Simple Regions

Suppose that $h_1(\theta)$ and $h_2(\theta)$ are continuous on an interval $[\alpha, \beta]$, and that

$$0 \le h_1(\theta) \le h_2(\theta) \quad \forall \theta \in [\alpha, \beta]$$

Let R be the closed region in the (r, θ) plane bounded by the lines $\theta = \alpha$ and $\theta = \beta$ and by the polar graphs of $r = h_1(\theta)$ and $r = h_2(\theta)$. We say that R is the (simple) region between the polar graphs of h_1 and h_2 on $[\alpha, \beta]$.

<u>Theorem</u> Let R be the region between the graphs of continuous functions h_1 and h_2 on $[\alpha, \beta]$. If f is continuous on R, then

$$\iint_{R} f(x,y)dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r\cos\theta, r\sin\theta)rdrd\theta$$

Consider integrating rf over a rectangular region of (r, theta)

Example Suppose R is the region bounded by the circles r = 1 and r = 2 and the lines $\theta = 0$ and $\theta = \frac{\pi}{2}$ (R is a quarter-ring). Express

$$\iint_R (3x + 8y^2) dA$$

as an integral in polar coordinates and evaluate the integral. $\sin^2 \theta = (1 - \cos 2\theta)/2$; $7 + 15\pi/2$

Example Let D be the solid region bounded above by the paraboloid $z = 4 - x^2 - y^2$ and below by the xy plane. Find the volume of D. $_{8\pi}$

Surface Area of a Graph

First, consider the relationship between the area of a tilted rectangle (S = a b) and the area of its projection $(A = a b \cos \theta)$ on a plane.

$$S = a \, b = \frac{A}{\cos \theta}$$

Let \hat{n} be the <u>upward pointing</u> (z component positive) unit normal vector to the rectangle. If the plane is the xyplane, then

$$\cos \theta = \hat{n} \cdot \vec{k}$$
 and $S = \frac{A}{\hat{n} \cdot \vec{k}} = \frac{A}{|\hat{n} \cdot \vec{k}|}.$

Let Σ be the graph of a two-variable function f on a region R, then the surface area of Σ is

$$\iint_{\Sigma} dS = \iint_{R} \sqrt{f_x^2 + f_y^2 + 1} \ dA.$$

Pf: A normal to the graph at (x, y, f(x, y)) is $f_x \vec{i} + f_y \vec{j} - \vec{k}$. The upward pointing unit normal to \sum is

$$\hat{n} = \frac{-f_x \vec{i} - f_y \vec{j} + \vec{k}}{\sqrt{f_x^2 + f_y^2 + 1}}$$

Therefore
$$\hat{n} \cdot \vec{k} = \frac{1}{\sqrt{f_x^2 + f_y^2 + 1}}$$
, and
 $\sum \Delta S = \sum \frac{\Delta A}{\hat{n} \cdot \vec{k}} = \sum \sqrt{f_x^2 + f_y^2 + 1} \Delta A.$

<u>Note</u> The following expression works for $\hat{l} = \vec{i}, \vec{j}$, or \vec{k} (different projections), and for either direction of \hat{n} :

$$dA = \left| \hat{n} \cdot \hat{l} \right| dS.$$

The formula

$$\iint_{\Sigma} dS = \iint_{R} \frac{dA}{|\hat{n} \cdot \hat{l}|}$$

can be used for other projections.

- Example Let R be the rectangular region $[0,3] \times [0,2]$ and $f(x,y) = \frac{2}{3}x^{3/2}$. Find the surface area of the graph of f over R. 28/3
- Example Find the surface area of the portion of the plane x + 2y + 3z = 6 inside the cylinder $x^2 - 4x + y^2 = 0.$ $4\sqrt{14\pi/3}$

Surface Integrals

$$\sum_{k=1}^{n} g(x_k, y_k, z_k) \triangle s_k \to \iint_{\Sigma} g dS$$

Let Σ be the graph of a function f having continuous partial derivatives and defined on a region R in the xyplane that is composed of a finite number of vertically or horizontally simple regions. Let g be continuous on Σ . The surface integral of g over Σ is

$$\iint_{\Sigma} g(x, y, z) dS$$

$$= \iint_{R} g(x, y, f(x, y)) \sqrt{[f_x(x, y)]^2 + [f_y(x, y)]^2 + 1} \, dA$$

<u>Example</u> Evaluate $\iint_{\Sigma} z^2 dS$ where Σ is the portion of the cone $z = \sqrt{x^2 + y^2}$ for which $1 \leq x^2 + y^2 \leq 4$.

— Problem Set 8 —