
Oriented Surfaces and Flux Integrals

Let Σ be a surface that has a tangent plane at each of

its nonboundary points. At such a point on the surface

two unit normal vectors exist, and they have opposite

directions.

If it is possible to select one normal at each non-

boundary point in such a way that the chosen normal

varies continuously on the whole of Σ, then the surface

Σ is said to be orientable, or two-sided, and the selection

of the normal gives an orientation to Σ and thus makes

Σ an oriented surface. In such case, there are two pos-

sible orientations. Some surfaces are not orientable. For

example, the Möbus band; it is one-sided.

Induced Orientation

If Σ is an oriented surface bounded by a curve C,

then the orientation of Σ induces an orientation for C,

based on the Right-Hand-Rule.

Flux Integrals

Let ~F be a vector field and n̂ be the unit normal to

the oriented surface Σ, the flux integral over Σ is
∫∫

Σ

~F · n̂ dS.
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This integral gives the net flux through Σ. The field

strength (i.e. | ~F |) can be measured as the amount of flux

per unit area perpendicular to the local direction of ~F .

When Σ is the graph of a function f with continu-

ous partials on a region R in the xy plane that is com-

posed of vertically or horizontally simple regions, and its

orientation is chosen to be directed upward (i.e. the ~k

component of the unit normal is positive), then

∫∫

Σ

~F · n̂dS =

∫∫

R

[−F1fx − F2fy + F3]dA

for ~F = F1
~i + F2

~j + F3
~k.

Note Another way to remember this is
∫∫

Σ

~F · n̂dS =

∫∫

R

~F · ~NdA

where ~N = −fx
~i + −fy

~j + ~k is the upward

normal to Σ with the z component equal to

1.
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Example Suppose Σ is the part of the paraboloid z =

1 − x2 − y2 that lies above the xy plane

and is oriented by the unit normal directed

upward. Assume that the velocity of a fluid

is ~v = x~i + y~j + 2z~k. Determine the flow

rate (volume/time) through Σ.

2π

Flux integrals can be defined for a surface Σ composed

of several oriented surfaces Σ1,Σ2, · · ·Σn, as

∫∫

Σ

~F · n̂dS =

∫∫

Σ1

~F · n̂dS + · · · · · · +

∫∫

Σn

~F · n̂dS

Example Let Σ be the unit sphere x2 + y2 + z2 =

1, oriented with the unit normal directed

outward, and let F (x, y, z) = z~k. Find
∫∫

Σ

~F · n̂dS.

4π/3
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The Divergence Theorem

Definition A solid region D is called a simple solid

region if D is the solid region between the

graphs of two functions f(x, y) and g(x, y)

on a simple region R in the xy plane and

if D has the corresponding properties with

respect to the xz plane and the yz plane.

Theorem Let D be a simple solid region whose

boundary surface Σ is oriented by the nor-

mal n̂ directed outward from D, and let
~F be a vector field whose component func-

tions have continuous partial derivatives on

D. Then
∫∫

Σ

~F · n̂dS =

∫∫∫

D

~∇· ~FdV.

pf: Let ~F = F1
~i + F2

~j + F3
~k, then

∫∫

Σ

F1
~i· n̂dS =

∫∫∫

D

∂F1

∂x
dV

∫∫

Σ

F2
~j· n̂dS =

∫∫∫

D

∂F2

∂y
dV

∫∫

Σ

F3
~k· n̂dS =

∫∫∫

D

∂F3

∂z
dV
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Note The interpretation of
∫∫

Σ

~F · n̂ dS is “net outward

flux through the boundary of D”.

Example Let D be the region bounded by the xy

plane and the hemisphere x2 + y2 + z2 = 4

with z ≥ 0, and let ~F (x, y, z) = 3x4~i +

4xy3~j + 4xz3~k.

Evaluate

∫∫

Σ

~F · n̂dS, where Σ is the

boundary of D.

0

Note If the domain of integration R is symmetry with

respect to certain thing and the integrand is

anti-symmetric w.r.t. the same thing, then the

integral is 0.

For example, if f(−x, y, z) = −f(x, y, z), the

function f is anti-symmetric w.r.t. the yz-plane.
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The theorem can be applied to a ‘not so simple’ solid

region by considering the division of the region into a

number of simple solid regions.

Example Let ~F =
q

r2
r̂.

Show that for any suface Σ enclosing the

origin,

∫∫

Σ

~F · n̂dS = 4πq.
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Stokes’ Theorem

Theorem Let Σ be an oriented surface with normal

n̂ (unit vector) and finite surface area. As-

sume that Σ is bounded by a closed, piece-

wise smooth curve C whose orientation is

induced by Σ. Let ~F be a continuous vec-

tor field defined on Σ, and assume that

the component functions of ~F have continu-

ous partial derivatives at each nonboundary

point of Σ. Then

∫

C

~F · d~r =

∫∫

Σ

(~∇× ~F )· n̂dS

Example Let C be the intersection of the paraboloid

z = x2+y2 and the plane z = y, and give C

a counterclockwise direction as viewed from

the positive z axis. Evaluate
∫

C

2xydx + x2dy + z2dz.

What about
∫

C

(2xy − y)dx + x2dy + z2dz ?

0; π/4
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Example Verify Stokes’ Theorem for ~F = 3y~i−xz~j+

yz2~k where Σ is the surface of the

paraboloid 2z = x2 + y2 bounded by z = 2,

and C is its boundary.

~∇×~F=(z2+x)~i−(z+3)~k

−20π

—– Problem Set 12 —–

Proof of Stokes’ theorem

(~∇× ~F ) · ~N = (∂yF3 − ∂zF2)(−fx)+ (∂zF1 − ∂xF3)(−fy)

+ (∂xF2 − ∂yF1)

= (∂xF2 +fx∂zF2 +fy∂xF3)− (∂yF1 +fy∂zF1 +fx∂yF3)

= ∂x(F2(x, y, f(x, y)) + fyF3(x, y, f(x, y))

− ∂y(F1(x, y, f(x, y)) + fxF3(x, y, f(x, y))

Now apply Green’s theorem on the xy-plane as following.
∫∫

R

(

∂

∂x
(F2 + fyF3) −

∂

∂y
(F1 + fxF3)

)

dA
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=

∮

∂R

(F1 + fxF3)dx + (F2 + fyF3)dy

~r(t)=(x(t),y(t),z(t)) where z(t)=f(x(t),y(t))

So that ~r′(t)=(x′(t),y′(t),fxx′(t)+fy y′(t))

and ~F ·~r′(t)=F1x′+F2y′+(F3fxx′+F3fyy′)

=

∮

∂Σ

F1dx + F2dy + F3dz.

Therefore,

∫∫

Σ

(~∇× ~F ) · n̂dS =

∫∫

R

(~∇× ~F ) · ~NdA =

∮

∂Σ

~F · d~r.
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