Double Integrals

Motivation

Double integral as volume: Consider a region R in the $x y$-plane, and a function f that is nonnegative and continuous on R. What is the volume of the solid region between the graph of f and R ? sketch

There are two steps in the consideration:

1. Area of the base region

First, consider a convex region R on the $x y$-plane (so that a straight line segment connecting any two points in R lies inside R). How to find its area?

We use the standard divide and add strategy to estimate the area. Apply a rectangular mesh (over $[a, b] \times[c, d]$) composed of uniform sub-rectangles R_{k} to cover the region R. Each sub-rectangle has an area

$$
\Delta A_{k}=\Delta x \Delta y=\left(\frac{b-a}{M}\right)\left(\frac{d-c}{N}\right)
$$

Count and add the areas of the sub-rectangles inside R :

$$
\sum_{R_{i} \subset R} \triangle A_{i}
$$

This will give an approximate value, but the approximation will become better as the mesh is refined (i.e. $\Delta x, \Delta y \rightarrow 0)$.
2. The solid region between the graph of f and R

The volume underneath the graph of $f(x, y)$ over the region R can be approximated by the sum

$$
\sum_{R_{i} \subset R} f\left(\xi_{i}, \eta_{i}\right) \triangle A_{i} \quad(\text { the Riemann sum for } f \text { on } R)
$$

where $\left(\xi_{i}, \eta_{i}\right) \in R_{i}$ (note the non-uniqueness of choice). $f\left(\xi_{i}, \eta_{i}\right)$ represents an approximate height of the slender rectangular sub-solid over R_{i}.

Next, try to take the limit

$$
\lim _{\Delta x, \Delta y \rightarrow 0} \sum_{R_{i} \subset R} f\left(\xi_{i}, \eta_{i}\right) \triangle A_{i}
$$

If this limit exists, it is the volume of the solid region.
The limit of the Riemann sum, denoted by

$$
\iint_{R} f(x, y) d A
$$

is called the double integral of f over R. This definition is used even when f is negative somewhere and the 'volume' interpretation is not used.

Procedure to compute the volume/double integral

First, consider a rectangular region $R=[a, b] \times[c, d]$. Divide the region into $M \times N$ subrectangles $(M, N$ are integers) with sides $\Delta x=(b-a) / M$ and $\Delta y=(d-c) / N$. The interval $[a, b]$ is partitioned into M equal subintervals $\left[x_{0}, x_{1}\right], \ldots,\left[x_{M-1}, x_{M}\right]$, and the interval $[c, d]$ is partitioned into N equal subintervals $\left[y_{0}, y_{1}\right], \ldots,\left[y_{N-1}, y_{N}\right]$.

The Riemann sum can now be rewritten as a double sum

$$
\sum_{j=1}^{N} \sum_{i=1}^{M} f\left(\xi_{i}, \eta_{j}\right) \Delta x \Delta y
$$

where ξ_{i} is a point in the subinterval $\left[x_{i-1}, x_{i}\right]$ and η_{j} is a point in $\left[y_{j-1}, y_{j}\right]$. For example, if one picks the point to be the upper-right corner of the subrectangle, $\left(\xi_{i}, \eta_{j}\right)=\left(x_{i}, y_{j}\right)$. Now try to take the limit of this sum for $\Delta x \rightarrow 0, \Delta y \rightarrow 0$.

Theorem (Fubini's Theorem) If f is continuous, this limit always exists. The result is

$$
\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

Next, consider slightly more complex regions.

Vertically and Horizontally Simple Regions

Definition 1. A plane region R is vertically simple if there are two continuous functions g_{1} and g_{2} on an interval $[a, b]$ such that $g_{1}(x) \leq$ $g_{2}(x)$ for $a \leq x \leq b$ and such that R is the region between the graphs of g_{1} and g_{2} on $[a, b]$.
2. A plane region R is horizontally simple if there are two continuous functions h_{1} and h_{2} on an interval $[c, d]$ such that $h_{1}(y) \leq$ $h_{2}(y)$ for $c \leq y \leq d$ and such that R is the region between the graphs of h_{1} and h_{2} on $[c, d]$.
3. A plane region R is simple if it is both vertically simple and horizontally simple.

All these regions can be approximated as composed of rectangular slices.

Cover the region with a larger rectangle. The double sum for case 1 can be written as

$$
\sum_{i=1}^{M} \sum_{j=N_{1}(i)}^{N_{2}(i)} f\left(x_{i}, y_{j}\right) \Delta y \Delta x \quad \text { where } N_{1}, N_{2 \text { depend on } i .}
$$

Evaluation of Double Integrals

Theorem Let f be continuous on a region R in the $x y$ plane.

1. If R is the vertically simple region between the graphs of g_{1} and g_{2} on $[a, b]$, then f is integrable on R, and

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

(called iterated integral)

2 . If R is the horizontally simple region between the graphs of h_{1} and h_{2} on $[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

3. If R is simple, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f d y d x=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f d x d y
$$

Example Let $f(x, y)=1, \quad R=[a, b] \times[c, d]$. Evaluate

$$
\iint_{R} f d A
$$

Note The area of a plane region is given by

$$
\iint_{R} 1 d A
$$

Example Let $R=[0,1] \times[2,3]$. Evaluate

$$
\iint_{R} x^{2} y d A \quad 5 / 6
$$

Example Let $f(x, y)=1-2 y$ and R be the triangular region between the graph of $y=1-x$ and the x axis on $[-1,1]$. Find $\iint_{R} f d A . \quad-2 / 3$
Example Evaluate $\iint_{R} f d A$ of the above example by reversing the order of integration. Then compare results.

Example Evaluate $\int_{0}^{1} \int_{0}^{y} x \sqrt{y^{2}-x^{2}} d x d y$.

What about reversing the order of integration?

$$
\int \sqrt{u^{2}-a^{2}} d u=(u / 2) \sqrt{u^{2}-a^{2}}-\left(u^{2} / 2\right) \ln \left|u+\sqrt{u^{2}-a^{2}}\right|+C
$$

