Math2023

7-M

Math2023

Exercise 10.1

Qu. 6 Let A = (1, 2, 3), B = (4, 0, 5) and C = (3, 6, 4), then

$$\begin{split} \|\mathbf{AB}\| &= \sqrt{3^2 + (-2)^2 + 2^2} = \sqrt{17} \\ \|\mathbf{AC}\| &= \sqrt{2^2 + 4^2 + 1^2} = \sqrt{21} \\ \|\mathbf{BC}\| &= \sqrt{(-1)^2 + 6^2 + (-1)^2} = \sqrt{38}. \end{split}$$

Since $\|\mathbf{AB}\|^2 + \|\mathbf{AC}\|^2 = 17 + 21 = 38 = \|\mathbf{BC}\|^2$, the triangle *ABC* has a right angle at *A*.

Qu. 14 z = x is a plane containing the y-axis and making 45° angles with the positive directions of the x- and z-axes.

Alternatively, the question will be much easier if we change the equation $z \ge \sqrt{x^2 + y^2}$ in terms of cylindrical coord. Why!! (see §10.6)

$$\begin{aligned} & \mathbf{Qu. 2} \quad \text{If } \mathbf{u} = \mathbf{i} - \mathbf{j} \text{ and } \mathbf{v} = \mathbf{j} + 2 \, \mathbf{k}, \text{ then} \\ & (a) \quad \mathbf{u} + \mathbf{v} = \mathbf{i} + 2 \, \mathbf{k} \\ & \mathbf{u} - \mathbf{v} = \mathbf{i} - 2 \, \mathbf{j} - 2 \, \mathbf{k} \\ & 2 \mathbf{u} - 3 \mathbf{v} = 2 \, \mathbf{i} - 5 \, \mathbf{j} - 6 \, \mathbf{k}. \end{aligned} \\ & (b) \quad \|\mathbf{u}\| = \sqrt{2} \\ & \|\mathbf{v}\| = \sqrt{5}. \end{aligned} \\ & (c) \quad \widehat{\mathbf{u}} = (\mathbf{i} - \mathbf{j})/\sqrt{2} \\ & \widehat{\mathbf{v}} = (\mathbf{j} + 2 \, \mathbf{k})/\sqrt{5}. \end{aligned} \\ & (d) \quad \mathbf{u} \cdot \mathbf{v} = 0 - 1 + 0 = -1. \end{aligned} \\ & (e) \quad \theta = \cos^{-1}(\mathbf{u} \cdot \mathbf{v}/\|\mathbf{u}\| \|\mathbf{v}\|) = \cos^{-1}(1/\sqrt{10}) \simeq 108.4^o. \end{aligned} \\ & (f) \quad \text{The scalar projection of } \mathbf{u} \text{ on } \mathbf{v} = \mathbf{u} \cdot \widehat{\mathbf{v}} = -1/\sqrt{5}. \end{aligned}$$

Qu. 10 $v_{water} = 3i$, i.e., the water flow from west to east.

If you row through the water with speed 5 in the direction making angle θ west of north, then your velocity relative to the water will be

$$\mathbf{u} = -5\sin\theta\,\mathbf{i} + 5\cos\theta\,\mathbf{j}.$$

Therefore, your velocity relative to the land will be

$$\mathbf{u}_L = \mathbf{u} + \mathbf{v}_{water}$$
$$= (3 - 5\sin\theta)\,\mathbf{i} + 5\cos\theta\,\mathbf{j}$$

To row directly from A to B (**j** direction only) choose θ so that

 $3 - 5\sin\theta = 0 \qquad \Rightarrow \qquad \theta = 36.87^{\circ},$

then $\mathbf{u}_L = 4 \mathbf{j}$.

To row from A to B, head in the direction 36.87° west of north. The 0.5km crossing will be 0.5/4 = 0.125 of an hour = 7.5 minutes.

Qu. 27 (a)

Math2023

Qu. 16 If $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, then $\cos \alpha = \frac{\mathbf{u} \cdot \mathbf{i}}{\|\mathbf{u}\|} = \frac{u_1}{\|\mathbf{u}\|}$. Similarly, $\cos \beta = \frac{u_2}{\|\mathbf{u}\|}$ and $\cos \gamma = \frac{u_3}{\|\mathbf{u}\|}$. Thus, the unit vector in the direction of \mathbf{u} is $\widehat{\mathbf{u}} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \cos \alpha \, \mathbf{i} + \cos \beta \, \mathbf{j} + \cos \gamma \, \mathbf{k}$,

and so $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \|\widehat{\mathbf{u}}\|^2 = 1.$

- **Qu. 19** Since $\mathbf{r} \mathbf{r}_1 = \lambda \mathbf{r}_1 + (1 \lambda)\mathbf{r}_2 \mathbf{r}_1 = (1 \lambda)(\mathbf{r}_1 \mathbf{r}_2)$, therefore $\mathbf{r} \mathbf{r}_1$ is parallel to $\mathbf{r}_1 \mathbf{r}_2$, that is, parallel to the line P_1P_2 . Since P_1 is on that line, so must P be on it. If $\lambda = \frac{1}{2}$, then $\mathbf{r} = \frac{1}{2}(\mathbf{r}_1 + \mathbf{r}_2)$, so P is midway between P_1 and P_2 . If $\lambda = \frac{2}{3}$, then $\mathbf{r} = \frac{2}{3}\mathbf{r}_1 + \frac{1}{3}\mathbf{r}_2$, so P is two-thirds of the way from P_2 towards P_1 along the line. If $\lambda = -1$, then $\mathbf{r} = -\mathbf{r}_1 + 2\mathbf{r}_2 = \mathbf{r}_2 + (\mathbf{r}_2 - \mathbf{r}_1)$, so P is such that P_2 bisects the segment P_1P . If $\lambda = 2$, then $\mathbf{r} = 2\mathbf{r}_1 - \mathbf{r}_2 = \mathbf{r}_1 + (\mathbf{r}_1 - \mathbf{r}_2)$, so P is such that P_1 bisects the segment P_2P .
- Qu. 20 If $\mathbf{a} \neq \mathbf{0}$, then $\mathbf{a} \cdot \mathbf{r} = 0$ implies that the position vector \mathbf{r} is perpendicular to \mathbf{a} , i.e.

$$(a_1, a_2, a_3) \cdot (x, y, z) = 0$$

 $a_1x + a_2y + a_3z = 0.$

Thus the equation is satisfied by all points on the plane through the origin that is normal to **a**.

Qu. 24 Note that $\|\mathbf{u}\| = \|\mathbf{v}\| = \|\mathbf{w}\| = 3$, a vector $\mathbf{r} = (x, y, z)$ will make equal angle with all three if it has equal dot products with all three, that is, if

$$\begin{cases} \mathbf{u} \cdot \mathbf{r} = \mathbf{v} \cdot \mathbf{r} \\ \mathbf{u} \cdot \mathbf{r} = \mathbf{w} \cdot \mathbf{r} \end{cases}$$
$$\begin{cases} 2x + y - 2z = x + 2y - 2z \\ 2x + y - 2z = 2x - 2y + z \end{cases}$$
$$\begin{cases} x = y \\ y = z \end{cases}$$

i.e. x = y = z. Two unit vectors satisfying this condition are

$$\mathbf{r} = \pm \frac{1}{\sqrt{3}} (\mathbf{i} + \mathbf{j} + \mathbf{k}).$$

Homework 1

Math2023

$$\|\mathbf{u} + \mathbf{v}\|^{2} = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$$
$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}$$
$$= \|\mathbf{u}\|^{2} + 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{v}\|^{2}$$

(b) If θ is angle between **u** and **v**, then $\cos \theta \leq 1$, so

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \leq \|\mathbf{u}\| \|\mathbf{v}\|$$

(c)

$$\begin{split} \|\mathbf{u} + \mathbf{v}\|^2 &= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u} \cdot \mathbf{v} \\ &\leq \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\|\mathbf{u}\| \|\mathbf{v}\| \\ &= (\|\mathbf{u}\| + \|\mathbf{v}\|)^2 \end{split}$$

Thus $\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$ (take +ve root only, why!)

Qu. 29
$$\mathbf{u} = \frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}, v = \frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}, \mathbf{w} = \mathbf{k}.$$

(a) $\|\mathbf{u}\| = \sqrt{\frac{9}{25} + \frac{16}{25}} = 1, \|\mathbf{v}\| = \sqrt{\frac{16}{25} + \frac{9}{25}} = 1, \|w\| = 1, \mathbf{u} \bullet \mathbf{v} = \frac{12}{25} - \frac{12}{25} = 0, \mathbf{u} \bullet \mathbf{w} = 0,$
 $\mathbf{v} \bullet \mathbf{w} = 0.$
(b) If $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, then
 $(\mathbf{r} \bullet \mathbf{u})\mathbf{u} + (\mathbf{r} \bullet \mathbf{v})\mathbf{v} + (\mathbf{r} \bullet \mathbf{w})\mathbf{w}$

$$= \left(\frac{3}{5}x + \frac{4}{5}y\right) \left(\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}\right) + \left(\frac{4}{5}x - \frac{3}{5}y\right) \left(\frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}\right) + z\mathbf{k}$$
$$= \frac{9x + 16x}{25}\mathbf{i} + \frac{16y + 9y}{25}\mathbf{j} + z\mathbf{k}$$
$$= x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \mathbf{r}.$$

Qu. 33 Let $||\mathbf{a}||^2 - 4rst = K^2$, where K > 0. Now

$$\begin{aligned} \|\mathbf{a}\|^2 &= \mathbf{a} \cdot \mathbf{a} = (r \, \mathbf{x} + s \, \mathbf{y}) \cdot (r \, \mathbf{x} + s \, \mathbf{y}) \\ &= (r^2 \|\mathbf{x}\|^2 + s^2 \|\mathbf{y}\|^2 + 2rs \, \mathbf{x} \cdot \mathbf{y} \end{aligned}$$

$$K^{2} = \|\mathbf{a}\|^{2} - 4rs \mathbf{x} \cdot \mathbf{y}$$
$$= r^{2} \|\mathbf{x}\|^{2} + s^{2} \|\mathbf{y}\|^{2} - 2rs \mathbf{y} \cdot \mathbf{y}$$
$$= \|r \mathbf{x} - s \mathbf{y}\|^{2}.$$

Therefore $r\mathbf{x} - s\mathbf{y} = K\hat{\mathbf{u}}$ for some unit vector $\hat{\mathbf{u}}$.

(1)

– 3 –

Since $r \mathbf{x} + s \mathbf{y} = \mathbf{a}$, we have

 $(1) + (2) \qquad 2r \mathbf{x} = \mathbf{a} + K \widehat{\mathbf{u}}$

 $(2) - (1) \qquad 2s \mathbf{y} = \mathbf{a} - K \widehat{\mathbf{u}}.$

Thus

$$\mathbf{x} = \frac{\mathbf{a} + K\widehat{\mathbf{u}}}{2r}$$
$$\mathbf{y} = \frac{a - K\widehat{\mathbf{u}}}{2s},$$

where $K = \sqrt{\|\mathbf{a}\|^2 - 4rst}$ and $\hat{\mathbf{u}}$ is any unit vector.

Note that the solution is not unique.

(2)

Exercise 10.3

Qu. 14 Base area $A = \frac{1}{2} \| \mathbf{v} \times \mathbf{w} \|$

The altitude h of the tetrahedron is

Qu. 20 If $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0$ but $\mathbf{v} \times \mathbf{w} \neq \mathbf{0}$, i.e. \mathbf{v} is not parallel with \mathbf{w} . Therefore, \mathbf{v} and \mathbf{w} form the base vectors in the *vw*-plane, i.e. any vector in the *vw*-plane can be represented as a linear combination of \mathbf{v} and \mathbf{w} .

Moreover, since $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0 \quad \Rightarrow \quad \mathbf{u} \perp \mathbf{v} \times \mathbf{w}$, i.e. \mathbf{u} must be on the vw-plane. Therefore

 $\mathbf{u} = \lambda \mathbf{v} + \mu \mathbf{w}.$

Qu. 26 Let $\mathbf{x} = (x, y, z)$, then

$$(-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \times \mathbf{x} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 3 \\ x & y & z \end{vmatrix}$$

= $(2z - 3y)\mathbf{i} + (3x + z)\mathbf{j} - (y + 2x)\mathbf{k}$
= $\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$
$$\therefore \begin{cases} 2z - 3y = 1 \\ 3x + z = 5 \\ y + 2x = 3 \end{cases}$$
(1)
(2)
(3)

From (1) and (2), we have y + 2x = 3, which is the same as (3), so the system is underdetermined.

Let x = t, y = 3 - 2t, z = 5 - 3t \therefore $\mathbf{x} = t \mathbf{i} + (3 - 2t) \mathbf{j} + (5 - 3t) \mathbf{k}$

for any real number t.

Math2023

 $\begin{aligned} \mathbf{Qu. 28} \quad & \text{The equation } \mathbf{a}\times\mathbf{x}=\mathbf{b} \text{ can be solved for } \mathbf{x} \text{ if and only if } \mathbf{a} \bullet \mathbf{b}=0. \text{ (The "only if", why!!)}. \\ & \text{For the "if" part, observe that if } \mathbf{a} \bullet \mathbf{b}=0 \text{ and } \mathbf{x}_0=(\mathbf{b}\times\mathbf{a})/|\mathbf{a}|^2, \text{ then,} \end{aligned}$

$$\mathbf{a} \times \mathbf{x}_0 = \frac{1}{|a|^2} \mathbf{a} \times (\mathbf{b} \times \mathbf{a}) = \frac{(\mathbf{a} \bullet \mathbf{a})\mathbf{b} - (\mathbf{a} \bullet \mathbf{b})\mathbf{a}}{\|a\|^2} = \mathbf{b}.$$

The solution \mathbf{x}_0 is not unique because any multiple of \mathbf{a} can be added to it and the result iwll still be a solution. If $\mathbf{x} = \mathbf{x}_0 + t\mathbf{a}$, then

$$\mathbf{a} \times \mathbf{x} = \mathbf{a} \times \mathbf{x}_0 + t \, \mathbf{a} \times \mathbf{a} = \mathbf{b} + \mathbf{0} = \mathbf{b}.$$

Homework 1

Qu. 18 A line parallel to x + y = 0 and to x - y + 2z = 0 is parallel to the cross product of the normal vectors to these two planes, that is, to the vector

$$\mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 1 & -1 & 2 \end{vmatrix}$$
$$= 2(\mathbf{i} - \mathbf{j} - \mathbf{k}).$$

:. The required equation is (in vector form)

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t = (2+t)\mathbf{i} - (1+t)\mathbf{j} - (1+t)\mathbf{k}.$$

In scalar parametric form

$$x = 2 + t$$
, $y = -(1 + t)$, $z = -(1 + t)$.

or in standard form

$$x - 2 = -(y + 1) = -(z + 1).$$

Qu. 28 First, we find the equation of the line as in Qu. 18

$$\mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 2 & -1 & -5 \end{vmatrix} = (-4, 7, -3).$$

We need a point on this line: set z = 0, then we have

$$\begin{cases} x+y=0\\ 2x-y=1 \end{cases} \Rightarrow \begin{cases} x=\frac{1}{3}\\ y=-\frac{1}{3} \end{cases}$$

$$\therefore \quad \mathbf{r}_0 = \left(\frac{1}{3}, -\frac{1}{3}, 0\right).$$

.:. The required distance is

Exercise 10.4

Qu. 8 (i) Find the pencil of planes: Since $\mathbf{r}_0 = (-2, 0, -1)$ does not lie on x - 4y + 2z = -5, the required plane will have an equation of the form

 $2x + 3y - z + \lambda(x - 4y + 2z + 5) = 0$

for some λ . This plane passes through the point (-2, 0, -1) if

$$-4 + 1 + \lambda(y - z - 3) = 0 \qquad \Rightarrow \qquad \lambda = 3.$$

 \therefore The required plane is 5x - 9y + 5z = -15.

(ii) Find three points on the required plane

$$2x + 3y - z = 0$$
 (1)

$$x - 4y + 2z = -5$$
 (2)

 $2(1) + (2) \qquad \Rightarrow \qquad 5x + 2y = -5.$

 \therefore Let x = 1, then y = -5 and z = -13 (point P_1).

Also let x = -1, then y = 0 and z = -2 (point P_2),

together with the given point $P_3 = (-2, 0, -1)$, we have three points, therefore the required plane is uniquely determined.

The normal vector of the plane

$$\mathbf{n} = \mathbf{P}_1 \mathbf{P}_2 \times \mathbf{P}_1 \mathbf{P}_3 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 5 & 11 \\ -3 & 5 & 12 \end{vmatrix} = (5, -9, 5).$$

:. The required plane is

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

(5, -9, 5) · (x + 2, y, z + 1) = 0
∴ 5x - 9y + 5z = -15.

– 7 –