
Limit and Continuity on a Set (general case)

Open and close sets

Let R be a set in the plane. Then for each point P in

the plane, one and only one of the following possibilities

holds:

1. ∃ an open disk centered at P and contained totally

in R. In this case P is an interior point of R.

2. ∃ an open disk centered at P and containing no

points of R. In this case P is an exterior point of R.

3. Every open disk centered at P contains a point

in R and a point outside of R. In this case P is a

boundary point of R.

Definition The collection of boundary points of R is

the boundary of R.

Definition If a set R contains its boundary, then R is

closed.

Definition If a set R contains only interior points, then

R is open.

Example The open disk Dε(x0, y0) =

{(x, y)|
√

(x − x0)2 + (y − y0)2 < ε}

is open.

Example The set {(x, y)| |x| < 1, |y| ≤ 1} is neither

open nor close.
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Limit and continuity at a boundary point

Definition Let (x0, y0) be on the boundary of R. A

number L is the limit of f restricted to R

at (x0, y0) if for every ε > 0,∃ a number

δ > 0 such that if (x, y) ∈ R and

0 <
√

(x − x0)2 + (y − y0)2 < δ, then

|f(x, y) − L| < ε. Then, we write

lim
(x,y)R→(x0,y0)

f(x, y) = L.

Example Let R be the natural domain of

f(x, y) =
x2 − y2

x + y
.

Consider lim
(x,y)R→(0,0)

f(x, y).

Continuity at a boundary point (x0, y0) can then be

defined by the condition

lim
(x,y)R→(x0,y0)

f(x, y) = f(x0, y0).

Continuity on a set (general situation)

Definition If f is continuous at every interior point of

R and lim
(x,y)R→(x0,y0)

f(x, y) = f(x0, y0)
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for every boundary point (x0, y0) in R, we

say that f is continuous on R.

Theorem Let R be a close, bounded set in the plane,

and let f be continuous on R. Then f has

both a maximum and a minimum on R.

Definition A set is ‘bounded’ if there exists a number

M so that the distances of all its points to

the origin are less than M .

Example Consider f(x, y) = xy on [0, 1] × [0, 1] −

{(1, 1)}

pf by contradiction. x<1 or y<1

Partial Derivatives

Use graph, mention the tangent lines (plane) to motivate

Definition Let f be a function of two variables, and let

(x0, y0) be in the domain of f . The partial

derivative of f with respect to (w.r.t.) x

at (x0, y0) is defined by

fx(x0, y0) = lim
∆x→0

f(x0 + ∆x, y0) − f(x0, y0)

∆x

provided that this limit exists.
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The notations
∂

∂x
f , ∂xf are also in use.

The partial derivative of f w.r.t. y at (x0, y0) can be

similarly defined.

Example Let z = sin(xy2). Find
∂z

∂x
and

∂z

∂y
.

The tangent line to the curve (x, y0, f(x, y0)) through the

point (x0, y0, z0) where z0 = f(x0, y0) is described by the

vector equation (x, y, z) = (x0, y0, z0)+ (x−x0)(1, 0, fx).

Similarly the tangent line to the curve (x0, y, f(x0, y))

can be found. The plane that contains these two lines is

given by −fx(x − x0) − fy(y − y0) + (z − f(x0, y0)) = 0.

Formulas

(f ± g)x = fx ± gx

(fg)x = fxg + fgx

(f/g)x =
fxg − fgx

g2
for g 6= 0

Similarly for ( )y

4



Higher-Order Partial Derivatives

2nd order

(fx)x fxx

∂2f

∂x2

(fx)y fxy

∂2f

∂y∂x
mixed partials

(fy)x fyx

∂2f

∂x∂y
mixed partials

(fy)y fyy

∂2f

∂y2

Example Let f(x, y) = sin(xy2). Find all 2nd or-

der partial derivatives of f (illustrate that

fxy = fyx).

fxy=−2xy3 sin(xy2)+2y cos(xy2)

Theorem Let f be a function of two variables, and

assume that fxy and fyx are continuous at

(x0, y0). Then

fxy(x0, y0) = fyx(x0, y0).

Since polynomials, trigonometric functions, exponential and

logarithmic functions are continuously differentiable

everywhere (in their domains), mixed partials of their compos-

ites can have the orderings switched under most circumstances.
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Though a necessary requirement, the existence of fx

and fy does not guarantee differentiability. It does

not even guarantee continuity.

Example Consider

f(x, y) =

{

0 on the x and y axes

1 otherwise

Differentiability

Definition Let 4x = x − x0 and 4y = y − y0. If f is

such that 4f = f(x, y) − f(x0, y0) can be

expressed in the form 4f = fx4x+fy4y+

ε14x+ε24y where ε1, ε2 → 0 as 4x,4y →

0, we call f differentiable at (x0, y0).

Consider the plane though the two first-partial tangents.

Note This definition is equivalent to the regular defi-

nition in the single-variable situation. prove first

Example Consider f(x, y) = xy. At (0, 0), f = 0,

fx = 0 and fy = 0. As ∆x = x and ∆y = y,

one can pick, for example, ε1 = y/2 and

ε2 = x/2.
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Theorem If fx and fy are continuous at (x0, y0), f is

differentiable at the point.

Theorem differentiability ⇒ continuity

Definition A function f is called differentiable on a

region R if it is differentiable at each point

of R.

Tangent Plane

If f(x, y) is differentiable, a tangent plane to its

graph at the point (x0, y0, f(x0, y0)) can be defined. The

equation

z = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0).

describes the tangent plane that passes through the point.

A normal to this plane is (fx(x0, y0), fy(x0, y0),−1).

Example Let f(x, y) =
√

1 − x2 − y2, find the tan-

gent plane to the graph of this function at

(0, 0, 1).

normal ‖ position vector.
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Tangent Plane Approximation

When f is differentiable at (x0, y0), the value of f at

a point (x, y) near (x0, y0) can be approximated by

f(x, y) − f(x0, y0) ≈ fx(x0, y0)4x + fy(x0, y0)4y.

i.e. f(x, y) ≈ z while (x, y, z) is a point on the tan-

gent plane through (x0, y0, f(x0, y0)). The exact value

of f(x, y) is not necessarily z, but it can be closely ap-

proximated by z (the error terms are ε14x + ε24y).

(graphical illustration of the tangent plane approxima-

tion).

Example A rectangular cardboard box has outer di-

mensions 30, 30, and 20 cm. If the card-

board is 3 mm thick, estimate the volume

of cardboard.

∆x=6mm; ∆V ≈1260cc

Differentials

As 4x,4y become very small, the approximation

above can be written in the form

df = fx(x, y)dx + fy(x, y)dy.
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It is called the total differential of f at (x, y). dx and dy

are called the differentials of x and y, respectively.

—– Problem Set 4 —–
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