MATH2013 Multivariable Calculus

From the textbook Calculus - Several Variables (5th) by R. Adams, Addison/Wesley/Longman.

* At least try to do the underlined ones, the others are recommended exercises.

Homework 1

(Total: 21 questions)
Ex. 10.1
$\underline{6}$ Show that the triangle with vertices $(1,2,3),(4,0,5)$, and $(3,6,4)$ has a right angle.
14 Describe (and sketch if possible) the set of points in \mathbb{R}^{3} which satisfy the equation $z=x$.
$\underline{22}$ Describe (and sketch if possible) the set of points in \mathbb{R}^{3} which satisfy the inequality $z \geqslant$ $\sqrt{x^{2}+y^{2}}$.

Ex. 10.2
$\underline{2}$ Calculate the following for the given vectors \mathbf{u} and \mathbf{v} :

$$
\mathbf{u}=\mathbf{i}-\mathbf{j} \quad \text { and } \quad \mathbf{v}=\mathbf{j}+2 \mathbf{k} .
$$

(a) $\mathbf{u}+\mathbf{v}, \quad \mathbf{u}-\mathbf{v}, \quad 2 \mathbf{u}-3 \mathbf{v}$,
(b) the lengths $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$,
(c) unit vectors $\widehat{\mathbf{u}}$ and $\widehat{\mathbf{v}}$ in the directions of \mathbf{u} and \mathbf{v}, respectively,
(d) the dot product $\mathbf{u} \cdot \mathbf{v}$,
(e) the angle between \mathbf{u} and \mathbf{v},
(f) the scalar projection of \mathbf{u} in the direction of \mathbf{v},
(g) the vector projection of \mathbf{v} along \mathbf{u}.

10 A straight river 500 m wide flows due east at a constant speed of $3 \mathrm{~km} / \mathrm{h}$. If you can row your boat at speed of $5 \mathrm{~km} / \mathrm{h}$ in still water, in what direction should you head if you wish to row from point A on the south shore to point B on the north shore directly north of A ? How long will the trip take?

16 If a vector \mathbf{u} in \mathbb{R}^{3} makes angles α, β, and γ with the coordinate axes, show that

$$
\widehat{\mathbf{u}}=\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}
$$

is a unit vector in the direction of \mathbf{u}. Hence show that

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

19 If \mathbf{r}_{1} and \mathbf{r}_{2} are the position vectors of two points, P_{1} and P_{2}, and λ is a real number, show that

$$
\mathbf{r}=(1-\lambda) \mathbf{r}_{1}+\lambda \mathbf{r}_{2}
$$

is the position vector of a point P on the straight line joining P_{1} and P_{2}. Where is P if $\lambda=1 / 2$? if $\lambda=2 / 3$? if $\lambda=-1$? if $\lambda=2$?
$\underline{20}$ Let a be a nonzero vector. Describe the set of all points in 3 -space whose position vectors \mathbf{r} satisfy $\mathbf{a} \cdot \mathbf{r}=0$.
$\underline{24}$ Let $\mathbf{u}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}, \mathbf{v}=\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$, and $\mathbf{w}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$. Find two unit vectors each of which makes equal angles with \mathbf{u}, \mathbf{v}, and \mathbf{w}.

27 Let \mathbf{u} and \mathbf{v} be two vectors.
(a) Show that $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+2 \mathbf{u} \cdot \mathbf{v}+\|\mathbf{v}\|^{2}$.
(b) Show that $\mathbf{u} \cdot \mathbf{v} \leqslant\|\mathbf{u}\|\|\mathbf{v}\|$.
(c) Deduce from (a) and (b) that $\|\mathbf{u}+\mathbf{v}\| \leqslant\|\mathbf{u}\|+\|\mathbf{v}\|$.

29 Let $\mathbf{u}=\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}, \mathbf{v}=\frac{4}{5} \mathbf{i}-\frac{3}{5} \mathbf{j}$, and $\mathbf{w}=\mathbf{k}$.
(a) Show that $\|\mathbf{u}\|=\|\mathbf{v}\|=\|\mathbf{w}\|=1$ and $\mathbf{u} \bullet \mathbf{v}=\mathbf{u} \bullet \mathbf{w}=0$. The vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} a mutually perpendicular unit vectors, and as such are said to constitute an orthonormal basis for \mathbb{R}^{3}.
(b) If $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, show by direct calculation that

$$
\mathbf{r}=(\mathbf{r} \bullet \mathbf{u}) \mathbf{u}+(\mathbf{r} \bullet \mathbf{v}) \mathbf{v}+(\mathbf{r} \bullet \mathbf{w}) \mathbf{w} .
$$

33 Given constants r, s and t, with $r \neq 0$ and $s \neq 0$, and given a vector a satisfying $\|\mathbf{a}\|^{2}>4 r s t$, solve the system of equations

$$
\begin{array}{r}
r \mathbf{x}+s \mathbf{y}=\mathbf{a} \\
\mathbf{x} \cdot \mathbf{y}=t
\end{array}
$$

for the unknown vectors \mathbf{x} and \mathbf{y}

Ex. 10.3
14 (Volume of a tetrahedron) A tetrahedron is a pyramid with a triangular base and three other triangular faces. It has four vertices and six edges. Like any pyramid or cone, its volume is equal to $\frac{1}{3} A H$, where A is the area of the base and H is the height measured perpendicular
to the base. If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors coinciding with the three edges of a tetrahedron that meet at one vertex, show that the tetrahedron has volume given by

$$
\text { Volume }=\frac{1}{6}\|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})\|=\frac{1}{6}| | \begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}| | .
$$

$\underline{20}$ If $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=0$ but $\mathbf{v} \times \mathbf{w} \neq \mathbf{0}$, show that there are constants λ and μ such that

$$
\mathbf{u}=\lambda \mathbf{v}+\mu \mathbf{w}
$$

26 Find all vectors x that satisfy the equation

$$
(-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \times \mathbf{x}=\mathbf{i}+5 \mathbf{j}-3 \mathbf{k}
$$

28. What condition must be satisfied by the nonzero vectors \mathbf{a} and \mathbf{b} to guarantee that the equation $\mathbf{a} \times \mathbf{x}=\mathbf{b}$ has a solution for \mathbf{x} ? Is the solution unique?

Ex. 10.4

8 Find equation of the plane satisfying the given conditions. Passing through the line of intersection of the planes $2 x+3 y-z=0$ and $x-4 y+2 z=-5$, and passing through the point $(-2,0,-1)$.

18 Find equations of the line specified in vector and scalar parametric forms and in standard form. Through $(2,-1,-1)$ and parallel to each of the two planes $x+y=0$ and $x-y+2 z=0$.
$\underline{28}$ Find the distance from the origin to the line $x+y+z=0,2 x-y-5 z=1$.

Lecture Note Ex 3.15 (p13),

Exercises for students -Qu 6 (p29)

Homework 2

(Total: 12 questions)

Ex. 11.1

$\underline{12}$ Find the velocity, speed and acceleration at time t of the particle whose position is $\mathbf{r}(t)$. Describe the path of the particle.

$$
\mathbf{r}=a t \cos \omega t \mathbf{i}+a t \sin \omega t \mathbf{j}+b \ln t \mathbf{k}
$$

$\underline{24}$ If the position and velocity vectors of a moving particle are always perpendicular show the path of the particle lies on a sphere.

29 Write the Product Rule for $\frac{d}{d t}(\mathbf{u} \times(\mathbf{v} \times \mathbf{w}))$.
32 Expand and simplify: $\frac{d}{d t}\left(\left(\mathbf{u} \times \mathbf{u}^{\prime}\right) \cdot\left(\mathbf{u}^{\prime} \times \mathbf{u}^{\prime \prime}\right)\right)$.

Ex. 11.3

In exercises 2 and 4, find the required parametrization of the first quadrant part of the circular arc $x^{2}+y^{2}=a^{2}$.
$\underline{2}$ In terms of the x-coordinate, oriented clockwise.
4 In terms of arc length measured from $(0, a)$, oriented clockwise.
16 Describe the parametric curve \mathcal{C} given by

$$
x=a \cos t \sin t, \quad y=a \sin ^{2} t, \quad z=b t .
$$

What is the length of \mathcal{C} between $t=0$ and $t=T>0$?
18 Describe the intersection of the sphere $x^{2}+y^{2}+z^{2}=1$ and the elliptic cylinder $x^{2}+2 z^{2}=1$. Find the total length of this intersection curve.
27 Let $\mathbf{r}=\mathbf{r}_{1}(t),(a \leqslant t \leqslant b)$ and $\mathbf{r}=\mathbf{r}_{2}(u),(c \leqslant u \leqslant d)$, be two parametrizations of the same curve C, each one-to-one on its domain and each giving C the same orientation (so that $\mathbf{r}_{1}(a)=\mathbf{r}_{2}(c)$ and $\mathbf{r}_{1}(b)=\mathbf{r}_{2}(d)$. Then for each t in $[a, b]$ there is a unique $u=u(t)$ such that $\mathbf{r}_{2}(u(t))=\mathbf{r}_{1}(t)$. Show that

$$
\int_{a}^{b}\left\|\frac{d}{d t} \mathbf{r}_{1}(t)\right\| d t=\int_{c}^{d}\left\|\frac{d}{d u} \mathbf{r}_{2}(u)\right\| d u
$$

and thus that the length of C is independent of parametrization.

Extra questions

1 Verify the formula for the arc length element is cylindrical coordinates,

$$
d s=\sqrt{\left(\frac{d r}{d t}\right)^{2}+(r(t))^{2}\left(\frac{d \theta}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

given in this section.
2 Verify the formula for the arc length element in spherical coordinates,

$$
d s=\sqrt{\left(\frac{d \rho}{d t}\right)^{2}+(\rho(t))^{2}\left(\frac{d \phi}{d t}\right)^{2}+(\rho(t) \sin \phi(t))^{2}\left(\frac{d \theta}{d t}\right)^{2}} d t,
$$

given in this section.
3 Reparametrize the curve $\mathbf{r}=a \cos ^{3} t \mathbf{i}+a \sin ^{3} t \mathbf{j}+b \cos 2 t \mathbf{k}(0 \leqslant t \leqslant \pi / 2)$ in the same orientation in terms of the arc length meausred from the point when $t=0$.

