Exercise 13.1

Qu. 4

$$
f(x, y)=x^{4}+y^{4}-4 x y
$$

$$
f_{x}=4 x^{3}-4 y, \quad f_{y}=4 y^{3}-4 x, \quad f_{x x}=12 x^{2}, \quad f_{x y}=-4 \quad \text { and } \quad f_{y y}=12 y^{2} .
$$

For critical points: $f_{x}=f_{y}=0$, i.e.

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=x^{3} \\
y^{3}=x
\end{array}\right. \\
& \Rightarrow \quad x^{9}=x \\
& x\left(x^{8}-1\right)=0
\end{aligned}
$$

$$
x\left(x^{4}+1\right)\left(x^{2}+1\right)\left(x^{2}-1\right)=0
$$

$$
\Rightarrow \quad x=-1,0,1
$$

$$
y=-1,0,1
$$

Points	$f_{x x}$	$f_{y y}$	$f_{x y}$	D	Type
$(-1,-1)$	12	12	-4	$128>0$	min
$(0,0)$	0	0	-4	$-16<0$	saddle
$(1,1)$	12	12	-4	$128>0$	min

(see page 6)

Qu. 20

$$
f(x, y)=x+8 y+\frac{1}{x y}
$$

$$
f_{x}=1-\frac{1}{x^{2} y}, \quad f_{y}=8-\frac{1}{x y^{2}}, \quad f_{x x}=\frac{2}{x^{3} y}, \quad f_{y y}=\frac{2}{x y^{3}} \quad \text { and } \quad f_{x y}=\frac{1}{x^{2} y^{2}}
$$

For critical points, $f_{x}=f_{y}=0$, i.e.

$$
\left\{\begin{array} { l }
{ x ^ { 2 } y = 1 } \\
{ 8 x y ^ { 2 } = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=2 \\
y=\frac{1}{4}
\end{array}\right.\right.
$$

At $\left(2, \frac{1}{4}\right), f_{x x}>0, \quad D=\frac{3}{x^{4} y^{4}}>0$, hence $\left(2, \frac{1}{4}\right)$ is a relative minimum point. Also note that.
(i) As the point (x, y) approaches to the x-axis, i.e. $y \rightarrow 0^{+}, x>0^{+}, f(x, y) \rightarrow+\infty$
(ii) As the point (x, y) approaches to the y-axis, i.e. $x \rightarrow 0^{+}, y>0^{+}, f(x, y) \rightarrow+\infty$
(iii) As the point (x, y) tends to infinity, .i.e. $x^{2}+y^{2} \rightarrow \infty, f(x, y) \rightarrow+\infty$
$\therefore\left(2, \frac{1}{4}\right)$ must be an absolute minimum point.
(see page 6)

Qu. 27

$$
\begin{aligned}
f(x, y) & =\left(y-x^{2}\right)\left(y-3 x^{2}\right)=y^{2}-4 x^{2} y+3 x^{4} \\
f_{x} & =-8 x y+12 x^{3}=4 x\left(3 x^{2}-2 y\right) \\
f_{y} & =2 y-4 x^{2} .
\end{aligned}
$$

For critical points, $f_{x}=f_{y}=0$, i.e.

$$
\left\{\begin{array}{l}
x\left(3 x^{2}-2 y\right)=0 \\
y=2 x^{2}
\end{array} \quad \Rightarrow \quad x=0 \quad \text { or } \quad y=\frac{3}{2} x^{2}\right.
$$

$\Rightarrow \quad x=0, \quad y=0$ is the only solution (why!!)
$\therefore(0,0)$ is a critical point of f.
(i) Let

$$
g(x)=f(x, k x)=k^{2} x^{2}-4 k x^{3}+3 x^{4}
$$

Then $g^{\prime}(x)=2 k x-12 k x^{2}+12 x^{3}$

$$
g^{\prime \prime}(x)=2 k^{2}-24 k x+36 x^{2} .
$$

For critical points, $g^{\prime}(x)=0$

$$
\begin{aligned}
x\left(2 k-12 k x+12 x^{2}\right) & =0 \\
\Rightarrow \quad x=0 \quad \text { or } \quad k-6 k x+6 x^{2} & =0 \quad \text { (no need to consider this case) }
\end{aligned}
$$

At $x=0, g^{\prime \prime}(0)=2 k^{2}>0$ if $k \neq 0$, thus $g(x)=f(x, k x)$ has a local minimum at $x=0$ if $k \neq 0$.
Also need to consider: along y-axis, $f(0, y)=y^{2}$ and along x-axis, $f(x, 0)=3 x^{4}$, both of these functions have a local minimum at $(0,0)$.
$\therefore f$ has a local minimum at $(0,0)$ when restricted to any straight line through the origin.
(ii) Note that on the curve $y=k x^{2}$, we have

$$
\begin{aligned}
& f\left(x, k x^{2}\right)=\left(k x^{2}-x^{2}\right)\left(k x^{2}-3 x^{2}\right)=(k-1)(k-3) x^{4} \\
& f\left(x, k x^{2}\right)<0 \quad \text { if } \quad(k-1)(k-3)<0, \text { i.e. } 1<k<3 \\
& \text { i.e. } \quad f\left(x, k x^{2}\right)=-c x^{4} \quad \text { with } \quad c>0 \quad \text { if } \quad 1<k<3 .
\end{aligned}
$$

This function has a local maximum value at $(0,0)$.
Therefore f does not have an (unrestricted) local minimum value at $(0,0)$ Note that

$$
\begin{aligned}
& f_{x x}=-8 y+36 x^{2} \\
& f_{y y}=2 \\
& f_{x y}=-8 x .
\end{aligned}
$$

At $(0,0), f_{x x}=0, D=0$. Thus the second derivative test is indeterminate at the origin. *Discuss why parts (i) and (ii) do not contradict one another.

Exercise 13.3

Qu. 3
(a) The point $\mathbf{r}_{0}=(3,0,0)$ is on the given plane

$$
\begin{aligned}
d & =\left\|\mathbf{r}-\mathbf{r}_{0}\right\||\cos \theta| \cdot\|\widehat{\mathbf{n}}\| \\
& =\left|\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \widehat{\mathbf{n}}\right| \\
& =\left|(3,0,0) \cdot \frac{1}{3}(1,2,2)\right| \\
& =1 .
\end{aligned}
$$

Alternatively, let (x, y, z) be the point on the given plane closest to $(0,0,0)$. The vector $(1,2,2)$ is normal to the plane, so must be parallel to the vector (x, y, z) from $\mathbf{0}$ to (x, y, z). Thus

$$
(x, y, z)=\lambda(1,2,2) \quad \text { for some scalar } \lambda .
$$

Since the point (x, y, z) is on the given plane, i.e.

$$
\begin{aligned}
t+4 t+4 t & =3 \quad \Rightarrow \quad t=\frac{1}{3} \\
\therefore(x, y, z) & =\frac{1}{3}(1,2,2) \\
\therefore d & =\frac{1}{3} \sqrt{1+4+4}=1 .
\end{aligned}
$$

(b) Let (x, y, z) be the point on the given plane closest to $\mathbf{0}$, so the problem becomes: minimize

$$
s(x, y, z)=x^{2}+y^{2}+z^{2} .
$$

Since $x+2 y+2 z=3$, we have $x=3-2 y-2 z$

$$
\therefore s=s(y, z)=(3-2 y-2 z)^{2}+y^{2}+z^{2}
$$

For critical points, $s_{y}=s_{z}=0$

$$
\begin{aligned}
s_{y} & =-12+10 y+8 z=0 \\
s_{z} & =-12+8 y+10 z=0 \\
\Rightarrow \quad y & =z=\frac{2}{3}, \quad x=\frac{1}{3}
\end{aligned}
$$

The distance is 1 unit as in part (a).
(c) Same as in part (b), but now the problem becomes:

Minimize $s=x^{2}+y^{2}+z^{2}$ subject to $x+2 y+2 z=3=g(x, y, z)$

Using Lagrangian multipliers, to find the critical points, we have

$$
\left\{\begin{array}{l}
\nabla s=\lambda \nabla g \\
g(x, y, z)=3
\end{array}\right.
$$

$$
\left\{\begin{array} { l }
{ 2 x = \lambda } \\
{ 2 y = 2 \lambda } \\
{ 2 z = 2 \lambda } \\
{ x + 2 y + 2 z = 3 }
\end{array} \Rightarrow \left\{\begin{array}{l}
y=z=\lambda \\
x=\frac{\lambda}{2} \\
\lambda=\frac{2}{3}
\end{array}\right.\right.
$$

So the critical point is once again $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$, whose distance from the origin is 1 unit.

Qu. 22 Let $f(x, y, z)=x^{2}+y^{2}+z^{2}, g_{1}(x, y, z)=x^{2}+y^{2}-z^{2}=0$ and $g_{2}(x, y, z)=x-2 z=3$, then from $\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}$, then

$$
\begin{aligned}
2 x & =\lambda_{1}(2 x)+\lambda_{2} \\
2 y & =\lambda_{1}(2 y) \\
2 z & =\lambda_{1}(-2 z)+\lambda_{2}(-2) \\
x^{2}+y^{2}-z^{2} & =0 \\
x-2 z & =3 .
\end{aligned}
$$

Solving the above system of equations, we get $(1,0,-1)$ and $(3,0,-3)$, so $f_{\min }(1,0,-1)=2$ and $f_{\text {max }}(3,0,-3)=18$.

Qu. 22 Let $f(x, y, z)=x y+z^{2}$ on $B=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leqslant 1\right\}$
First we want to find critical points in B, i.e. $\nabla f=\mathbf{0}$.

$$
\left\{\begin{array} { l }
{ f _ { x } = y = 0 } \\
{ f _ { y } = x = 0 } \\
{ f _ { z } = 2 z = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=0 \\
y=0 \\
z=0
\end{array}\right.\right.
$$

$(0,0,0)$ is in B and $f(0,0,0)=0$.
Now find critical points on the boundary of B, that is, on the sphere $x^{2}+y^{2}+z^{2}=1$. The problem becomes: find critical points of $f(x, y, z)$ subject to $g(x, y, z)=x^{2}+y^{2}+z^{2}=1$.
Using Lagrangian multipliers, we have

$$
\begin{align*}
\nabla f & =\lambda \nabla g, \\
\text { i.e. } \quad y & =\lambda 2 x \tag{1}\\
x & =\lambda 2 y \tag{2}\\
2 z & =\lambda 2 z \\
x^{2}+y^{2}+z^{2} & =1 .
\end{align*}
$$

From(3), we have $\lambda=1$ or $z=0$
Case (I): if $\lambda=1$, (1) and (2) imply that $x=y=0$ and from (4),

$$
z= \pm 1 \quad, \quad f(0,0, \pm 1)=1 .
$$

Case (II): if $z=0$, from (1) and (2) imply that $x^{2}=y^{2}$ and from (4), we have $x^{2}=y^{2}=\frac{1}{2}$, i.e. we have four points

$$
\begin{aligned}
& f\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}, 0\right) \\
&=\frac{1}{2} \\
& \text { or } f\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}, 0\right)=-\frac{1}{2}
\end{aligned}
$$

\therefore Maximum $\quad f(0,0, \pm 1)=1$
Minimum $f\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}, 0\right)=-\frac{1}{2}$

Qu. 26 As can be seen in the figure, the minimum distance from $(0,-1)$ to points of the semicircle $y=\sqrt{1-x^{2}}$ is $\sqrt{2}$, the closest points to $(0,-1)$ on the semicircle being $(\pm 1,0)$.

Try to use Lagrange multiplier: Min $D=d^{2}=f(x, y)=(x-0)^{2}+(y-(-1))^{2}=x^{2}+(y+1)^{2}$ subject to $g(x, y)=y-\sqrt{1-x^{2}}=0$. We have

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
(2 x, 2(y+1)) & =\lambda\left(\frac{x}{\sqrt{1-x^{2}}}, 1\right)
\end{aligned}
$$

i.e.

$$
\begin{align*}
2 x & =\frac{\lambda x}{\sqrt{1-x^{2}}} \Rightarrow \lambda=\sqrt{1-x^{2}} \tag{1}\\
2(y+1) & =\lambda \tag{2}\\
y & =\sqrt{1-x^{2}} \tag{3}
\end{align*}
$$

i.e. Lagrange multiplier method failed!!

Why failed?

\because The level curve $f(x, y)=2$ is not tangent to the semi-circle at $(\pm 1,0)$. This could only have happened because $(\pm 1,0)$ are end points of the semicircle.

Math2023

Ex. 13.1, Qu 27
$f(x, y)=\left(y-x^{2}\right)\left(y-3 x^{2}\right)$

Ex. 13.1, Qu 27
Only plotted $f(x, y) \geqslant 0$

Ex. 13.1, Qu 27 Zoom in around the point $(0,0)$

Ex. 13.1, Qu 27

Ex. 13.1, Qu 27 Contour plot of $f(x, y)$

Ex. 13.1, Qu 20
Contour plot of $f(x, y)$

Ex. 13.3, Qu 26

