla} \times \vec{F}=0$.

Green's Theorem

Theorem Let R be a simple region in the $x y$ plane with a piecewise smooth boundary C oriented counterclockwise. Let F_{1} and F_{2} be functions of two variables having continuous partial derivatives on R. Then

$$
\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A
$$

Note Writing \vec{F} as $F_{1} \vec{i}+F_{2} \vec{j}$ and considering the situation in 3 dimensions, this equation can be expressed as

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\vec{\nabla} \times \vec{F}) \cdot \vec{k} d A
$$

Pf: It is sufficient to show that

$$
\int_{C} F_{2}(x, y) d y=\int_{C} F_{2} \vec{j} \cdot d \vec{r}=\iint_{R} \frac{\partial F_{2}}{\partial x} d A
$$

and

$$
\int_{C} F_{1}(x, y) d x=\int_{C} F_{1} \vec{i} \cdot d \vec{r}=-\iint_{R} \frac{\partial F_{1}}{\partial y} d A
$$

Note that the separation is done through writing $\vec{F}=\vec{F}_{1}+\vec{F}_{2}$ where $\vec{F}_{1}=F_{1} \vec{i}$ and $\overrightarrow{F_{2}}=F_{2} \vec{j}$.

$$
\begin{aligned}
& -\iint_{R} \frac{\partial F_{1}}{\partial y} d A=-\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \frac{\partial F_{1}}{\partial y} d y d x \\
& =\int_{a}^{b}\left[F_{1}\left(x, g_{1}(x)\right)-F_{1}\left(x, g_{2}(x)\right)\right] d x
\end{aligned}
$$

The first term is the line integral $\int_{C_{1}} F_{1} \vec{i} \cdot d \vec{r}$ on the curve C_{1} parameterized by $\vec{r}_{1}(x)=$ $x \vec{i}+g_{1}(x) \vec{j}$. The second term is $-\int_{C_{2}} F_{1} \vec{i} \cdot d \vec{r}$ where C_{2} is the curve parameterized and oriented by $\vec{r}_{2}(t)=x \vec{i}+g_{2}(x) \vec{j}, x \in[a, b]$.

Example Find $\int_{C}-x^{2} y d x+x^{3} d y$ where C is the circle $x^{2}+y^{2}=4$, oriented conterclockwise. $16 \pi \quad$ (both ways)

