Differentiation of Composite Functions

Chain rules: Assuming that $f, r_{1}, r_{2}, h_{1}, h_{2}$ are differentiable:

1. Let $z=f(x, y), x=r_{1}(t)$ and $y=r_{2}(t)$. Then $z=f\left(r_{1}(t), r_{2}(t)\right)$, and
$\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \quad$ (diff. along a curve)
pf use defn of differentiability
$\vec{r}(t)=r_{1}(t) \vec{i}+r_{2}(t) \vec{j}$ is a vector-valued function that traces a curve on the (x, y) plane.

Note $z(t)=(f \circ \vec{r})(t)$ also stands for the composite function, and $d x / d t$ stands for $d r_{1}(t) / d t$.
2. Let $z=f(x, y), x=h_{1}(u, v)$ and $y=h_{2}(u, v)$. Then $z=f\left(h_{1}(u, v), h_{2}(u, v)\right)$, and

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

(use directed graphs)
Example Let $z=x^{2} e^{y}, x=\sin t$, and $y=t^{3}$. Find $\frac{d z}{d t}$.

Example Let $z=x \ln (y), x=u^{2}+v^{2}$, and $y=u^{2}-$ v^{2}. Find $\partial z / \partial u$ and $\partial z / \partial v$.

Example (implicit differentiation)

a. Given $y+\sin \left(y x^{2}\right)=1$, find $d y / d x$.
$-2 x y \cos x^{2} y /\left(1+x^{2} \cos x^{2} y\right)$
b. Assuming that $f(x, y)=0$ defines a differentiable function $y=g(x)$ of x, so that $f(x, g(x))=0$. Find g^{\prime} in terms of the partial derivatives of f.

Directional Derivatives

- differentiation along a direction different from the x-, y-axes.

Definition Let f be a function defined on a set containing an open disk centered at $\left(x_{0}, y_{0}\right)$, and let $\hat{u}=u_{1} \vec{i}+u_{2} \vec{j}$ be a unit vector. Then the directional derivative of f at
$\left(x_{0}, y_{0}\right)$ in the direction of \hat{u}, denoted $D_{\hat{u}} f\left(x_{0}, y_{0}\right)$, is defined by

$$
D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\lim _{s \rightarrow 0} \frac{f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right)}{s}
$$

provided that this limit exists.

Note s is a distance parameter along the direction of $\hat{u} .|s|$ measures the distance to $\left(x_{0}, y_{0}\right)$.

Theorem Let f be differentiable at $\left(x_{0}, y_{0}\right)$. Then f has a directional derivative at $\left(x_{0}, y_{0}\right)$ in every direction.
Moreover, if $\hat{u}=u_{1} \vec{i}+u_{2} \vec{j}$,
$D_{\hat{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) u_{1}+f_{y}\left(x_{0}, y_{0}\right) u_{2}$.

Pf: Let $g_{1}(s)=x_{0}+s u_{1} \& g_{2}(s)=y_{0}+s u_{2}$ and use the Chain Rule.

Example Let $f(x, y)=x y^{2}$ and $\vec{u}=\vec{i}-2 \vec{j}$. Find the directional derivative of f at $(-3,1)$ in the direction of \vec{u}. $13 / \sqrt{5}$

The Gradient

Definition Grad $f\left(x_{0}, y_{0}\right)$

$$
=\vec{\nabla} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \vec{i}+f_{y}\left(x_{0}, y_{0}\right) \vec{j}
$$

Theorem a. $D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\hat{u} \cdot \vec{\nabla} f\left(x_{0}, y_{0}\right)$
b. $D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\left\|\vec{\nabla} f\left(x_{0}, y_{0}\right)\right\| \cos \phi$
(ϕ is the angle between \vec{u} and $\vec{\nabla} f$)

Note $D_{\hat{u}} f\left(x_{0}, y_{0}\right)$ is a scalar while $\vec{\nabla} f\left(x_{0}, y_{0}\right)$ is a vector.

The largest value of $D_{\hat{u}} f$ is $\|\vec{\nabla} f\|$, and this value is obtained when \hat{u} points in the direction of $\vec{\nabla} f$.

Example Let $f(x, y)=6-3 x^{2}-y^{2}$. Determine the directions in which f increases/decreases most rapidly at $(1,2)$ and find the maximal value of the directional derivative.

$$
\vec{\nabla} f(1,2)=(-6,-4),\|\vec{\nabla} f(1,2)\|=\sqrt{52}
$$

The Gradient as a Normal Vector

Let C be a level curve $f(x, y)=c$ of a function f. Let $\left(x_{0}, y_{0}\right)$ be a point on C, and assume that f is differentiable at $\left(x_{0}, y_{0}\right)$. If C is smooth and $\vec{\nabla} f\left(x_{0}, y_{0}\right) \neq \overrightarrow{0}$, then $\vec{\nabla} f\left(x_{0}, y_{0}\right)$ is normal to C at $\left(x_{0}, y_{0}\right)$.

Pf.: Let $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}$ be a smooth parameterization of C, then

$$
\frac{d}{d t} f(x(t), y(t))=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}=\frac{d \vec{r}}{d t} \cdot \vec{\nabla} f=0 .
$$

Note The first version of the Chain Rule can be written as

$$
\frac{d(f \circ \vec{r})(t)}{d t}=\vec{\nabla} f \cdot \frac{d \vec{r}}{d t}
$$

Example Find a unit vector \perp to the curve $x^{2}-x y+$ $3 y^{2}=5$ at $(1,-1)$.
$(1 / \sqrt{58})(3,-7)$
Theorem Let S be a level surface of a function f and $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on S. If f is differentiable at $\left(x_{0}, y_{0}, z_{0}\right)$ and $\vec{\nabla} f\left(x_{0}, y_{0}, z_{0}\right) \neq \overrightarrow{0}$, then $\vec{\nabla} f\left(x_{0}, y_{0}, z_{0}\right)$ is \perp to the tangent vector at $\left(x_{0}, y_{0}, z_{0}\right)$ of any smooth curve lying on S and passing through this point. Therefore, $\vec{\nabla} f\left(x_{0}, y_{0}, z_{0}\right)$ is a normal to the tangent plane of S at $\left(x_{0}, y_{0}, z_{0}\right)$.

Example Find an equation of the plane tangent to the sphere $x^{2}+y^{2}+z^{2}=4$ at $(-1,1, \sqrt{2})$.

Now suppose that f is a function of two variables that is differentiable at $\left(x_{0}, y_{0}\right)$. In order to obtain an equation of the plane tangent to the graph of f at $\left(x_{0}, y_{0}\right)$, one can think of the graph of f as the level surface

$$
\begin{aligned}
& g(x, y, z)=0 \text { where } g=f(x, y)-z \text {. Then } \\
& \qquad \vec{\nabla} g\left(x_{0}, y_{0}, z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \vec{i}+f_{y}\left(x_{0}, y_{0}\right) \vec{j}-\vec{k}
\end{aligned}
$$

provides a normal to the tangent plane of the graph at $\left(x_{0}, y_{0}\right)$.

Example Find an equation for the tangent plane to the graph of

$$
f(x, y)=6-3 x^{2}-y^{2} \text { at }(1,2,-1)
$$

Taylor Series

Can $f(x, y)=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$ be expressed in terms of $f\left(x_{0}, y_{0}\right)$ and the partial derivatives of f at $\left(x_{0}, y_{0}\right)$?

Let $\left(x_{0}, y_{0}\right)+s \hat{u}$ be the parameterization of a line that passes through $\left(x_{0}, y_{0}\right)$ and (x, y), with \hat{u} being the unit vector

$$
u_{1} \vec{i}+u_{2} \vec{j} \equiv \frac{1}{\sqrt{\Delta x^{2}+\Delta y^{2}}}(\Delta x \vec{i}+\Delta y \vec{j})
$$

The parameter s is the distance from $\left(x_{0}, y_{0}\right)$ to a point on the line.

The function $f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)$ can be considered as a single-variable function of s . From the discussion of directional derivative, we know that

$$
\frac{d}{d s} f=D_{u} f=\left(u_{1} \frac{\partial}{\partial x}+u_{2} \frac{\partial}{\partial y}\right) f
$$

in which $D_{\hat{u}}$ is written as a differential operator.

With \hat{u} fixed, $D_{\hat{u}} f$ can be considered as a function of (x, y). Suppose that f is sufficiently differentiable, then

$$
\frac{d^{2}}{d s^{2}} f=D_{u}^{2} f, \ldots \ldots
$$

Considered as a function of s, the Taylor series of $f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)$ can be written as

$$
=f\left(x_{0}, y_{0}\right)+s D_{u} f+\frac{1}{2!} s^{2} D_{u}^{2} f+\cdots+\frac{1}{n!} s^{n} D_{u}^{n} f+\cdots
$$

By choosing $s=\sqrt{\Delta x^{2}+\Delta y^{2}}$, one obtains

$$
\begin{aligned}
& s D_{u} f=\left(\Delta x \frac{\partial}{\partial x}+\Delta y \frac{\partial}{\partial y}\right) f, \\
& s^{2} D_{u}^{2} f=\left(\Delta x \frac{\partial}{\partial x}+\Delta y \frac{\partial}{\partial y}\right)^{2} f,
\end{aligned}
$$

......,

and

$$
\begin{aligned}
& f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)=f\left(x_{0}, y_{0}\right)+\left(\Delta x \frac{\partial}{\partial x}+\Delta y \frac{\partial}{\partial y}\right) f \\
& +\frac{1}{2!}\left(\Delta x \frac{\partial}{\partial x}+\Delta y \frac{\partial}{\partial y}\right)^{2} f+\cdots+\frac{1}{n!}\left(\Delta x \frac{\partial}{\partial x}+\Delta y \frac{\partial}{\partial y}\right)^{n} f+\cdots
\end{aligned}
$$

assuming that all relevant derivatives exist.

Useful for determining max/min.

