Oriented Surfaces and Flux Integrals

Let X be a surface that has a tangent plane at each of
its nonboundary points. At such a point on the surface
two unit normal vectors exist, and they have opposite
directions.

If it is possible to select one normal at each non-
boundary point in such a way that the chosen normal
varies continuously on the whole of ¥, then the surface
Y. is said to be orientable, or two-sided, and the selection

of the normal gives an orientation to > and thus makes

Y. an oriented surface. In such case, there are two pos-

sible orientations. Some surfaces are not orientable. For
example, the Mobus band; it is one-sided.

Induced Orientation

If > is an oriented surface bounded by a curve C,

then the orientation of X induces an orientation for C,
based on the Right-Hand-Rule.

Flux Integrals

Let F be a vector field and 7 be the unit normal to
the oriented surface X, the flux integral over X is

//ﬁ-ﬁds.
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This integral gives the net flux through . The field
strength (i.e. |F|) can be measured as the amount of flux

per unit area perpendicular to the local direction of F.

When Y is the graph of a function f with continu-
ous partials on a region R in the xy plane that is com-
posed of vertically or horizontally simple regions, and its
orientation is chosen to be directed upward (i.e. the k

component of the unit normal is positive), then

/E/ﬁ AdS = /R/[Flfx — By f, + F3]dA

for ﬁ = Flg—l— FQ}‘l— F3]g.

Note Another way to remember this is

//ﬁ-ﬁdS://ﬁ-NdA
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where N = — fol + — fy]_"Jr k is the upward
normal to X with the z component equal to
1.



Example Suppose X is the part of the paraboloid z =
1 — 22 — y? that lies above the zy plane

and is oriented by the unit normal directed
upward. Assume that the velocity of a fluid
is 0= xi+yj + 22k. Determine the flow
rate (volume/time) through 3.
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Flux integrals can be defined for a surface > composed
of several oriented surfaces X1, o, -2, as

//F-ﬁdSz//ﬁﬁdSJr ------ +//F-mzs
)y DI Xin

Example Let ¥ be the unit sphere z2? + y* + 2% =
1, oriented with the unit normal directed
outward, and let F(x,y,z) = zk. Find

/ / F-7dsS.
>
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The Divergence Theorem

Definition A solid region D is called a simple solid

region if D is the solid region between the
graphs of two functions f(z,y) and g(x,y)
on a simple region R in the xy plane and

if D has the corresponding properties with
respect to the xz plane and the yz plane.

Theorem Let D be a simple solid region whose

boundary surface X is oriented by the nor-
mal n directed outward from D, and let
F' be a vector field whose component func-

tions have continuous partial derivatives on
D. Then

//ﬁﬁdS:///ﬁﬁdV.
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pf:  Let F = Fyi + Fyj + Fsk, then

//FlzndS ///@dv
//Fﬂ S = ///@dv
//ngndS ///%dv



Note The interpretation of [[ F-7dS is “net outward
5

flux through the boundary of D”.

Example Let D be the region bounded by the xy

plane and the hemisphere 22 + y? + 22 = 4
with 2 > 0, and let F(x,y,2) = 3z% +
4acy3]_" + 4223k.

Evaluate / / F-hdS , where X is the
)

boundary of D.
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Note If the domain of integration R is symmetry with
respect to certain thing and the integrand is
anti-symmetric w.r.t. the same thing, then the
integral is 0.

For example, if f(—x,y,2) = —f(x,y,z), the
function f is anti-symmetric w.r.t. the yz-plane.



The theorem can be applied to a ‘not so simple’ solid
region by considering the division of the region into a
number of simple solid regions.

Example Let F = %f
r

Show that for any suface X enclosing the

origin, // F-ndS = 47q.
5




Stokes’ Theorem

Theorem

Example

Let > be an oriented surface with normal
n (unit vector) and finite surface area. As-
sume that > is bounded by a closed, piece-
wise smooth curve C whose orientation is
induced by . Let F be a continuous vec-
tor field defined on Y, and assume that
the component functions of F have continu-
ous partial derivatives at each nonboundary
point of X. Then

/ﬁ-dfz //(ﬁ x F)-ndS
C >

Let C be the intersection of the paraboloid
z = x?+y? and the plane z = y, and give C
a counterclockwise direction as viewed from
the positive z axis. Evaluate

/Z:Uyd:v + 2?dy + 2°dz.

C

What about

/(Z:Ey — y)dx + °dy + 2°dz ?
C

0; w/4



Example Verify Stokes’ Theorem for F= Sy;— iCZj—I—
yz2k where ¥ is the surface of the

paraboloid 2z = z? + y? bounded by z = 2,
and C is its boundary.

VXxF=(z242)i—(2+3)k
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Proof of Stokes’ theorem

(VX F)-N = (0,F3 — 0. F)(—f) + (0. F1 — 0, F3) (— f,)
+ (a:cFQ - ayFl)

= (0o + f20.Fo + fy0uF3) — (04 Fy + [, 0: F1 + f20, F3)

— &,;(Fg(:v,y, f(ac,y)) + fyF3(:C7y7 f(iU,y))
— 8y(F1(ac, Yy, f(iC, y)) + f:CF3(£E7 Y, f(:C? y))

Now apply Green’s theorem on the zy-plane as following.

/R/ (%(FQ + [, F3) — (%(Fl +fo3)) JA



_ 7{ (Fy + foFs)dx + (Fy + f,Fy)d

OR
7(t)=(x(t),y(t),2(t)) where z(t)=f(x(t),y(t))

So that 'F'/(t):(a:/(t),y/(t),fa:ml(t)‘i'fyy/(t))

and ﬁ-’?"’(t):Fl a?/+F2y/+(F3fa:$/+F3fyy/)

- fFldachngerngz.
o%
Therefore,
// V x F)-7dS = //ﬁxﬁ NdA = 7{

0%



