Triple Integrals

$$
\sum_{k=1}^{n} f\left(x_{k}, y_{k}, z_{k}\right) \triangle V_{k} \rightarrow \iiint_{D} f(x, y, z) d V
$$

Theorem Let D be the solid (3-dimensional) region between the graphs of two continuous functions F_{1} and F_{2} on a vertically or horizontally simple region R in the $x y$ plane, and let f be continuous on D. Then

$$
\iiint_{D} f(x, y, z) d V=\iint_{R}\left(\int_{F_{1}(x, y)}^{F_{2}(x, y)} f(x, y, z) d z\right) d A .
$$

Example Let D be the solid rectangular region

$$
\begin{aligned}
& {\left[2, \frac{5}{2}\right] \times[0, \pi] \times[0,2] \text { and }} \\
& f(x, y, z)=z x \sin x y . \text { Evaluate } \\
& \quad \iiint_{D} f d V
\end{aligned}
$$

$$
1-\frac{2}{\pi}
$$

Triple Integrals in Cylindrical Coordinates

Cylindrical Coordinates

$$
\begin{gathered}
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \\
z=z
\end{array}\right. \\
\left\{\begin{array}{l}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{array}\right. \\
d V=d z r d r d \theta
\end{gathered}
$$

This coordinate system is best for problems with axial symmetry (e.g. the region is bounded by a cylinder, and the integrand can be converted to depend on r and z only).

Example Evaluate the mass of a cylindrical rod with radius a, length l, and density $f(x, y, z)=$ $1+z$ where z is the distance from one end of the rod. $\quad \pi a^{2} l(1+l / 2)$

Example Let D be the solid region bounded above by the plane $y+z=4$, below by the $x y$ plane, and on the sides by the cylinder $x^{2}+y^{2}=$ 16. Evaluate

$$
\iiint_{D} \sqrt{x^{2}+y^{2}} d V
$$

Triple Integrals in Spherical Coordinates

Spherical Coordinates

$$
\begin{gathered}
\left\{\begin{array}{l}
x=r \cos \theta=\rho \sin \phi \cos \theta \\
y=r \sin \theta=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array}\right. \\
\rho^{2}=x^{2}+y^{2}+z^{2} \\
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
\end{gathered}
$$

This coordinate system is suitable for problems in which the solid region D can be described in terms of the coordinates in a simple way (especially if the problem has spherical symmetry).

Note that in some texts, the symbols ϕ and θ are
switched. $d V$ can be written as $\rho^{2} d \rho d \Omega$ where $d \Omega=$ $\sin \phi d \phi d \theta$ is the differential solid angle.

Example Evaluate the mass of a solid ball with radius a and density $1+k \rho^{2}$. $4 \pi / 3 a^{3}\left(1+3 k a^{2} / 5\right)$

Example Let D be the solid region between the spheres $\rho=1$ and $\rho=2$, and inside the cone $\phi=\pi / 4$. Evaluate

$$
\iiint_{D} z^{2} d V
$$

$$
\pi(31 / 15)(2-1 / \sqrt{2})
$$

Change of Variables in Multiple Integrals

Single integral

A substitution of x by $g(u)$ converts an integral as following

$$
\int_{a}^{b} f(x) d x=\int_{g^{-1}(a)}^{g^{-1}(b)} f(g(u)) g^{\prime}(u) d u
$$

Double integral

Consider a transformation T from the $u v$-plane to the $x y$-plane with the parametric equations

$$
x=x(u, v) \quad \& \quad y=y(u, v)
$$

With $v=v_{0}$ held fixed, the curve $\left(x\left(u, v_{0}\right), y\left(u, v_{0}\right)\right)$ describes a "coordinate line" of constant v on the $x y$-plane.

Example Consider polar coordinates in 2D.

A short secant vector of this line with initial point at $\left(u_{0}, v_{0}\right)$ is
$\vec{a}=\left(x\left(u_{0}+\Delta u, v_{0}\right)-x\left(u_{0}, v_{0}\right), y\left(u_{0}+\Delta u, v_{0}\right)-y\left(u_{0}, v_{0}\right)\right)$ $\approx\left(\frac{\partial x}{\partial u} \Delta u, \frac{\partial y}{\partial u} \Delta u\right)$.
Similarly, a short secant vector of the v coordinate line can be approximated by $\vec{b} \approx\left(\frac{\partial x}{\partial v} \Delta v, \frac{\partial y}{\partial v} \Delta v\right)$.

The area of the parallelogram bounded between the two vectors can be obtained as the magnitude of their cross product, which gives

$$
\Delta A \approx|J(u, v)| \Delta u \Delta v
$$

where

$$
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

is called the Jacobian of the transformation $T .|J(u, v)|$ is the absolute value of $J(u, v)$.

Therefore, if the transformation $x=x(u, v), y=y(u, v)$ maps the region S in the $u v$-plane onto the region R in the $x y$-plane, and if the Jacobian $\partial(x, y) / \partial(u, v)$ is nonzero and does not change sign on S, then

$$
\iint_{R} f(x, y) d A_{x y}=\iint_{S} f(x(u, v), y(u, v))|J(u, v)| d A_{u v}
$$

in which the subscripts are attached to identify the associated variables and

$$
S=T^{-1}(R)=\{(u, v) \mid(x, y)=T(u, v),(x, y) \in R\}
$$

Example Evaluate

$$
\iint_{R} e^{x y} d A
$$

where R is the region in the first quadrant enclosed by the lines $y=\frac{1}{2} x$ and $y=x$ and the hyperbolas $y=1 / x$ and $y=2 / x$. $\frac{1}{2}\left(e^{2}-e\right) \ln 2$

Triple integral

If T is the transformation from $u v w$-space to $x y z$ space defined by the equations

$$
x=x(u, v, w), y=y(u, v, w), z=z(u, v, w)
$$

then the volume of the parallelepiped bounded by short secant vectors $\vec{a}, \vec{b}, \vec{c}$ of the coordinate lines can be obtained by the magnitude of the triple product $|(\vec{a} \times \vec{b}) \cdot \vec{c}|$, thus $\Delta V \approx|J(u, v, w)| \Delta u \Delta v \Delta w$.

$$
J(u, v, w)=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

is the Jacobian of T.

An integral is transformed as

$$
\iiint_{D} f(x, y, z) d V_{x y z}=
$$

$\iiint_{T^{-1}(D)} f(x(u, v, w), y(u, v, w), z(u, v, w))|J(u, v, w)| d V_{u v w}$

Example Show that the Jacobian of the transformation from cylindrical coordinates to rectangular coordinates is r.

