Double Integrals in Polar Coordinates

Simple Regions

Suppose that $h_{1}(\theta)$ and $h_{2}(\theta)$ are continuous on an interval $[\alpha, \beta]$, and that

$$
0 \leq h_{1}(\theta) \leq h_{2}(\theta) \quad \forall \theta \in[\alpha, \beta]
$$

Let R be the closed region in the (r, θ) plane bounded by the lines $\theta=\alpha$ and $\theta=\beta$ and by the polar graphs of $r=h_{1}(\theta)$ and $r=h_{2}(\theta)$. We say that R is the (simple) region between the polar graphs of h_{1} and h_{2} on $[\alpha, \beta]$.

Theorem Let R be the region between the graphs of continuous functions h_{1} and h_{2} on $[\alpha, \beta]$. If f is continuous on R, then
$\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta$

Consider integrating rf over a rectangular region of (r, theta)

Example Suppose R is the region bounded by the circles $r=1$ and $r=2$ and the lines $\theta=0$ and $\theta=\frac{\pi}{2}$ (R is a quarter-ring). Express

$$
\iint_{R}\left(3 x+8 y^{2}\right) d A
$$

as an integral in polar coordinates and evaluate the integral. $\sin ^{2} \theta=(1-\cos 2 \theta) / 2 ; 7+15 \pi / 2$

Example Let D be the solid region bounded above by the paraboloid $z=4-x^{2}-y^{2}$ and below by the $x y$ plane. Find the volume of D. 8π

Surface Area of a Graph

First, consider the relationship between the area of a tilted rectangle $(S=a b)$ and the area of its projection ($A=a b \cos \theta$) on a plane.

$$
S=a b=\frac{A}{\cos \theta}
$$

Let \hat{n} be the upward pointing (z component positive) unit normal vector to the rectangle. If the plane is the $x y$ plane, then

$$
\cos \theta=\hat{n} \cdot \vec{k} \quad \text { and } \quad S=\frac{A}{\hat{n} \cdot \vec{k}}=\frac{A}{|\hat{n} \cdot \vec{k}|}
$$

Let Σ be the graph of a two-variable function f on a region R, then the surface area of Σ is

$$
\iint_{\Sigma} d S=\iint_{R} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A .
$$

Pf: A normal to the graph at $(x, y, f(x, y))$ is $f_{x} \vec{i}+$ $f_{y} \vec{j}-\vec{k}$. The upward pointing unit normal to \sum is

$$
\hat{n}=\frac{-f_{x} \vec{i}-f_{y} \vec{j}+\vec{k}}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}}
$$

Therefore $\hat{n} \cdot \vec{k}=\frac{1}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}}$, and

$$
\sum \triangle S=\sum \frac{\triangle A}{\hat{n} \cdot \vec{k}}=\sum \sqrt{f_{x}^{2}+f_{y}^{2}+1} \triangle A
$$

Note The following expression works for $\hat{l}=\vec{i}, \vec{j}$, or \vec{k} (different projections), and for either direction of \hat{n} :

$$
d A=|\hat{n} \cdot \hat{l}| d S
$$

The formula

$$
\iint_{\Sigma} d S=\iint_{R} \frac{d A}{|\hat{n} \cdot \hat{l}|}
$$

can be used for other projections.

Example Let R be the rectangular region $[0,3] \times[0,2]$ and $f(x, y)=\frac{2}{3} x^{3 / 2}$. Find the surface area of the graph of f over R. 28/3

Example Find the surface area of the portion of the plane $x+2 y+3 z=6$ inside the cylinder $x^{2}-4 x+y^{2}=0 . \quad 4 \sqrt{14 \pi / 3}$

Surface Integrals

$$
\sum_{k=1}^{n} g\left(x_{k}, y_{k}, z_{k}\right) \triangle s_{k} \rightarrow \iint_{\Sigma} g d S
$$

Let Σ be the graph of a function f having continuous partial derivatives and defined on a region R in the $x y$ plane that is composed of a finite number of vertically or horizontally simple regions. Let g be continuous on Σ. The surface integral of g over Σ is

$$
\begin{gathered}
\iint_{\Sigma} g(x, y, z) d S \\
=\iint_{R} g(x, y, f(x, y)) \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} d A \\
\text { Example Evaluate } \iint_{\Sigma} z^{2} d S \text { where } \Sigma \text { is the portion } \\
\begin{array}{l}
\text { of the cone } z=\sqrt{x^{2}+y^{2}} \text { for which } 1 \leq \\
x^{2}+y^{2} \leq 4 .
\end{array}
\end{gathered}
$$

\qquad

