Homework 3

Exercise 10.5

Qu. 4

$$
\begin{aligned}
x^{2}+4 y^{2}+9 z^{2}+4 x-8 y & =8 \\
(x+2)^{2}+4(y-1)^{2}+9 z^{2} & =16 \\
\frac{(x+2)^{2}}{4^{2}}+\frac{(y-1)^{2}}{2^{2}}+\frac{z^{2}}{(4 / 3)^{2}} & =1
\end{aligned}
$$

This is an ellipsoid with centre $(-2,1,0)$ and semi-axis 4,2 and $4 / 3$.
(see also page 8)

This surface is symmetric about the $x y$-plane, $x z$-plane and $y z$-plane

Qu. $10 x^{2}+4 z^{2}=4$. This equation is independent of y. Therefore $\frac{x^{2}}{2^{2}}+z^{2}=1$ represents an elliptic cylinder with axis along the y-axis.

This surface is symmetric about This surface is symmetric a
the $x y$-plane and $y z$-plane the $x y$-plane and
(see also page 8)

Exercise 12.1

Qu. 4

$$
f(x, y)=\frac{x y}{x^{2}-y^{2}}
$$

This function is defined except when $x^{2}-y^{2}=0$, i.e. the domain consists of all points not on the lines $x= \pm y$
i.e.

$$
\begin{aligned}
D & =\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, \text { except } x= \pm y\} \\
\text { range } & =\{(-\infty, \infty)\} .
\end{aligned}
$$

(see also page 8)

Qu. $10 f(x, y, z)=\frac{\exp x y z}{\sqrt{x y z}}$. This is a surface in 4D.
This function is defined as long as $x y z>0$, that is all points in the four octants
(a) $x>0, y>0, z>0$,
(b) $x>0, y<0, z<0$,
(c) $x<0, y<0, z>0$,
(d) $x<0, y>0, z<0$.
range $=\{(\sqrt{2 e}, \infty)\}$

Qu. $14 z=f(x, y)=4-x^{2}-y^{2}$
In cylindrical coord. $f(r, \theta)=4-r^{2}$, independent of θ.
(see also page 8)

Qu. $24 f(x, y)=\frac{y}{x^{2}+y^{2}}=c$
This is the family $x^{2}+\left(y-\frac{1}{2 c}\right)^{2}=\frac{1}{4 c^{2}}$ of circles passing through the origin and having centres on the y-axis. The origin itself is, however not on any of the level curves!! (see also page 8)

Qu. $36 f(x, y, z)=c=p x+q y+r z$ where p, q, r are constants since the level surface of $f(x, y, z)$ is a plane. Then when

$$
\begin{aligned}
y=0, \quad z=0 \quad \Rightarrow \quad p x & =c \\
x & =\frac{c}{p}=c^{3} \quad \Rightarrow \quad p=\frac{1}{c^{2}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& q=\frac{1}{2 c^{2}}, \quad r=\frac{1}{3 c^{2}} \\
& \therefore \frac{1}{c^{2}} x+\frac{1}{2 c^{2}} y+\frac{1}{3 c^{2}} z=c \quad \Rightarrow \quad c=\left(x+\frac{y}{2}+\frac{z}{3}\right)^{\frac{1}{3}} \\
& \therefore \quad f(x, y, z)=\left(x+\frac{y}{2}+\frac{z}{3}\right)^{\frac{1}{3}} \quad \text { (4D surface). }
\end{aligned}
$$

Qu. 42 The "level hyper-surface" $f(x, y, z, t)=c>0$ is the "4-sphere" of radius \sqrt{c} centred at the origin in \mathbb{R}^{4}.

Exercise 12.2

Qu. 6 Let $x=r \cos \theta(r), y=1+r \sin \theta(r)$, then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,1)} \frac{x^{2}(y-1)^{2}}{x^{2}+(y-1)^{2}} & =\lim _{r \rightarrow 0} \frac{r^{4} \cos ^{2} \theta(r) \sin ^{2} \theta(r)}{r^{2}} \\
& =\lim _{r \rightarrow 0} r^{2} \cos ^{2} \theta(r) \sin ^{2} \theta(r) \\
& \leqslant \lim _{r \rightarrow 0} r^{2} \rightarrow 0^{+} .
\end{aligned}
$$

Also note that $r^{2} \cos ^{2} \theta(r) \sin ^{2} \theta(r)>0^{+}$

$$
\therefore \lim _{(x, y) \rightarrow(0,1)} \frac{x^{2}(y-1)^{2}}{x^{2}+(y-1)^{2}}=0
$$

Alternatively, note also that

$$
0 \leqslant\left|\frac{x^{2}(y-1)^{2}}{x^{2}+(y-1)^{2}}\right| \leqslant x^{2}
$$

and $x^{2} \rightarrow 0$ as $(x, y) \rightarrow(0,1)$. Hence the result!
(see also page 8)

Qu. 12 Along the y-axis, $x=0, y \neq 0$, then

$$
\frac{x^{2} y^{2}}{2 x^{4}+y^{4}}=0 .
$$

Along the line $x=y \neq 0$, then

$$
\frac{x^{2} y^{2}}{2 x^{4}+y^{4}}=\frac{x^{4}}{2 x^{4}+x^{4}}=\frac{1}{3} .
$$

\therefore Two different limits along two different paths, therefore

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{2 x^{4}+y^{4}} \quad \text { does not exist. }
$$

(see also page 8)

Qu. 13 Domain of $f(x, y)$ is $\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}$ except $x=y=0\}$
i.e. $f(x, y)$ is a continuous function on the whole $x y$-plane except at $(0,0)$. Also note that

$$
\begin{aligned}
f(x, y) & =\frac{x^{2}+y^{2}-x^{3} y^{3}}{x^{2}+y^{2}}=1-\frac{x^{3} y^{3}}{x^{2}+y^{2}} \\
\left|\frac{x^{3} y^{3}}{x^{2}+y^{2}}\right| & =\left|\frac{x^{2}}{x^{2}+y^{2}}\right|\left|x y^{3}\right| \leqslant\left|x y^{3}\right| \rightarrow 0^{+}
\end{aligned}
$$

Homework 3

Math2023

as $(x, y) \rightarrow(0,0)$. Thus

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1-0=1
$$

Therefore if we define $f(0,0)=1$, then

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1=f(0,0)
$$

$\therefore f(x, y)$ is a continuous function everywhere (see also page 9).

Qu $17 f_{\mathbf{u}}(t)=f(a+t u, b+t v)$, where $\mathbf{u}=u \mathbf{i}+v \mathbf{j}$ is a unit vector.
$f(x, y)$ may not be continuous at (a, b) even if $f_{\mathbf{u}}(t)$ is continuous at $t=0$ for every unit vector u. A counter-example is the function f of Ex. 2.1 of the lecture notes.

Here $a=b=0$. The condition that each $f_{\mathbf{u}}$ should be continuous is the condition that f should be continuous on each straight line through $(0,0)$, which it is if we extend the domain of f to include $(0,0)$ by defining $f(0,0)=0$.
We showed that $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ along every straight line. However, we also showed that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

On the other hand, if $f(x, y)$ is continuous at (a, b), then $f(x, y) \rightarrow f(a, b)$ if (x, y) approaches
(a, b) in any way, in particular, along the line through (a, b) parallel to \mathbf{u}. Thus all such function $f_{\mathbf{u}}(t)$ must be continuous at $t=0$.

Qu. 18

$$
\begin{aligned}
\left|\frac{x^{m} y^{n}}{\left(x^{2}+y^{2}\right)^{p}}\right| & =\left|\frac{r^{m} \cos ^{m} \theta \cdot r^{n} \sin ^{m} \theta}{r^{2 p}}\right| \\
& =\left|r^{m+n-2 p} \cos ^{m} \theta \sin ^{n} \theta\right| \\
& \leqslant\left|r^{m+n-2 p}\right| \rightarrow 0^{+}
\end{aligned}
$$

as $r \rightarrow 0^{+}$, if $m+n-2 p>0$.

$$
\therefore \lim _{(x, y) \rightarrow(0,0)} \frac{x^{m} y^{n}}{\left(x^{2}+y^{2}\right)^{2 p}}=0 \quad \text { provided } \quad m+n>2 p .
$$

Alternatively, since $|x| \leqslant \sqrt{x^{2}+y^{2}}, y \leqslant \sqrt{x^{2}+y^{2}}$, we have

$$
\left|\frac{x^{m} y^{n}}{\left(x^{2}+y^{2}\right)^{p}}\right| \leqslant \frac{\left(x^{2}+y^{2}\right)^{(m+n) / 2}}{\left(x^{2}+y^{2}\right)^{p}}=\left(x^{2}+y^{2}\right)^{-p+(m+n) / 2}
$$

Same conclusion.

