Limit and Continuity on a Set (general case)

Open and close sets

Let R be a set in the plane. Then for each point P in the plane, one and only one of the following possibilities holds:

1. \exists an open disk centered at P and contained totally in R. In this case P is an <u>interior point</u> of R.

∃ an open disk centered at P and containing no points of R. In this case P is an exterior point of R.
 Every open disk centered at P contains a point in R and a point outside of R. In this case P is a boundary point of R.

- $\frac{\text{Definition}}{\text{the collection of boundary points of } R \text{ is}}$ $\frac{\text{boundary}}{\text{boundary}} \text{ of } R.$
- $\frac{\text{Definition}}{\text{closed}}$ If a set *R* contains its boundary, then *R* is $\frac{\text{closed}}{\text{closed}}$.
- $\frac{\text{Definition}}{R \text{ is } \underline{\text{open}}}.$

Example The open disk $D_{\varepsilon}(x_0, y_0) =$ $\{(x, y) | \sqrt{(x - x_0)^2 + (y - y_0)^2} < \varepsilon\}$ is open.

Example The set $\{(x, y) | |x| < 1, |y| \le 1\}$ is neither open nor close.

Limit and continuity at a boundary point

Definition Let (x_0, y_0) be on the boundary of R. A number L is the limit of f restricted to Rat (x_0, y_0) if for every $\varepsilon > 0, \exists$ a number $\delta > 0$ such that if $(x, y) \in R$ and $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$, then $|f(x, y) - L| < \varepsilon$. Then, we write

$$\lim_{(x,y)_R \to (x_0,y_0)} f(x,y) = L.$$

<u>Example</u> Let R be the natural domain of

$$f(x,y) = \frac{x^2 - y^2}{x + y}.$$

Consider
$$\lim_{(x,y)_R \to (0,0)} f(x,y).$$

Continuity at a boundary point (x_0, y_0) can then be defined by the condition

$$\lim_{(x,y)_R \to (x_0,y_0)} f(x,y) = f(x_0,y_0).$$

<u>Continuity on a set (general situation)</u>

<u>Definition</u> If f is continuous at <u>every interior point</u> of $R \text{ and } \lim_{(x,y)_R \to (x_0,y_0)} f(x,y) = f(x_0,y_0)$ for every boundary point (x_0, y_0) in R, we say that f is continuous on R.

- <u>Theorem</u> Let R be a close, bounded set in the plane, and let f be continuous on R. Then f has both a maximum and a minimum on R.
- $\frac{\text{Definition}}{M} \text{ A set is 'bounded' if there exists a number} M \text{ so that the distances of all its points to} the origin are less than <math>M$.

Example Consider f(x, y) = xy on $[0, 1] \times [0, 1] - \{(1, 1)\}$

Partial Derivatives

Use graph, mention the tangent lines (plane) to motivate

<u>Definition</u> Let f be a function of two variables, and let (x_0, y_0) be in the domain of f. The <u>partial</u> <u>derivative of f with respect to (w.r.t.) xat (x_0, y_0) is defined by</u>

$$f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

provided that this limit exists.

The notations $\frac{\partial}{\partial x}f$, $\partial_x f$ are also in use.

The partial derivative of f w.r.t. y at (x_0, y_0) can be similarly defined.

Example Let
$$z = \sin(xy^2)$$
. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

The tangent line to the curve $(x, y_0, f(x, y_0))$ through the point (x_0, y_0, z_0) where $z_0 = f(x_0, y_0)$ is described by the vector equation $(x, y, z) = (x_0, y_0, z_0) + (x - x_0)(1, 0, f_x)$. Similarly the tangent line to the curve $(x_0, y, f(x_0, y))$ can be found. The plane that contains these two lines is given by $-f_x(x - x_0) - f_y(y - y_0) + (z - f(x_0, y_0)) = 0$.

<u>Formulas</u>

$$(f \pm g)_x = f_x \pm g_x$$

$$(fg)_x = f_x g + fg_x$$

$$(f/g)_x = \frac{f_x g - fg_x}{g^2} \qquad \text{for } g \neq 0$$

Similarly for $()_y$

<u>Higher-Order Partial Derivatives</u>

2nd order

$$(f_x)_x \qquad f_{xx} \quad \frac{\partial^2 f}{\partial x^2}$$

$$(f_x)_y \qquad f_{xy} \quad \frac{\partial^2 f}{\partial y \partial x} \quad \text{mixed partials}$$

$$(f_y)_x \qquad f_{yx} \quad \frac{\partial^2 f}{\partial x \partial y} \quad \text{mixed partials}$$

$$(f_y)_y \qquad f_{yy} \quad \frac{\partial^2 f}{\partial y^2}$$

- Example Let $f(x, y) = \sin(xy^2)$. Find all 2nd order partial derivatives of f (illustrate that $f_{xy} = f_{yx}$). $f_{xy} = -2xy^3 \sin(xy^2) + 2y \cos(xy^2)$
- <u>Theorem</u> Let f be a function of two variables, and assume that f_{xy} and f_{yx} are <u>continuous</u> at (x_0, y_0) . Then

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

Since polynomials, trigonometric functions, exponential and logarithmic functions are continuously differentiable everywhere (in their domains), mixed partials of their composites can have the orderings switched under most circumstances. Though a necessary requirement, the existence of f_x and f_y does <u>not</u> guarantee differentiability. It does not even guarantee continuity.

Example Consider

$$f(x,y) = \begin{cases} 0 & \text{on the } x \text{ and } y \text{ axes} \\ 1 & \text{otherwise} \end{cases}$$

Differentiability

<u>Definition</u> Let $\triangle x = x - x_0$ and $\triangle y = y - y_0$. If f is such that $\triangle f = f(x, y) - f(x_0, y_0)$ can be expressed in the form $\triangle f = f_x \triangle x + f_y \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y$ where $\epsilon_1, \epsilon_2 \rightarrow 0$ as $\triangle x, \triangle y \rightarrow 0$, we call f <u>differentiable</u> at (x_0, y_0) .

Consider the plane though the two first-partial tangents.

- <u>Note</u> This definition is equivalent to the regular definition in the single-variable situation. *prove first*
- Example Consider f(x, y) = xy. At (0, 0), f = 0, $f_x = 0$ and $f_y = 0$. As $\Delta x = x$ and $\Delta y = y$, one can pick, for example, $\epsilon_1 = y/2$ and $\epsilon_2 = x/2$.

<u>Theorem</u> If f_x and f_y are continuous at (x_0, y_0) , f is differentiable at the point.

<u>Theorem</u> differentiability \Rightarrow continuity

 $\begin{array}{l} \underline{\text{Definition}} \ \text{A function } f \text{ is called } \underline{\text{differentiable on a}} \\ \underline{\text{region } R} \text{ if it is differentiable at each point} \\ \text{of } R. \end{array}$

Tangent Plane

If f(x, y) is differentiable, a <u>tangent plane</u> to its graph at the point $(x_0, y_0, f(x_0, y_0))$ can be defined. The equation

 $z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$

describes the tangent plane that passes through the point. A normal to this plane is $(f_x(x_0, y_0), f_y(x_0, y_0), -1)$.

Example Let $f(x, y) = \sqrt{1 - x^2 - y^2}$, find the tangent plane to the graph of this function at (0, 0, 1).

 $normal \parallel position \ vector.$

Tangent Plane Approximation

When f is differentiable at (x_0, y_0) , the value of f at a point (x, y) near (x_0, y_0) can be approximated by

$$f(x,y) - f(x_0,y_0) \approx f_x(x_0,y_0) \triangle x + f_y(x_0,y_0) \triangle y.$$

i.e. $f(x,y) \approx z$ while (x,y,z) is a point on the tangent plane through $(x_0, y_0, f(x_0, y_0))$. The exact value of f(x,y) is not necessarily z, but it can be closely approximated by z (the error terms are $\epsilon_1 \Delta x + \epsilon_2 \Delta y$). (graphical illustration of the tangent plane approximation).

Example A rectangular cardboard box has outer dimensions 30, 30, and 20 cm. If the cardboard is 3 mm thick, estimate the volume of cardboard.

 $\Delta x = 6mm; \ \Delta V \approx 1260cc$

Differentials

As $\triangle x, \triangle y$ become very small, the approximation above can be written in the form

$$df = f_x(x, y)dx + f_y(x, y)dy.$$

It is called the <u>total differential of f at (x, y)</u>. dx and dy are called the differentials of x and y, respectively.

— Problem Set 4 —