Exercise 10.1

Qu. 6 Let $A=(1,2,3), B=(4,0,5)$ and $C=(3,6,4)$, then

$$
\begin{aligned}
& \|\mathbf{A B}\|=\sqrt{3^{2}+(-2)^{2}+2^{2}}=\sqrt{17} \\
& \|\mathbf{A C}\|=\sqrt{2^{2}+4^{2}+1^{2}}=\sqrt{21} \\
& \|\mathbf{B C}\|=\sqrt{(-1)^{2}+6^{2}+(-1)^{2}}=\sqrt{38}
\end{aligned}
$$

Since $\|\mathbf{A B}\|^{2}+\|\mathbf{A C}\|^{2}=17+21=38=\|\mathbf{B C}\|^{2}$, the triangle $A B C$ has a right angle at A.

Qu. $14 z=x$ is a plane containing the y-axis and making 45° angles with the positive directions of the x - and z-axes.

Qu. $22 z \geqslant \sqrt{x^{2}+y^{2}}$ represents every point whose distance above the $x y$-plane is not less than its horizontal distance from the z-axis. It therefore consists of all points inside and on a circular cone with axis along the positive z-axis, vertex at the origin, and semi-vertical angle 45°.

Alternatively, the question will be much easier if we change the equation $z \geqslant \sqrt{x^{2}+y^{2}}$ in terms of cylindrical coord. Why!! (see §10.6)

Exercise 10.2

Qu. 2 If $\mathbf{u}=\mathbf{i}-\mathbf{j}$ and $\mathbf{v}=\mathbf{j}+2 \mathbf{k}$, then
(a) $\mathbf{u}+\mathbf{v}=\mathbf{i}+2 \mathbf{k}$
$\mathbf{u}-\mathbf{v}=\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$
$2 \mathbf{u}-3 \mathbf{v}=2 \mathbf{i}-5 \mathbf{j}-6 \mathbf{k}$.
(b) $\|\mathbf{u}\|=\sqrt{2}$
$\|v\|=\sqrt{5}$.
(c) $\widehat{\mathbf{u}}=(\mathbf{i}-\mathbf{j}) / \sqrt{2}$

$$
\widehat{\mathbf{v}}=(\mathbf{j}+2 \mathbf{k}) / \sqrt{5}
$$

(d) $\mathbf{u} \cdot \mathbf{v}=0-1+0=-1$.
(e) $\theta=\cos ^{-1}(\mathbf{u} \cdot \mathbf{v} /\|\mathbf{u}\|\|\mathbf{v}\|)=\cos ^{-1}(1 / \sqrt{10}) \simeq 108.4^{\circ}$.
(f) The scalar projection of \mathbf{u} on $\mathbf{v}=\mathbf{u} \cdot \widehat{\mathbf{v}}=-1 / \sqrt{5}$.
(g) The vector projection of \mathbf{v} along $\mathbf{u}=(\mathbf{v} \cdot \widehat{\mathbf{u}}) \cdot \widehat{\mathbf{u}}=-(\mathbf{i}-\mathbf{j}) / 2$.

Qu. $10 \mathbf{v}_{\text {water }}=3$ i, i.e., the water flow from west to east.
If you row through the water with speed 5 in the direction making angle θ west of north, then your velocity relative to the water will be

$$
\mathbf{u}=-5 \sin \theta \mathbf{i}+5 \cos \theta \mathbf{j}
$$

Therefore, your velocity relative to the land will be

$$
\begin{aligned}
\mathbf{u}_{L} & =\mathbf{u}+\mathbf{v}_{\text {water }} \\
& =(3-5 \sin \theta) \mathbf{i}+5 \cos \theta \mathbf{j} .
\end{aligned}
$$

To row directly from A to B (\mathbf{j} direction only) choose θ so that

$$
3-5 \sin \theta=0 \quad \Rightarrow \quad \theta=36.87^{\circ}
$$

then $\mathbf{u}_{L}=4 \mathbf{j}$.
To row from A to B, head in the direction 36.87° west
of north. The 0.5 km crossing will be $0.5 / 4=0.125$ of
an hour $=7.5$ minutes
\qquad

Qu. 16 If $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$, then $\cos \alpha=\frac{\mathbf{u} \bullet \mathbf{i}}{\|\mathbf{u}\|}=\frac{u_{1}}{\|\mathbf{u}\|}$
Similarly, $\cos \beta=\frac{u_{2}}{\|\mathbf{u}\|}$ and $\cos \gamma=\frac{u_{3}}{\|\mathbf{u}\|}$.
Thus, the unit vector in the direction of \mathbf{u} is

$$
\widehat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}=\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}
$$

and so $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\|\widehat{\mathbf{u}}\|^{2}=1$.

Qu. 19 Since $\mathbf{r}-\mathbf{r}_{1}=\lambda \mathbf{r}_{1}+(1-\lambda) \mathbf{r}_{2}-\mathbf{r}_{1}=(1-\lambda)\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)$, therefore $\mathbf{r}-\mathbf{r}_{1}$ is parallel to $\mathbf{r}_{1}-\mathbf{r}_{2}$, that is, parallel to the line $P_{1} P_{2}$. Since P_{1} is on that line, so must P be on it. If $\lambda=\frac{1}{2}$, then $\mathbf{r}=\frac{1}{2}\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)$, so P is midway between P_{1} and P_{2}.
If $\lambda=\frac{2}{3}$, then $\mathbf{r}=\frac{2}{3} \mathbf{r}_{1}+\frac{1}{3} \mathbf{r}_{2}$, so P is two-thirds of the way from P_{2} towards P_{1} along the line. If $\lambda=-1$, then $\mathbf{r}=-\mathbf{r}_{1}+2 \mathbf{r}_{2}=\mathbf{r}_{2}+\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)$, so P is such that P_{2} bisects the segment $P_{1} P$. If $\lambda=2$, then $\mathbf{r}=2 \mathbf{r}_{1}-\mathbf{r}_{2}=\mathbf{r}_{1}+\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)$, so P is such that P_{1} bisects the segment $P_{2} P$.

Qu. 20 If $\mathbf{a} \neq \mathbf{0}$, then $\mathbf{a} \cdot \mathbf{r}=0$ implies that the position vector \mathbf{r} is perpendicular to \mathbf{a}, i.e.

$$
\begin{aligned}
\left(a_{1}, a_{2}, a_{3}\right) \cdot(x, y, z) & =0 \\
a_{1} x+a_{2} y+a_{3} z & =0 .
\end{aligned}
$$

Thus the equation is satisfied by all points on the plane through the origin that is normal to a.

Qu. 24 Note that $\|\mathbf{u}\|=\|\mathbf{v}\|=\|\mathbf{w}\|=3$, a vector $\mathbf{r}=(x, y, z)$ will make equal angle with all three if it has equal dot products with all three, that is, if

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathbf{u} \cdot \mathbf{r}=\mathbf{v} \cdot \mathbf{r} \\
\mathbf{u} \cdot \mathbf{r}=\mathbf{w} \cdot \mathbf{r}
\end{array}\right. \\
& \left\{\begin{array}{l}
2 x+y-2 z=x+2 y-2 z \\
2 x+y-2 z=2 x-2 y+z
\end{array}\right. \\
& \left\{\begin{array}{l}
x=y \\
y=z
\end{array}\right.
\end{aligned}
$$

i.e. $x=y=z$. Two unit vectors satisfying this condition are

$$
\mathbf{r}= \pm \frac{1}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k})
$$

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v}) \\
& =\mathbf{u} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v} \\
& =\|\mathbf{u}\|^{2}+2 \mathbf{u} \cdot \mathbf{v}+\|\mathbf{v}\|^{2}
\end{aligned}
$$

(b) If θ is angle between \mathbf{u} and \mathbf{v}, then $\cos \theta \leqslant 1$, so

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \leqslant\|\mathbf{u}\|\|\mathbf{v}\|
$$

(c)

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2 \mathbf{u} \cdot \mathbf{v} \\
& \leqslant\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2\|\mathbf{u}\|\|\mathbf{v}\| \\
& =(\|\mathbf{u}\|+\|\mathbf{v}\|)^{2}
\end{aligned}
$$

Thus $\|\mathbf{u}+\mathbf{v}\| \leqslant\|\mathbf{u}\|+\|\mathbf{v}\| \quad$ (take + ve root only, why!)

Qu. $29 \quad \mathbf{u}=\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}, v=\frac{4}{5} \mathbf{i}-\frac{3}{5} \mathbf{j}, \mathbf{w}=\mathbf{k}$.
(a) $\|\mathbf{u}\|=\sqrt{\frac{9}{25}+\frac{16}{25}}=1,\|\mathbf{v}\|=\sqrt{\frac{16}{25}+\frac{9}{25}}=1,\|w\|=1, \mathbf{u} \bullet \mathbf{v}=\frac{12}{25}-\frac{12}{25}=0, \mathbf{u} \bullet \mathbf{w}=0$, $\mathbf{v} \bullet \mathbf{w}=0$.
(b) If $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, then

$$
\begin{aligned}
& (\mathbf{r} \bullet \mathbf{u}) \mathbf{u}+(\mathbf{r} \bullet \mathbf{v}) \mathbf{v}+(\mathbf{r} \bullet \mathbf{w}) \mathbf{w} \\
& =\left(\frac{3}{5} x+\frac{4}{5} y\right)\left(\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}\right)+\left(\frac{4}{5} x-\frac{3}{5} y\right)\left(\frac{4}{5} \mathbf{i}-\frac{3}{5} \mathbf{j}\right)+z \mathbf{k} \\
& =\frac{9 x+16 x}{25} \mathbf{i}+\frac{16 y+9 y}{25} \mathbf{j}+z \mathbf{k} \\
& =x \mathbf{i}+y \mathbf{j}+z \mathbf{k}=\mathbf{r} .
\end{aligned}
$$

Qu. 33 Let $\|\mathbf{a}\|^{2}-4 r s t=K^{2}$, where $K>0$. Now

$$
\begin{aligned}
\|\mathbf{a}\|^{2}=\mathbf{a} \cdot \mathbf{a} & =(r \mathbf{x}+s \mathbf{y}) \cdot(r \mathbf{x}+s \mathbf{y}) \\
& =\left(r^{2}\|\mathbf{x}\|^{2}+s^{2}\|\mathbf{y}\|^{2}+2 r s \mathbf{x} \cdot \mathbf{y}\right. \\
K^{2}= & \|\mathbf{a}\|^{2}-4 r s \mathbf{x} \cdot \mathbf{y} \\
= & r^{2}\|\mathbf{x}\|^{2}+s^{2}\|\mathbf{y}\|^{2}-2 r s \mathbf{y} \cdot \mathbf{y} \\
= & \|r \mathbf{x}-s \mathbf{y}\|^{2} .
\end{aligned}
$$

Therefore $r \mathbf{x}-s \mathbf{y}=K \widehat{\mathbf{u}}$ for some unit vector $\widehat{\mathbf{u}}$.

Homework 1

Since $r \mathbf{x}+s \mathbf{y}=\mathbf{a}$, we have
(1) $+(2) \quad 2 r \mathbf{x}=\mathbf{a}+K \widehat{\mathbf{u}}$
(2) - (1) $2 s \mathbf{y}=\mathbf{a}-K \widehat{\mathbf{u}}$

Thus

$$
\begin{aligned}
& \mathbf{x}=\frac{\mathbf{a}+K \widehat{\mathbf{u}}}{2 r} \\
& \mathbf{y}=\frac{a-K \widehat{\mathbf{u}}}{2 s},
\end{aligned}
$$

where $K=\sqrt{\|\mathbf{a}\|^{2}-4 r s t}$ and $\widehat{\mathbf{u}}$ is any unit vector.
Note that the solution is not unique

Homework 1

Exercise 10.3

Qu. 14 Base area $\mathrm{A}=\frac{1}{2}\|\mathbf{v} \times \mathbf{w}\|$
The altitude h of the tetrahedron is

$$
\begin{aligned}
& =\frac{|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|}{\|\mathbf{v} \times \mathbf{w}\|} \\
\therefore \quad V & =\frac{1}{3} A h \\
& =\frac{1}{3} \frac{1}{2}\|\mathbf{v} \times \mathbf{w}\| \cdot \frac{|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|}{\|\mathbf{v} \times \mathbf{w}\|} \\
& =\frac{1}{6}|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})| \\
& =\frac{1}{6}\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right| .
\end{aligned}
$$

Qu. 20 If $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=0$ but $\mathbf{v} \times \mathbf{w} \neq \mathbf{0}$, i.e. \mathbf{v} is not parallel with \mathbf{w}. Therefore, \mathbf{v} and \mathbf{w} form the base vectors in the $v w$-plane, i.e. any vector in the $v w$-plane can be represented as a linear combination of \mathbf{v} and \mathbf{w}.
Moreover, since $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=0 \quad \Rightarrow \quad \mathbf{u} \perp \mathbf{v} \times \mathbf{w}$
i.e. \mathbf{u} must be on the $v w$-plane. Therefore
$\mathbf{u}=\lambda \mathbf{v}+\mu \mathbf{w}$.

Qu. 26 Let $\mathbf{x}=(x, y, z)$, then

$$
\begin{align*}
(-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \times \mathbf{x} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 2 & 3 \\
x & y & z
\end{array}\right| \\
& =(2 z-3 y) \mathbf{i}+(3 x+z) \mathbf{j}-(y+2 x) \mathbf{k} \\
& =\mathbf{i}+5 \mathbf{j}-3 \mathbf{k} \\
\therefore & \begin{cases}2 z-3 y & =1 \\
3 x+z & =5 \\
y+2 x & =3\end{cases} \tag{1}
\end{align*}
$$

From (1) and (2), we have $y+2 x=3$, which is the same as (3), so the system is underdetermined
Let $x=t, y=3-2 t, z=5-3 t$
for any real number t.

Qu. 28 The equation $\mathbf{a} \times \mathbf{x}=\mathbf{b}$ can be solved for \mathbf{x} if and only if $\mathbf{a} \bullet \mathbf{b}=0$. (The "only if", why!!). For the "if" part, observe that if $\mathbf{a} \bullet \mathbf{b}=0$ and $\mathbf{x}_{0}=(\mathbf{b} \times \mathbf{a}) /|\mathbf{a}|^{2}$, then,

$$
\mathbf{a} \times \mathbf{x}_{0}=\frac{1}{|a|^{2}} \mathbf{a} \times(\mathbf{b} \times \mathbf{a})=\frac{(\mathbf{a} \bullet \mathbf{a}) \mathbf{b}-(\mathbf{a} \bullet \mathbf{b}) \mathbf{a}}{\|a\|^{2}}=\mathbf{b} .
$$

The solution \mathbf{x}_{0} is not unique because any multiple of \mathbf{a} can be added to it and the result iwll still be a solution. If $\mathrm{x}=\mathrm{x}_{0}+t \mathbf{t}$, then

$$
\mathbf{a} \times \mathbf{x}=\mathbf{a} \times \mathbf{x}_{0}+t \mathbf{a} \times \mathbf{a}=\mathbf{b}+\mathbf{0}=\mathbf{b} .
$$

Exercise 10.4

Qu. 8 (i) Find the pencil of planes: Since $\mathbf{r}_{0}=(-2,0,-1)$ does not lie on $x-4 y+2 z=-5$, the required plane will have an equation of the form

$$
2 x+3 y-z+\lambda(x-4 y+2 z+5)=0
$$

for some λ. This plane passes through the point $(-2,0,-1)$ if

$$
-4+1+\lambda(y-z-3)=0 \quad \Rightarrow \quad \lambda=3 .
$$

\therefore The required plane is $5 x-9 y+5 z=-15$.
(ii) Find three points on the required plane

$$
\begin{align*}
& 2 x+3 y-z=0 \tag{1}\\
& x-4 y+2 z=-5 \tag{2}
\end{align*}
$$

$2(1)+(2) \quad \Rightarrow \quad 5 x+2 y=-5$.
\therefore Let $x=1$, then $y=-5$ and $z=-13\left(\right.$ point $\left.P_{1}\right)$.
Also let $x=-1$, then $y=0$ and $z=-2\left(\right.$ point $\left.P_{2}\right)$,
together with the given point $P_{3}=(-2,0,-1)$, we have three points, therefore the required plane is uniquely determined.
The normal vector of the plane

$$
\mathbf{n}=\mathbf{P}_{1} \mathbf{P}_{2} \times \mathbf{P}_{1} \mathbf{P}_{3}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 5 & 11 \\
-3 & 5 & 12
\end{array}\right|=(5,-9,5)
$$

\therefore The required plane is

$$
\begin{aligned}
& \mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0 \\
&(5,-9,5) \cdot(x+2, y, z+1)=0 \\
& \therefore \quad 5 x-9 y+5 z=-15 . \\
&-7-
\end{aligned}
$$

Qu. 18 A line parallel to $x+y=0$ and to $x-y+2 z=0$ is parallel to the cross product of the normal vectors to these two planes, that is, to the vector

$$
\begin{aligned}
\mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 0 \\
1 & -1 & 2
\end{array}\right| \\
& =2(\mathbf{i}-\mathbf{j}-\mathbf{k}) .
\end{aligned}
$$

\therefore The required equation is (in vector form)

$$
\mathbf{r}=\mathbf{r}_{0}+\mathbf{v} t=(2+t) \mathbf{i}-(1+t) \mathbf{j}-(1+t) \mathbf{k}
$$

In scalar parametric form

$$
x=2+t, \quad y=-(1+t), \quad z=-(1+t) .
$$

or in standard form

$$
x-2=-(y+1)=-(z+1)
$$

Qu. 28 First, we find the equation of the line as in Qu. 18

$$
\mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
2 & -1 & -5
\end{array}\right|=(-4,7,-3) .
$$

We need a point on this line: set $z=0$, then we have

$$
\left\{\begin{array} { l }
{ x + y = 0 } \\
{ 2 x - y = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\frac{1}{3} \\
y=-\frac{1}{3}
\end{array}\right.\right.
$$

$\therefore \quad \mathbf{r}_{0}=\left(\frac{1}{3},-\frac{1}{3}, 0\right)$.
\therefore The required distance is

$$
\begin{aligned}
d & =\left\|\mathbf{r}_{0}\right\| \sin \theta \\
& =\left\|\mathbf{r}_{0}\right\|\|\hat{\mathbf{v}}\| \sin \theta \\
& =\left\|\mathbf{r}_{0} \times \widehat{\mathbf{v}}\right\| \\
& =\frac{1}{\sqrt{74}}\left\|\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{1}{3} & -\frac{1}{3} & 0 \\
-4 & 7 & -3
\end{array}\right|\right\| \\
& =\frac{1}{\sqrt{74}}\|\mathbf{i}+\mathbf{j}+\mathbf{k}\| \\
& =\sqrt{\frac{3}{74}} .
\end{aligned}
$$

