Oriented Surfaces and Flux Integrals

Let Σ be a surface that has a tangent plane at each of its nonboundary points. At such a point on the surface two unit normal vectors exist, and they have opposite directions.

If it is possible to select one normal at each nonboundary point in such a way that the chosen normal varies continuously on the whole of Σ, then the surface Σ is said to be orientable, or two-sided, and the selection of the normal gives an orientation to Σ and thus makes Σ an oriented surface. In such case, there are two possible orientations. Some surfaces are not orientable. For example, the Möbus band; it is one-sided.

Induced Orientation

If Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the Right-Hand-Rule.

Flux Integrals

Let \vec{F} be a vector field and \hat{n} be the unit normal to the oriented surface Σ, the flux integral over Σ is

$$
\iint_{\Sigma} \vec{F} \cdot \hat{n} d S
$$

This integral gives the net flux through Σ. The field strength (i.e. $|\vec{F}|$) can be measured as the amount of flux per unit area perpendicular to the local direction of \vec{F}.

When Σ is the graph of a function f with continuous partials on a region R in the $x y$ plane that is composed of vertically or horizontally simple regions, and its orientation is chosen to be directed upward (i.e. the \vec{k} component of the unit normal is positive), then

$$
\iint_{\Sigma} \vec{F} \cdot \hat{n} d S=\iint_{R}\left[-F_{1} f_{x}-F_{2} f_{y}+F_{3}\right] d A
$$

for $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}$.
Note Another way to remember this is

$$
\iint_{\Sigma} \vec{F} \cdot \hat{n} d S=\iint_{R} \vec{F} \cdot \vec{N} d A
$$

where $\vec{N}=-f_{x} \vec{i}+-f_{y} \vec{j}+\vec{k}$ is the upward normal to Σ with the z component equal to 1.

Example Suppose Σ is the part of the paraboloid $z=$ $1-x^{2}-y^{2}$ that lies above the $x y$ plane and is oriented by the unit normal directed upward. Assume that the velocity of a fluid is $\vec{v}=x \vec{i}+y \vec{j}+2 z \vec{k}$. Determine the flow rate (volume/time) through Σ.
2π
Flux integrals can be defined for a surface Σ composed of several oriented surfaces $\Sigma_{1}, \Sigma_{2}, \cdots \Sigma_{n}$, as

$$
\iint_{\Sigma} \vec{F} \cdot \hat{n} d S=\iint_{\Sigma_{1}} \vec{F} \cdot \hat{n} d S+\cdots \cdots+\iint_{\Sigma_{n}} \vec{F} \cdot \hat{n} d S
$$

Example Let Σ be the unit sphere $x^{2}+y^{2}+z^{2}=$ 1, oriented with the unit normal directed outward, and let $F(x, y, z)=z \vec{k}$. Find $\iint_{\Sigma} \vec{F} \cdot \hat{n} d S$.

$$
4 \pi / 3
$$

The Divergence Theorem

Definition A solid region D is called a simple solid region if D is the solid region between the graphs of two functions $f(x, y)$ and $g(x, y)$ on a simple region R in the $x y$ plane and if D has the corresponding properties with respect to the $x z$ plane and the $y z$ plane.
Theorem Let D be a simple solid region whose boundary surface Σ is oriented by the normal \hat{n} directed outward from D, and let \vec{F} be a vector field whose component functions have continuous partial derivatives on D. Then

$$
\iint_{\Sigma} \vec{F} \cdot \hat{n} d S=\iiint_{D} \vec{\nabla} \cdot \vec{F} d V
$$

pf: \quad Let $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}$, then

$$
\begin{aligned}
\iint_{\Sigma} F_{1} \vec{i} \cdot \hat{n} d S & =\iiint_{D} \frac{\partial F_{1}}{\partial x} d V \\
\iint_{\Sigma} F_{2} \vec{j} \cdot \hat{n} d S & =\iiint_{D} \frac{\partial F_{2}}{\partial y} d V \\
\iint_{\Sigma} F_{3} \vec{k} \cdot \hat{n} d S & =\iiint_{D} \frac{\partial F_{3}}{\partial z} d V
\end{aligned}
$$

Note The interpretation of $\iint_{\Sigma} \vec{F} \cdot \hat{n} d S$ is "net outward flux through the boundary of $D^{\prime \prime}$.

Example Let D be the region bounded by the $x y$ plane and the hemisphere $x^{2}+y^{2}+z^{2}=4$ with $z \geq 0$, and let $\vec{F}(x, y, z)=3 x^{4} \vec{i}+$ $4 x y^{3} \vec{j}+4 x z^{3} \vec{k}$.
Evaluate $\iint_{\Sigma} \vec{F} \cdot \hat{n} d S$, where Σ is the boundary of D.

0

Note If the domain of integration R is symmetry with respect to certain thing and the integrand is anti-symmetric w.r.t. the same thing, then the integral is 0 .
For example, if $f(-x, y, z)=-f(x, y, z)$, the function f is anti-symmetric w.r.t. the $y z$-plane.

The theorem can be applied to a 'not so simple' solid region by considering the division of the region into a number of simple solid regions.

Example Let $\vec{F}=\frac{q}{r^{2}} \hat{r}$.
Show that for any suface Σ enclosing the origin, $\iint_{\Sigma} \vec{F} \cdot \hat{n} d S=4 \pi q$.

Stokes' Theorem

Theorem Let Σ be an oriented surface with normal \hat{n} (unit vector) and finite surface area. Assume that Σ is bounded by a closed, piecewise smooth curve C whose orientation is induced by Σ. Let \vec{F} be a continuous vector field defined on Σ, and assume that the component functions of \vec{F} have continuous partial derivatives at each nonboundary point of Σ. Then

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{\Sigma}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S
$$

Example Let C be the intersection of the paraboloid $z=x^{2}+y^{2}$ and the plane $z=y$, and give C a counterclockwise direction as viewed from the positive z axis. Evaluate
$\int_{C} 2 x y d x+x^{2} d y+z^{2} d z$.
What about
$\int_{C}(2 x y-y) d x+x^{2} d y+z^{2} d z \quad ?$
$0 ; \pi / 4$

Example Verify Stokes' Theorem for $\vec{F}=3 y \vec{i}-x z \vec{j}+$ $y z^{2} \vec{k}$ where Σ is the surface of the paraboloid $2 z=x^{2}+y^{2}$ bounded by $z=2$, and C is its boundary.

$$
\begin{aligned}
& \vec{\nabla} \times \vec{F}=\left(z^{2}+x\right) \vec{i}-(z+3) \vec{k} \\
& -20 \pi
\end{aligned}
$$

— Problem Set 12 —

Proof of Stokes' theorem

$$
\begin{gathered}
\begin{aligned}
&(\vec{\nabla} \times \vec{F}) \cdot \vec{N}=\left(\partial_{y} F_{3}-\partial_{z} F_{2}\right)\left(-f_{x}\right)+\left(\partial_{z} F_{1}-\partial_{x} F_{3}\right)\left(-f_{y}\right) \\
&+\left(\partial_{x} F_{2}-\partial_{y} F_{1}\right) \\
&=\left(\partial_{x} F_{2}+f_{x} \partial_{z} F_{2}+f_{y} \partial_{x} F_{3}\right)-\left(\partial_{y} F_{1}+f_{y} \partial_{z} F_{1}+f_{x} \partial_{y} F_{3}\right) \\
&=\partial_{x}\left(F_{2}(x, y, f(x, y))+f_{y} F_{3}(x, y, f(x, y))\right. \\
&-\partial_{y}\left(F_{1}(x, y, f(x, y))+f_{x} F_{3}(x, y, f(x, y))\right.
\end{aligned}
\end{gathered}
$$

Now apply Green's theorem on the $x y$-plane as following.

$$
\iint_{R}\left(\frac{\partial}{\partial x}\left(F_{2}+f_{y} F_{3}\right)-\frac{\partial}{\partial y}\left(F_{1}+f_{x} F_{3}\right)\right) d A
$$

$$
=\oint_{\partial R}\left(F_{1}+f_{x} F_{3}\right) d x+\left(F_{2}+f_{y} F_{3}\right) d y
$$

$$
\vec{r}(t)=(x(t), y(t), z(t)) \text { where } z(t)=f(x(t), y(t))
$$

$$
\text { So that } \vec{r}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), f_{x} x^{\prime}(t)+f_{y} y^{\prime}(t)\right)
$$

$$
\text { and } \vec{F} \cdot \vec{r}^{\prime}(t)=F_{1} x^{\prime}+F_{2} y^{\prime}+\left(F_{3} f_{x} x^{\prime}+F_{3} f_{y} y^{\prime}\right)
$$

$$
=\oint_{\partial \Sigma} F_{1} d x+F_{2} d y+F_{3} d z .
$$

Therefore,

$\iint_{\Sigma}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S=\iint_{R}(\vec{\nabla} \times \vec{F}) \cdot \vec{N} d A=\oint_{\partial \Sigma} \vec{F} \cdot d \vec{r}$.

