Homework 3

Exercise 10.5

Qu. 4

$$x^{2} + 4y^{2} + 9z^{2} + 4x - 8y = 8$$
$$(x + 2)^{2} + 4(y - 1)^{2} + 9z^{2} = 16$$
$$\frac{(x + 2)^{2}}{4^{2}} + \frac{(y - 1)^{2}}{2^{2}} + \frac{z^{2}}{(4/3)^{2}} = 1$$

This is an ellipsoid with centre (-2, 1, 0) and semi-axis 4, 2 and 4/3. (see also page 8) 4/3 2 -> y

Math2023

This surface is symmetric about the xy-plane, xz-plane and yz-plane

Qu. 10 $x^2 + 4z^2 = 4$. This equation is independent of y. Therefore $\frac{x^2}{2^2} + z^2 = 1$ represents an elliptic cylinder with axis along the *y*-axis.

This surface is symmetric about the xy-plane and yz-plane (see also page 8)

Homework 3

Exercise 12.1

Qu. 4

$$f(x,y) = \frac{xy}{x^2 - y^2}$$

This function is defined except when $x^2 - y^2 = 0$, i.e. the domain consists of all points not on the lines $x = \pm y$.

i.e.

$$D = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, \text{ except } x = \pm y\}$$

range = $\{(-\infty, \infty)\}.$

(see also page 8)

Qu. 10
$$f(x, y, z) = \frac{\exp xyz}{\sqrt{xyz}}$$
. This is a surface in 4D.
This function is defined as long as $xyz > 0$, that is all points in the four octants.
(a) $x > 0, y > 0, z > 0,$
(b) $x > 0, y < 0, z < 0,$
(c) $x < 0, y < 0, z > 0,$
(d) $x < 0, y > 0, z < 0.$
range = $\{(\sqrt{2e}, \infty)\}$.

```
Qu. 14 z = f(x, y) = 4 - x^2 - y^2
```

In cylindrical coord. $f(r, \theta) = 4 - r^2$, independent of θ . (see also page 8)

Math2023

Homework 3

Math2023

Homework 3

Exercise 12.2

Qu. 6 Let $x = r \cos \theta(r), y = 1 + r \sin \theta(r)$, then

$$\lim_{(x,y)\to(0,1)} \frac{x^2(y-1)^2}{x^2 + (y-1)^2} = \lim_{r\to 0} \frac{r^4 \cos^2 \theta(r) \sin^2 \theta(r)}{r^2}$$
$$= \lim_{r\to 0} r^2 \cos^2 \theta(r) \sin^2 \theta(r)$$
$$\leqslant \lim_{r\to 0} r^2 \to 0^+.$$

Also note that $r^2 \cos^2 \theta(r) \sin^2 \theta(r) > 0^+$

$$\therefore \lim_{(x,y)\to(0,1)} \frac{x^2(y-1)^2}{x^2+(y-1)^2} = 0.$$

Alternatively, note also that

$$0 \leqslant \left| \frac{x^2(y-1)^2}{x^2 + (y-1)^2} \right| \leqslant x^2$$

and $x^2 \to 0$ as $(x, y) \to (0, 1)$. Hence the result! (see also page 8)

Qu. 12 Along the *y*-axis, $x = 0, y \neq 0$, then

$$\frac{x^2y^2}{2x^4 + y^4} = 0.$$

Along the line $x = y \neq 0$, then

$$\frac{x^2y^2}{2x^4+y^4} = \frac{x^4}{2x^4+x^4} = \frac{1}{3}.$$

 \therefore Two different limits along two different paths, therefore

$$\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{2x^4+y^4}\qquad\text{does not exist.}$$

(see also page 8)

Qu. 13 Domain of f(x, y) is $\{(x, y) | x \in \mathbb{R}, y \in \mathbb{R} \text{ except } x = y = 0\}$

i.e. f(x, y) is a continuous function on the whole xy-plane except at (0,0). Also note that

$$\begin{split} f(x,y) &= \frac{x^2 + y^2 - x^3 y^3}{x^2 + y^2} = 1 - \frac{x^3 y^3}{x^2 + y^2} \\ & \left| \frac{x^3 y^3}{x^2 + y^2} \right| = \left| \frac{x^2}{x^2 + y^2} \right| \left| xy^3 \right| \leqslant \left| xy^3 \right| \to 0^+ \end{split}$$

Qu. 24
$$f(x,y) = \frac{y}{x^2 + y^2} = c$$

This is the family $x^2 + \left(y - \frac{1}{2c}\right)^2 = \frac{1}{4c^2}$ of circles passing through the origin and having centres on the y-axis. The origin itself is, however not on any of the level curves!! (see also page 8)

Qu. 36 f(x, y, z) = c = px + qy + rz where p, q, r are constants since the level surface of f(x, y, z) is a plane. Then when

$$y = 0, \quad z = 0 \quad \Rightarrow \quad px = c$$

 $x = \frac{c}{p} = c^3 \quad \Rightarrow \quad p = \frac{1}{c^2}$

Similarly,

$$q = \frac{1}{2c^2}, \qquad r = \frac{1}{3c^2}$$

$$\cdot \frac{1}{c^2}x + \frac{1}{2c^2}y + \frac{1}{3c^2}z = c \quad \Rightarrow \quad c = \left(x + \frac{y}{2} + \frac{z}{3}\right)^{\frac{1}{3}}$$

$$\therefore \quad f(x, y, z) = \left(x + \frac{y}{2} + \frac{z}{3}\right)^{\frac{1}{3}} \quad (\text{4D surface}).$$

Qu. 42 The "level hyper-surface" f(x, y, z, t) = c > 0 is the "4-sphere" of radius \sqrt{c} centred at the origin in \mathbb{R}^4 .

Homework 3

Math2023

as $(x, y) \rightarrow (0, 0)$. Thus

$$\lim_{(x,y)\to (0,0)} f(x,y) = 1-0 = 1$$

Therefore if we define f(0,0) = 1, then

$$\lim_{(x,y)\to(0,0)} f(x,y) = 1 = f(0,0)$$

 $\therefore f(x, y)$ is a continuous function everywhere (see also page 9).

Qu 17 $f_{\mathbf{u}}(t) = f(a + tu, b + tv)$, where $\mathbf{u} = u \mathbf{i} + v \mathbf{j}$ is a unit vector.

f(x, y) may not be continuous at (a, b) even if $f_{\mathbf{u}}(t)$ is continuous at t = 0 for every unit vector **u**. A counter-example is the function f of Ex. 2.1 of the lecture notes.

Here a = b = 0. The condition that each $f_{\mathbf{u}}$ should be continuous is the condition that f should be continuous on each straight line through (0,0), which it is if we extend the domain of f to include (0,0) by defining f(0,0) = 0.

We showed that $f(x, y) \to 0$ as $(x, y) \to (0, 0)$ along every straight line. However, we also showed that $\lim_{(x,y)\to(0,0)} f(x, y)$ does not exist.

On the other hand, if f(x, y) is continuous at (a, b), then $f(x, y) \to f(a, b)$ if (x, y) approaches (a, b) in any way, in particular, along the line through (a, b) parallel to **u**. Thus all such function $f_{\mathbf{u}}(t)$ must be continuous at t = 0.

Qu. 18

$$\left|\frac{x^m y^n}{(x^2 + y^2)^p}\right| = \left|\frac{r^m \cos^m \theta \cdot r^n \sin^m \theta}{r^{2p}}\right|$$
$$= \left|r^{m+n-2p} \cos^m \theta \sin^n \theta\right|$$
$$\leqslant \left|r^{m+n-2p}\right| \to 0^+$$

as $r \to 0^+$, if m + n - 2p > 0.

$$\therefore \lim_{(x,y)\to(0,0)} \frac{x^m y^n}{(x^2+y^2)^{2p}} = 0 \qquad \text{provided} \qquad m+n > 2p.$$

Alternatively, since $|x| \leqslant \sqrt{x^2 + y^2}$, $y \leqslant \sqrt{x^2 + y^2}$, we have

$$\left|\frac{x^m y^n}{(x^2+y^2)^p}\right| \leqslant \frac{(x^2+y^2)^{(m+n)/2}}{(x^2+y^2)^p} = (x^2+y^2)^{-p+(m+n)/2}.$$

Same conclusion.