
Differentiation of Composite Functions

Chain rules: Assuming that f, r1, r2, h1, h2 are differ-

entiable:

1. Let z = f(x, y), x = r1(t) and y = r2(t). Then

z = f(r1(t), r2(t)), and

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
(diff. along a curve)

pf use defn of differentiability

~r(t) = r1(t)~i+r2(t)~j is a vector-valued function that

traces a curve on the (x, y) plane.

Note z(t) = (f ◦ ~r)(t) also stands for the composite

function, and dx/dt stands for dr1(t)/dt.

2. Let z = f(x, y), x = h1(u, v) and y = h2(u, v).

Then z = f(h1(u, v), h2(u, v)), and

∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u

∂z

∂v
=

∂z

∂x

∂x

∂v
+

∂z

∂y

∂y

∂v

(use directed graphs)

Example Let z = x2ey, x = sin t, and y = t3. Find
dz

dt
.

1



Example Let z = xln(y), x = u2 + v2, and y = u2 −
v2. Find ∂z/∂u and ∂z/∂v.

Example (implicit differentiation)

a. Given y + sin(yx2) = 1, find dy/dx.

−2xy cos x2y/(1+x2 cos x2y)

b. Assuming that f(x, y) = 0 defines a dif-

ferentiable function y = g(x) of x, so that

f(x, g(x)) = 0. Find g′ in terms of the par-

tial derivatives of f .

Directional Derivatives

– differentiation along a direction different from the x-,

y-axes.

Definition Let f be a function defined on a set contain-

ing an open disk centered at (x0, y0), and

let û = u1
~i + u2

~j be a unit vector. Then

the directional derivative of f at

(x0, y0) in the direction of û, denoted

Dûf(x0, y0), is defined by

Dûf(x0, y0) = lim
s→0

f(x0 + su1, y0 + su2) − f(x0, y0)

s

provided that this limit exists.
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Note s is a distance parameter along the direction of

û. |s| measures the distance to (x0, y0).

Theorem Let f be differentiable at (x0, y0). Then

f has a directional derivative at (x0, y0) in

every direction.

Moreover, if û = u1
~i + u2

~j,

Dûf(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

Pf: Let g1(s) = x0+su1 & g2(s) = y0+su2

and use the Chain Rule.

Example Let f(x, y) = xy2 and ~u =~i− 2~j. Find the

directional derivative of f at (−3, 1) in the

direction of ~u. 13/
√

5

The Gradient

Definition Grad f(x0, y0)

= ~5f(x0, y0) = fx(x0, y0)~i + fy(x0, y0)~j

Theorem a. Dûf(x0, y0) = û· ~5f(x0, y0)

b. Dûf(x0, y0) = ||~5f(x0, y0)|| cos φ

(φ is the angle between ~u and ~5f)

3



Note Dûf(x0, y0) is a scalar while ~5f(x0, y0) is a vec-

tor.

The largest value of Dûf is ||~5f ||, and this

value is obtained when û points in the di-

rection of ~5f .

Example Let f(x, y) = 6 − 3x2 − y2. Determine the

directions in which f increases/decreases

most rapidly at (1, 2) and find the maximal

value of the directional derivative.

~5f(1,2)=(−6,−4), ||~5f(1,2)||=
√

52

The Gradient as a Normal Vector

Let C be a level curve f(x, y) = c of a function f .

Let (x0, y0) be a point on C, and assume that f is differ-

entiable at (x0, y0). If C is smooth and ~5f(x0, y0) 6= ~0,

then ~5f(x0, y0) is normal to C at (x0, y0).

Pf.: Let ~r(t) = x(t)~i + y(t)~j be a smooth parameter-

ization of C, then

d

dt
f(x(t), y(t)) = fx

dx

dt
+ fy

dy

dt
=

d~r

dt
· ~5f = 0.

Note The first version of the Chain Rule can be writ-

ten as
d(f ◦ ~r)(t)

dt
= ~5f · d~r

dt
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Example Find a unit vector ⊥ to the curve x2−xy+

3y2 = 5 at (1,−1). (1/
√

58)(3,−7)

Theorem Let S be a level surface of a function f and

(x0, y0, z0) is a point on S. If f is differen-

tiable at (x0, y0, z0) and ~5f(x0, y0, z0) 6= ~0,

then ~5f(x0, y0, z0) is ⊥ to the tangent vec-

tor at (x0, y0, z0) of any smooth curve ly-

ing on S and passing through this point.

Therefore, ~5f(x0, y0, z0) is a normal to the

tangent plane of S at (x0, y0, z0).

Example Find an equation of the plane tangent to

the sphere x2 + y2 + z2 = 4 at (−1, 1,
√

2).

Now suppose that f is a function of two variables

that is differentiable at (x0, y0). In order to obtain an

equation of the plane tangent to the graph of f at (x0, y0),

one can think of the graph of f as the level surface

g(x, y, z) = 0 where g = f(x, y) − z. Then

~5g(x0, y0, z0) = fx(x0, y0)~i + fy(x0, y0)~j − ~k

provides a normal to the tangent plane of the graph at

(x0, y0).

Example Find an equation for the tangent plane to

the graph of
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f(x, y) = 6 − 3x2 − y2 at (1, 2,−1).

Taylor Series

Can f(x, y) = f(x0 + ∆x, y0 + ∆y) be expressed

in terms of f(x0, y0) and the partial derivatives of f at

(x0, y0)?

Let (x0, y0) + sû be the parameterization of a line that

passes through (x0, y0) and (x, y), with û being the unit

vector

u1
~i + u2

~j ≡ 1
√

∆x2 + ∆y2
(∆x~i + ∆y~j).

The parameter s is the distance from (x0, y0) to a point

on the line.

The function f(x0 + su1, y0 + su2) can be considered as

a single-variable function of s. From the discussion of

directional derivative, we know that

d

ds
f = Duf = (u1

∂

∂x
+ u2

∂

∂y
)f

in which Dû is written as a differential operator.

With û fixed, Dûf can be considered as a function of

(x, y). Suppose that f is sufficiently differentiable, then

6



d2

ds2
f = D2

u
f, ......

Considered as a function of s, the Taylor series of

f(x0 + su1, y0 + su2) can be written as

= f(x0, y0) + sDuf +
1

2!
s2D2

u
f + · · · + 1

n!
snDn

u
f + · · ·

By choosing s =
√

∆x2 + ∆y2, one obtains

sDuf = (∆x
∂

∂x
+ ∆y

∂

∂y
)f ,

s2D2

u
f = (∆x

∂

∂x
+ ∆y

∂

∂y
)2f ,

· · · · · ·,

and

f(x0 + ∆x, y0 + ∆y) = f(x0, y0) + (∆x
∂

∂x
+ ∆y

∂

∂y
)f

+
1

2!
(∆x

∂

∂x
+∆y

∂

∂y
)2f +· · ·+ 1

n!
(∆x

∂

∂x
+∆y

∂

∂y
)nf +· · ·

assuming that all relevant derivatives exist.

Useful for determining max/min.

—– Problem Set 5 —–
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