Extreme Values

Definition Let f be a function of two variables, R a set contained in the domain of f, and $\left(x_{0}, y_{0}\right)$ a point in R. Then f has a maximum value (respectively, a minimum value) on R at $\left(x_{0}, y_{0}\right)$ if $f(x, y) \leq f\left(x_{0}, y_{0}\right)$ (respectively, $\left.f(x, y) \geq f\left(x_{0}, y_{0}\right)\right) \forall(x, y)$ in R. If R is the domain of f, we say that f has a maximum value (respectively, a minimum value) at $\left(x_{0}, y_{0}\right)$.
Definition $f(x, y)$ has a relative maximum value (respectively, a relative minimum value) at $\left(x_{0}, y_{0}\right)$ if there is an open disk D centered at $\left(x_{0}, y_{0}\right)$ and contained in the domain of f such that $f\left(x_{0}, y_{0}\right)$ is the maximum value (respectively, the minimum value) on D.
Extremum \equiv maximum or minimum.
Theorem If $f(x, y)$ has a relative extreme value at $\left(x_{0}, y_{0}\right)$ and its first partials exist at $\left(x_{0}, y_{0}\right)$, then

$$
f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0
$$

or equivalently, $\vec{\nabla} f\left(x_{0}, y_{0}\right)=\overrightarrow{0}$.

Definition A point $\left(x_{0}, y_{0}\right)$ in the interior of the domain of f is a critical point of f if either
(i) $f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0, \quad$ or
(ii) any of the first partial derivatives does not exist.

The above theorem can be restated as: f has relative extreme values only at critical points in its domain.

Example Let $f(x, y)=3-x^{2}+2 x-y^{2}-4 y$. Find all critical points of f. ${ }_{(1,-2)}$

Example Consider the critical points of $f(x, y)=$ $|x|+y^{2}$.

$$
{ }_{y-a x i s}
$$

Example Let $f(x, y)=y^{2}-x^{2}$. Show that the origin is the only critical point but $f(0,0)$ is not an extremum.

Definition If f is a function for which $f_{x}\left(x_{0}, y_{0}\right)=$ $f_{y}\left(x_{0}, y_{0}\right)=0$, we say that f has a saddle point at $\left(x_{0}, y_{0}\right)$ if \exists a disk centered at $\left(x_{0}, y_{0}\right)$ such that f assumes its maximum value on one diameter of the disk only at (x_{0}, y_{0}) and assumes its minimum value on another diameter of the disk only at (x_{0}, y_{0}).

The Second Partials Test

Theorem Assume that f has a critical points at $\left(x_{0}, y_{0}\right)$ and that f has continuous second partial derivatives in a disk centered at $\left(x_{0}, y_{0}\right)$. Let

$$
D\left(x_{0}, y_{0}\right)=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-\left[f_{x y}\left(x_{0}, y_{0}\right)\right]^{2}
$$

a. If $D\left(x_{0}, y_{0}\right)>0$ and $f_{x x}\left(x_{0}, y_{0}\right)<0$ (or $f_{y y}\left(x_{0}, y_{0}\right)<0$), then f has a relative maximum value at $\left(x_{0}, y_{0}\right)$.
b. If $D\left(x_{0}, y_{0}\right)>0$ and $f_{x x}\left(x_{0}, y_{0}\right)>0$ (or $f_{y y}\left(x_{0}, y_{0}\right)>0$), then f has a relative minimum value at $\left(x_{0}, y_{0}\right)$.
c. If $D\left(x_{0}, y_{0}\right)<0$, then f has a saddle point at $\left(x_{0}, y_{0}\right)$.
d. If $D\left(x_{0}, y_{0}\right)=0$, the nature of the critical point is unknown.

Taylor series expansion is only for a special case
$g(m)=f_{x x}+2 f_{x y} m+f_{y y} m^{2}$ can be a parabola or a straight line.
Example Let $f(x, y)=x^{2}-2 x y+\frac{1}{3} y^{3}-3 y$. Determine locations of relative extrema and saddle points. $\quad D_{=4(y-1)}$
$(3,3)$ rel. min., $(-1,-1)$ saddle $p t$.

Example Consider $f(x, y)=x^{3}$ and $g(x, y)=x^{4}+y^{4}$.

Recall the following theorem:

The Maximum-Minimum Theorem

Theorem Let R be a close, bounded set in the plane, and let f be continuous on R. Then f has both a maximum value and a minimum value on R.

Procedure to find the maximum \& minimum:

1. Find the critical points of f in the interior of R, and compute the values of f at these points.
2. Find the extreme values of f on the boundary of R.
3. The maximum value of f on R will be the largest of the values computed in steps 1 and 2 , and the minimum value of f on R will be the smallest of those values.

Example Find the maximum value of $f(x, y)=x y$ on the close triangle bounded by the lines:

$$
\begin{aligned}
& x=0, y=0, \text { and } x+2 y=2 . \\
& f(1,1 / 2)=1 / 2
\end{aligned}
$$

Optimization Subject to Constraints

Example (for motivation) Suppose heavy-duty tape is to be applied on the bottom and side edges of a rectangular carton. If 288 cm of tape are available, find the maximum volume of the carton. $48 \times 48 \times 24$

Lagrange Multipliers

Theorem Let f, g be differentiable at $\left(x_{0}, y_{0}\right)$. Let C be a smooth curve defined by the constraint $g(x, y)=c$, and $\vec{\nabla} g \neq \overrightarrow{0}$ at any point on the curve. If f has an extreme value on C at $\left(x_{0}, y_{0}\right)$, then there is a number λ such that

$$
\vec{\nabla} f\left(x_{0}, y_{0}\right)=\lambda \vec{\nabla} g\left(x_{0}, y_{0}\right)
$$

pf : Let $\mathrm{r}(\mathrm{t})$ be a smooth parameterization of $\mathrm{g}(\mathrm{x} \ldots)=\mathrm{c}$, then $\mathrm{df}(\mathrm{r}(\mathrm{t} 0)) / \mathrm{dt}=0$.
The three-variable case is similar. The constraint defines a surface. The equation containing gradients looks the same.

The method of determining extreme values by means of Lagrange multipliers proceeds as follows:

1. Assume that f has an extreme value on the curve $g(x, y)=c$.
2. Solve the equations

$$
\left\{\begin{array}{l}
\vec{\nabla} f(x, y)=\lambda \vec{\nabla} g(x, y) \\
g(x, y)=c
\end{array}\right.
$$

Note λ must be put on the side with $\vec{\nabla} g$, and $\lambda=0$ is possible.
3. Calculate the value of f at each point (x, y) that arises in step 2 . If f has a maximum value on the curve $g(x, y)=c$, it will be the largest of the values computed; Similarly, the minimum can be found.
4. To find the extrema on a closed and bound region, include values at interior critical points for comparison.

Example Let $f(x, y)=3 x^{2}+2 y^{2}-4 y+1$. Find the extreme values of f on the close disk $x^{2}+y^{2} \leq 16$.
boundary: $f(0, \pm 4)=17,49 \quad f(\pm \sqrt{12},-2)=53($ max $)$
interior: $f(0,1)=-1 \quad(\min)$
——Problem Set 6 ——

