Vector-Valued Functions

<u>Definition:</u> A vector-valued function consists of two parts: a <u>domain</u>, which is a subset of \mathcal{R} , and a <u>rule</u>, which assigns to each number in the domain one and only one vector.

The *rule* is usually given as a *formula*. The formula of the function can be expressed as

$$\vec{r}(t) = f_1(t)\vec{i} + f_2(t)\vec{j} + f_3(t)\vec{k}$$

where t is in the common domain of f_1, f_2, f_3 (single-variable functions called the <u>component functions</u>).

The range (or image) of a vector-valued function is a curve in space. $\{\vec{p} \mid \vec{p} = \vec{r}(t) \ t \in domain\}$

Example:
$$\vec{A}(t) = (1+2t)\vec{i} + 3t\vec{j} + \frac{1}{t}\vec{k}$$

 $\vec{B}(t) = \sqrt{1+2t}\vec{i} + 4t\vec{k}$
 $\vec{C}(t) = \sin t \vec{i} + t\vec{k}$ $t \in [0, 2\pi]$
domain of \vec{A} excludes the point $t=0$
domain of $\vec{B} = \{t \mid t \ge -\frac{1}{2}\}$
plot $\vec{C}(t)$

Limits of Vector-Valued Functions

<u>Definition</u> Let \vec{A} be a vector-valued function defined at each point in some open interval containing t_0 , except possibly at t_0 itself. A vector \vec{L} is the <u>limit</u> of $\vec{A}(t)$ as t approaches t_0 if for every $\epsilon > 0 \quad \exists \ a \ \delta > 0$ such that

 $|\vec{A}(t) - \vec{L}| < \varepsilon$ whenever $0 < |t - t_0| < \delta$.

We write
$$\lim_{t \to t_0} \vec{A}(t) = \vec{L}$$
.

Detailed discussion of 'limit' will be postponed to the "several-variable functions" section.

<u>Theorem</u> Let $\vec{A}(t) = A_1(t)\vec{i} + A_2(t)\vec{j} + A_3(t)\vec{k}$. Then \vec{A} has a limit at t_0 if and only if A_1, A_2 , and A_3 have limits at t_0 . In that case $\lim_{t \to t_0} \vec{A}(t) = [\lim_{t \to t_0} A_1(t)]\vec{i} + [\lim_{t \to t_0} A_2(t)]\vec{j} + [\lim_{t \to t_0} A_3(t)]\vec{k}.$ <u>Example</u> Find $\lim_{t \to 0} (2\cos t \ \vec{i} + \frac{\sin t}{t}\vec{j} + t^2\vec{k}).$

<u>Useful Rules</u>

Assuming that $\lim_{t \to t_0} \vec{A}(t)$, $\lim_{t \to t_0} \vec{B}(t)$, $\lim_{t \to t_0} f(t)$ exist, then

1.
$$\lim_{t \to t_0} (\vec{A} \pm \vec{B})(t) = \lim_{t \to t_0} \vec{A}(t) \pm \lim_{t \to t_0} \vec{B}(t)$$

2.
$$\lim_{t \to t_0} [f\vec{A}(t)] = \lim_{t \to t_0} f(t) \lim_{t \to t_0} \vec{A}(t)$$

3.
$$\lim_{t \to t_0} (\vec{A} \cdot \vec{B})(t) = \lim_{t \to t_0} \vec{A}(t) \cdot \lim_{t \to t_0} \vec{B}(t)$$

4.
$$\lim_{t \to t_0} (\vec{A} \times \vec{B})(t) = \lim_{t \to t_0} \vec{A}(t) \times \lim_{t \to t_0} \vec{B}(t)$$

<u>Continuity</u>

<u>Definition</u> A vector-valued function \vec{A} is <u>continuous</u> at a point t_0 in its domain if

$$\lim_{t \to t_0} \vec{A}(t) = \vec{A}(t_0).$$

<u>Theorem</u>: A vector-valued function \vec{A} is continuous at t_0 if and only if each of its component functions is continuous at t_0 .

<u>Example:</u> $\vec{A}(t) = 2\cos t \ \vec{i} + \frac{\sin t}{t} \vec{j} + t^2 \vec{k}$ is discontinuous at t = 0.

Theorem If
$$\vec{A}(t)$$
 is continuous at t_0 and $\lim_{s \to s_0} g(s) = t_0$, then

$$\lim_{s \to s_0} (\vec{A}(g(s))) = \vec{A}(\lim_{s \to s_0} g(s)) = \vec{A}(t_0).$$

Derivatives

<u>Definition</u> Let t_0 be a number in the domain of a vector-valued function \vec{A} . If

$$\lim_{t \to t_0} \frac{\vec{A}(t) - \vec{A}(t_0)}{t - t_0}$$

exists, we call this limit the <u>derivative of \vec{A} </u> <u>at t_0 and write it as $\vec{A'}(t_0)$, or $\frac{d}{dt}\vec{A}(t_0)$, or $\dot{A}(t_0)$. We say that \vec{A} is <u>differentiable</u> at t_0 .</u>

<u>Theorem</u> $\vec{A'}(t_0) = A'_1(t_0)\vec{i} + A'_2(t_0)\vec{j} + A'_3(t_0)\vec{k}$

<u>Example</u> Find the derivative of $\vec{A}(t) = e^t \cos t \vec{i} - \ln(t) \vec{j}$

<u>Useful Formulas for Differentiation</u>

Let \vec{A}, \vec{B} , and f be differentiable at t_0 , and let g be differentiable at s_0 with $g(s_0) = t_0$. Then

1.
$$(\vec{A} \pm \vec{B})'(t_0) = \vec{A}'(t_0) \pm \vec{B}'(t_0)$$

2.
$$(f\vec{A})'(t_0) = f'(t_0)\vec{A}(t_0) + f(t_0)\vec{A}'(t_0)$$

3. $(\vec{A}\cdot\vec{B})'(t_0) = \vec{A}'(t_0)\cdot\vec{B}(t_0) + \vec{A}(t_0)\cdot\vec{B}'(t_0)$
4. $(\vec{A}\times\vec{B})'(t_0) = \vec{A}'(t_0)\times\vec{B}(t_0) + \vec{A}(t_0)\times\vec{B}'(t_0)$
5. $\frac{d}{ds}\vec{A}(g)(s_0) = \vec{A}'(g(s_0))g'(s_0) = \vec{A}'(t_0)g'(s_0)$

<u>Curves in Space</u>

We will generally use the symbol C to denote a curve. If the range of a *continuous* vector-valued function \vec{r} is C, we say that \vec{r} is the <u>parameterization</u> of C, and C is parameterized by \vec{r} .

A curve C is <u>closed</u> if it has a parameterization whose domain is a closed interval [a, b] such that $\vec{r}(a) = \vec{r}(b)$.

A vector-valued function $\vec{r}(t)$ defined on an interval I is <u>smooth</u> if \vec{r} has a continuous derivative on I and $\vec{r}'(t) \neq \vec{0}$ for each interior point t. A curve C is <u>smooth</u> if it has a smooth parameterization.

Example Consider the curve parameterized by $\vec{r}(t) = t^3 \vec{i} + t^2 \vec{j}.$

plot with the substitution $s=t^3$

Higher-Order Derivatives

$$\vec{A}''(t_0) = \lim_{t \to t_0} \frac{\vec{A}'(t) - \vec{A}'(t_0)}{t - t_0}$$

Interpretation of Derivatives

Tangent vector to a point on a curve

Velocity and acceleration

Suppose $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ is position and t is time. Then

Velocity:
$$\vec{v}(t) = \frac{d}{dt}\vec{r}(t) = \dot{\vec{r}} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

speed:
$$|\vec{v}(t)| = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2}$$

Acceleration: $\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2} = \ddot{\vec{r}}$

Example Show that the velocity vector of a particle moving on a sphere $(radius = r_0)$ is always perpendicular to the radial vector.

Example Show that the projection of the acceleration vector of a particle moving on a sphere on the radial direction is $-\frac{|\vec{r}|^2}{|\vec{r}|}\hat{r}$.

Arc Length of a Curve

If C is the image of a smooth vector-valued function $\vec{r}(t)$, then its arc length L from t = a to t = b is

$$L = \int_{a}^{b} \left\| \frac{d\vec{r}}{dt} \right\| dt.$$

 $\frac{\text{Example}}{\text{circular helix}}$ Find the arc length of that portion of the

 $x = \cos t$, $y = \sin t$, z = tfrom t = 0 to $t = \pi$.

- Problem Set 2 --