Vector-Valued Functions

Definition: A vector-valued function consists of two parts: a domain, which is a subset of \mathcal{R}, and a rule, which assigns to each number in the domain one and only one vector.

The rule is usually given as a formula. The formula of the function can be expressed as

$$
\vec{r}(t)=f_{1}(t) \vec{i}+f_{2}(t) \vec{j}+f_{3}(t) \vec{k}
$$

where t is in the common domain of f_{1}, f_{2}, f_{3} (singlevariable functions called the component functions).

The range (or image) of a vector-valued function is a curve in space.

```
{\vec{p}|\vec{p}=\vec{r}(t)t\indomain}
```

Example: $\vec{A}(t)=(1+2 t) \vec{i}+3 t \vec{j}+\frac{1}{t} \vec{k}$

$$
\begin{aligned}
& \vec{B}(t)=\sqrt{1+2 t} \vec{i}+4 t \vec{k} \\
& \vec{C}(t)=\sin t \vec{i}+t \vec{k} \quad t \in[0,2 \pi]
\end{aligned}
$$

domain of \vec{A} excludes the point $t=0$
domain of $\vec{B}=\left\{t \left\lvert\, t \geq-\frac{1}{2}\right.\right\}$
plot $\vec{C}(t)$

Limits of Vector-Valued Functions

Definition Let \vec{A} be a vector-valued function defined at each point in some open interval containing t_{0}, except possibly at t_{0} itself. A vector \vec{L} is the limit of $\vec{A}(t)$ as t approaches t_{0} if for every $\epsilon>0 \quad \exists$ a $\delta>0$ such that
$|\vec{A}(t)-\vec{L}|<\varepsilon \quad$ whenever $\quad 0<\left|t-t_{0}\right|<\delta$.
We write $\lim _{t \rightarrow t_{0}} \vec{A}(t)=\vec{L}$.

Detailed discussion of 'limit' will be postponed to the "several-variable functions" section.

Theorem Let $\vec{A}(t)=A_{1}(t) \vec{i}+A_{2}(t) \vec{j}+A_{3}(t) \vec{k}$. Then \vec{A} has a limit at t_{0} if and only if A_{1}, A_{2}, and A_{3} have limits at t_{0}. In that case
$\lim _{t \rightarrow t_{0}} \vec{A}(t)=\left[\lim _{t \rightarrow t_{0}} A_{1}(t)\right] \vec{i}+\left[\lim _{t \rightarrow t_{0}} A_{2}(t)\right] \vec{j}+\left[\lim _{t \rightarrow t_{0}} A_{3}(t)\right] \vec{k}$.
Example Find $\lim _{t \rightarrow 0}\left(2 \cos t \vec{i}+\frac{\sin t}{t} \vec{j}+t^{2} \vec{k}\right)$.

Useful Rules

Assuming that $\lim _{t \rightarrow t_{0}} \vec{A}(t), \lim _{t \rightarrow t_{0}} \vec{B}(t), \lim _{t \rightarrow t_{0}} f(t)$ exist, then

1. $\lim _{t \rightarrow t_{0}}(\vec{A} \pm \vec{B})(t)=\lim _{t \rightarrow t_{0}} \vec{A}(t) \pm \lim _{t \rightarrow t_{0}} \vec{B}(t)$
2. $\lim _{t \rightarrow t_{0}}[f \vec{A}(t)]=\lim _{t \rightarrow t_{0}} f(t) \lim _{t \rightarrow t_{0}} \vec{A}(t)$
3. $\lim _{t \rightarrow t_{0}}(\vec{A} \cdot \vec{B})(t)=\lim _{t \rightarrow t_{0}} \vec{A}(t) \cdot \lim _{t \rightarrow t_{0}} \vec{B}(t)$
4. $\lim _{t \rightarrow t_{0}}(\vec{A} \times \vec{B})(t)=\lim _{t \rightarrow t_{0}} \vec{A}(t) \times \lim _{t \rightarrow t_{0}} \vec{B}(t)$

Continuity

Definition A vector-valued function \vec{A} is continuous at a point t_{0} in its domain if

$$
\lim _{t \rightarrow t_{0}} \vec{A}(t)=\vec{A}\left(t_{0}\right)
$$

Theorem: A vector-valued function \vec{A} is continuous at t_{0} if and only if each of its component functions is continuous at t_{0}.

Example: $\vec{A}(t)=2 \cos t \vec{i}+\frac{\sin t}{t} \vec{j}+t^{2} \vec{k}$ is discontinuous at $t=0$.

Theorem If $\vec{A}(t)$ is continuous at t_{0} and $\lim _{s \rightarrow s_{0}} g(s)=$ t_{0}, then

$$
\lim _{s \rightarrow s_{0}}\left(\vec{A}(g(s))=\vec{A}\left(\lim _{s \rightarrow s_{0}} g(s)\right)=\vec{A}\left(t_{0}\right)\right.
$$

Derivatives

Definition Let t_{0} be a number in the domain of a vector-valued function \vec{A}. If

$$
\lim _{t \rightarrow t_{0}} \frac{\vec{A}(t)-\vec{A}\left(t_{0}\right)}{t-t_{0}}
$$

exists, we call this limit the derivative of \vec{A} at t_{0} and write it as $\vec{A}^{\prime}\left(t_{0}\right)$, or $\frac{d}{d t} \vec{A}\left(t_{0}\right)$, or $\dot{A}\left(t_{0}\right)$. We say that \vec{A} is differentiable at t_{0}.

Theorem

$$
\vec{A}^{\prime}\left(t_{0}\right)=A_{1}^{\prime}\left(t_{0}\right) \vec{i}+A_{2}^{\prime}\left(t_{0}\right) \vec{j}+A_{3}^{\prime}\left(t_{0}\right) \vec{k}
$$

Example Find the derivative of

$$
\vec{A}(t)=e^{t} \cos t \vec{i}-\ln (t) \vec{j}
$$

Useful Formulas for Differentiation

Let \vec{A}, \vec{B}, and f be differentiable at t_{0}, and let g be differentiable at s_{0} with $g\left(s_{0}\right)=t_{0}$. Then

1. $(\vec{A} \pm \vec{B})^{\prime}\left(t_{0}\right)=\vec{A}^{\prime}\left(t_{0}\right) \pm \vec{B}^{\prime}\left(t_{0}\right)$
2. $(f \vec{A})^{\prime}\left(t_{0}\right)=f^{\prime}\left(t_{0}\right) \vec{A}\left(t_{0}\right)+f\left(t_{0}\right) \overrightarrow{A^{\prime}}\left(t_{0}\right)$
3. $(\vec{A} \cdot \vec{B})^{\prime}\left(t_{0}\right)=\overrightarrow{A^{\prime}}\left(t_{0}\right) \cdot \vec{B}\left(t_{0}\right)+\vec{A}\left(t_{0}\right) \cdot \overrightarrow{B^{\prime}}\left(t_{0}\right)$
4. $(\vec{A} \times \vec{B})^{\prime}\left(t_{0}\right)=\overrightarrow{A^{\prime}}\left(t_{0}\right) \times \vec{B}\left(t_{0}\right)+\vec{A}\left(t_{0}\right) \times \vec{B}^{\prime}\left(t_{0}\right)$
5. $\frac{d}{d s} \vec{A}(g)\left(s_{0}\right)=\vec{A}^{\prime}\left(g\left(s_{0}\right)\right) g^{\prime}\left(s_{0}\right)=\vec{A}^{\prime}\left(t_{0}\right) g^{\prime}\left(s_{0}\right)$

Curves in Space

We will generally use the symbol C to denote a curve. If the range of a continuous vector-valued function \vec{r} is C, we say that \vec{r} is the parameterization of C, and C is parameterized by \vec{r}.

A curve C is closed if it has a parameterization whose domain is a closed interval $[a, b]$ such that $\vec{r}(a)=\vec{r}(b)$.

A vector-valued function $\vec{r}(t)$ defined on an interval I is smooth if \vec{r} has a continuous derivative on I and $\vec{r}^{\prime}(t) \neq \overrightarrow{0}$ for each interior point t. A curve C is smooth if it has a smooth parameterization.

Example Consider the curve parameterized by

$$
\vec{r}(t)=t^{3} \vec{i}+t^{2} \vec{j}
$$

plot with the substitution $s=t^{3}$

Higher-Order Derivatives

$$
\vec{A}^{\prime \prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{\overrightarrow{A^{\prime}}(t)-\overrightarrow{A^{\prime}}\left(t_{0}\right)}{t-t_{0}}
$$

Interpretation of Derivatives

Tangent vector to a point on a curve

Velocity and acceleration
Suppose $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$ is position and t is time. Then

Velocity: $\quad \vec{v}(t)=\frac{d}{d t} \vec{r}(t)=\dot{\vec{r}}=\frac{d x}{d t} \vec{i}+\frac{d y}{d t} \vec{j}+\frac{d z}{d t} \vec{k}$

$$
\text { speed: } \quad|\vec{v}(t)|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}
$$

Acceleration: $\vec{a}(t)=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}=\ddot{\vec{r}}$

Example Show that the velocity vector of a particle moving on a sphere (radius $=r_{0}$) is always perpendicular to the radial vector.

Example Show that the projection of the acceleration vector of a particle moving on a sphere on the radial direction is $-\frac{|\dot{\vec{r}}|^{2}}{|\vec{r}|} \hat{r}$.

Arc Length of a Curve

If C is the image of a smooth vector-valued function $\vec{r}(t)$, then its arc length L from $t=a$ to $t=b$ is

$$
L=\int_{a}^{b}\left\|\frac{d \vec{r}}{d t}\right\| d t
$$

Example Find the arc length of that portion of the circular helix

$$
x=\cos t, \quad y=\sin t, \quad z=t
$$

from $t=0$ to $t=\pi$.
\qquad

