Limit and Continuity on a Set (general case)

Open and close sets

Let R be a set in the plane. Then for each point P in the plane, one and only one of the following possibilities holds:

1. \exists an open disk centered at P and contained totally in R. In this case P is an interior point of R.
2. \exists an open disk centered at P and containing no points of R. In this case P is an exterior point of R.
3. Every open disk centered at P contains a point in R and a point outside of R. In this case P is a boundary point of R.

Definition The collection of boundary points of R is the boundary of R.
Definition If a set R contains its boundary, then R is closed.

Definition If a set R contains only interior points, then R is open.
Example The open disk $D_{\varepsilon}\left(x_{0}, y_{0}\right)=$ $\left\{(x, y) \mid \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\varepsilon\right\}$ is open.

Example The set $\{(x, y)||x|<1,|y| \leq 1\}$ is neither open nor close.

Limit and continuity at a boundary point

Definition Let $\left(x_{0}, y_{0}\right)$ be on the boundary of R. A number L is the limit of f restricted to R at $\left(x_{0}, y_{0}\right)$ if for every $\varepsilon>0, \exists$ a number $\delta>0$ such that if $(x, y) \in R$ and
$0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta$, then $|f(x, y)-L|<\varepsilon$. Then, we write

$$
\lim _{(x, y)_{R} \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

Example Let R be the natural domain of

$$
\begin{aligned}
& f(x, y)=\frac{x^{2}-y^{2}}{x+y} \\
& \text { Consider } \lim _{(x, y)_{R} \rightarrow(0,0)} f(x, y)
\end{aligned}
$$

Continuity at a boundary point $\left(x_{0}, y_{0}\right)$ can then be defined by the condition

$$
\lim _{(x, y)_{R} \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)
$$

Continuity on a set (general situation)
Definition If f is continuous at every interior point of R and $\lim _{(x, y)_{R} \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$
for every boundary point $\left(x_{0}, y_{0}\right)$ in R, we say that f is continuous on R.

Theorem Let R be a close, bounded set in the plane, and let f be continuous on R. Then f has both a maximum and a minimum on R.

Definition A set is 'bounded' if there exists a number M so that the distances of all its points to the origin are less than M.

Example Consider $f(x, y)=x y$ on $[0,1] \times[0,1]-$ $\{(1,1)\}$
pf by contradiction. $x<1$ or $y<1$

Partial Derivatives

Use graph, mention the tangent lines (plane) to motivate
Definition Let f be a function of two variables, and let $\left(x_{0}, y_{0}\right)$ be in the domain of f. The partial derivative of f with respect to (w.r.t.) x at $\left(x_{0}, y_{0}\right)$ is defined by

$$
f_{x}\left(x_{0}, y_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x}
$$

provided that this limit exists.

The notations $\frac{\partial}{\partial x} f, \partial_{x} f$ are also in use.

The partial derivative of f w.r.t. y at $\left(x_{0}, y_{0}\right)$ can be

 similarly defined.Example Let $z=\sin \left(x y^{2}\right)$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

The tangent line to the curve $\left(x, y_{0}, f\left(x, y_{0}\right)\right)$ through the point $\left(x_{0}, y_{0}, z_{0}\right)$ where $z_{0}=f\left(x_{0}, y_{0}\right)$ is described by the vector equation $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+\left(x-x_{0}\right)\left(1,0, f_{x}\right)$. Similarly the tangent line to the curve $\left(x_{0}, y, f\left(x_{0}, y\right)\right)$ can be found. The plane that contains these two lines is given by $-f_{x}\left(x-x_{0}\right)-f_{y}\left(y-y_{0}\right)+\left(z-f\left(x_{0}, y_{0}\right)\right)=0$.

Formulas

$$
\begin{aligned}
& (f \pm g)_{x}=f_{x} \pm g_{x} \\
& (f g)_{x}=f_{x} g+f g_{x} \\
& (f / g)_{x}=\frac{f_{x} g-f g_{x}}{g^{2}}
\end{aligned} \quad \text { for } g \neq 0
$$

Similarly for ()$_{y}$

Higher-Order Partial Derivatives

2nd order

$$
\begin{array}{llll}
\left(f_{x}\right)_{x} & f_{x x} & \frac{\partial^{2} f}{\partial x^{2}} & \\
\left(f_{x}\right)_{y} & f_{x y} & \frac{\partial^{2} f}{\partial y \partial x} & \text { mixed partials } \\
\left(f_{y}\right)_{x} & f_{y x} & \frac{\partial^{2} f}{\partial x \partial y} & \text { mixed partials } \\
\left(f_{y}\right)_{y} & f_{y y} & \frac{\partial^{2} f}{\partial y^{2}} &
\end{array}
$$

Example Let $f(x, y)=\sin \left(x y^{2}\right)$. Find all 2nd order partial derivatives of f (illustrate that $f_{x y}=f_{y x}$.
$f_{x y}=-2 x y^{3} \sin \left(x y^{2}\right)+2 y \cos \left(x y^{2}\right)$
Theorem Let f be a function of two variables, and assume that $f_{x y}$ and $f_{y x}$ are continuous at $\left(x_{0}, y_{0}\right)$. Then

$$
f_{x y}\left(x_{0}, y_{0}\right)=f_{y x}\left(x_{0}, y_{0}\right)
$$

Since polynomials, trigonometric functions, exponential and logarithmic functions are continuously differentiable everywhere (in their domains), mixed partials of their composites can have the orderings switched under most circumstances.

Though a necessary requirement, the existence of f_{x} and f_{y} does not guarantee differentiability. It does not even guarantee continuity.

Example Consider

$$
f(x, y)= \begin{cases}0 & \text { on the } x \text { and } y \text { axes } \\ 1 & \text { otherwise }\end{cases}
$$

Differentiability

Definition Let $\triangle x=x-x_{0}$ and $\triangle y=y-y_{0}$. If f is such that $\triangle f=f(x, y)-f\left(x_{0}, y_{0}\right)$ can be expressed in the form $\triangle f=f_{x} \triangle x+f_{y} \triangle y+$ $\epsilon_{1} \triangle x+\epsilon_{2} \triangle y$ where $\epsilon_{1}, \epsilon_{2} \rightarrow 0$ as $\triangle x, \triangle y \rightarrow$ 0 , we call f differentiable at $\left(x_{0}, y_{0}\right)$.

Consider the plane though the two first-partial tangents.
Note This definition is equivalent to the regular definition in the single-variable situation. prove first

Example Consider $f(x, y)=x y$. At $(0,0), f=0$, $f_{x}=0$ and $f_{y}=0$. As $\Delta x=x$ and $\Delta y=y$, one can pick, for example, $\epsilon_{1}=y / 2$ and $\epsilon_{2}=x / 2$.

Theorem If f_{x} and f_{y} are continuous at $\left(x_{0}, y_{0}\right), f$ is differentiable at the point.

Theorem differentiability \Rightarrow continuity

Definition A function f is called differentiable on a $\underline{\text { region } R}$ if it is differentiable at each point of R.

Tangent Plane

If $f(x, y)$ is differentiable, a tangent plane to its graph at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ can be defined. The equation

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

describes the tangent plane that passes through the point. A normal to this plane is $\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right)$.

Example Let $f(x, y)=\sqrt{1-x^{2}-y^{2}}$, find the tangent plane to the graph of this function at $(0,0,1)$.
normal || position vector.

Tangent Plane Approximation

When f is differentiable at $\left(x_{0}, y_{0}\right)$, the value of f at a point (x, y) near $\left(x_{0}, y_{0}\right)$ can be approximated by

$$
f(x, y)-f\left(x_{0}, y_{0}\right) \approx f_{x}\left(x_{0}, y_{0}\right) \triangle x+f_{y}\left(x_{0}, y_{0}\right) \triangle y
$$

i.e. $f(x, y) \approx z$ while (x, y, z) is a point on the tangent plane through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. The exact value of $f(x, y)$ is not necessarily z, but it can be closely approximated by z (the error terms are $\epsilon_{1} \Delta x+\epsilon_{2} \Delta y$). (graphical illustration of the tangent plane approximation).

Example A rectangular cardboard box has outer dimensions 30,30 , and 20 cm . If the cardboard is 3 mm thick, estimate the volume of cardboard.

```
\Deltax=6mm; \DeltaV\approx1260cc
```


Differentials

As $\triangle x, \triangle y$ become very small, the approximation above can be written in the form

$$
d f=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

It is called the total differential of f at $(x, y) . d x$ and $d y$ are called the differentials of x and y, respectively.

Problem Set 4

