MATH2023 Multivariable Calculus
 2013

From the textbook Calculus of Several Variables (5th) by R. Adams, Addison Wesley.

Homework 6

(Total: 17 questions)

Ex. 14.1

17 Evaluate the given double integral by inspection

$$
\iint_{x^{2}+y^{2} \leqslant 1}\left(4 x^{2} y^{3}-x+5\right) d A
$$

22 Evaluate the given double integral by inspection

$$
\iint_{R} \sqrt{b^{2}-y^{2}} d A
$$

where R is the rectangle $0 \leqslant x \leqslant a, 0 \leqslant y \leqslant b$.

Ex. 14.2

12 Calculate the iterated integral $\iint_{T} \sqrt{a^{2}-y^{2}} d A$, where T is the triangle with vertices $(0,0)$, $(a, 0)$, and (a, a).

18 Sketch the domain of integration and evaluate the iterated integral.

$$
\int_{0}^{1} \int_{x}^{x^{\frac{1}{3}}} \sqrt{1-y^{4}} d y d x
$$

$\underline{22}$ Find the volume of the solid which is under $z=1-y^{2}$ and above $z=x^{2}$.

30 Let $F^{\prime}(x)=f(x)$ and $G^{\prime}(x)=g(x)$ on the interval $a \leqslant x \leqslant b$. Let T be the triangle with vertices $(a, a),(b, a)$, and (b, b). By iterating $\iint_{T} f(x) g(y) d A$ in both directions, show that

$$
\int_{a}^{b} f(x) G(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} g(y) F(y) d y
$$

(This is an alternative derivation of the formula for integration by parts.)
Qu. $\int_{-2}^{3} \int_{0}^{1}|x| \sin \pi y d y d x$.

Ex. 14.3

$\underline{4}$ Determine the integral converges or diverges. Try to evaluate it if it converges. $\iint_{T} \frac{1}{x \sqrt{y}} d A$ over the triangle T with vertices $(0,0),(1,1)$ and $(1,2)$.

5 Determine the integral converges or not. Try to evaluate it if it exists. $\iint_{Q} \frac{x^{2}+y^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)} d A$, where Q is the first quadrant of the $x y$-plane.

21 Evaluate both iterations of the improper integral

$$
\iint_{S} \frac{x-y}{(x+y)^{3}} d A
$$

where S is the square $0<x<1,0<y<1$. Show that the above improper double integral does not exist, by considering

$$
\iint_{T} \frac{x-y}{(x+y)^{3}} d A
$$

where T is that part of the square S lying under the line $x=y$.
30. (Another proof of equality of mixed partials) Suppose that $f_{x y}(x, y)$ and $f_{y x}(x, y)$ are continuous in a neighbourhood of the point (a, b). Without the equality of these mixed partial derivatives, show that

$$
\iint_{R} f_{x y}(x, y) d A=\iint_{R} f_{y x}(x, y) d A
$$

where R is the rectangle with vertices $(a, b),(a+h, b),(a, b+k)$, and $(a+h, b+k)$ and $h^{2}+k^{2}$ is sufficiently small. Now use the result of Exercise 29 to show that $f_{x y}(a, b)=f_{y x}(a, b)$. (This reproves Theorem 1 of Section 12.4 (or see below: the mean-value theorem). However, in that theorem we only assumed continuity of the mixed partials at (a, b). Here, we assume the continuity at all points sufficiently near (a, b).)

A mean-value theorem for double integrals

If the function $f(x, y)$ is continuous on a closed, bounded, connected set D in the $x y$-plane, then there exists a point $\left(x_{0}, y_{0}\right)$ in D such that

$$
\iint_{D} f(x, y) d A=f\left(x_{0}, y_{0}\right) \times(\text { area of } D) .
$$

Ex. 14.4
11 Evaluate $\iint_{S}(x+y) d A$, where S is the region in the first quadrant lying inside the disk $x^{2}+y^{2} \leqslant a^{2}$ and under the line $y=\sqrt{3} x$.

14 Evaluate $\iint_{x^{2}+y^{2} \leqslant 1} \ln \left(x^{2}+y^{2}\right) d A$.
$\underline{22}$ Find the volume lying inside both the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the cylinder $x^{2}+y^{2}=a x$.

26 Find the volume of the region lying inside the circular cylinder $x^{2}+y^{2}=2 y$ and inside the parabolic cylinder $z^{2}=y$.

37 (The gamma function) The error function, $\operatorname{Erf}(x)$, is defined for $x \geqslant 0$ by

$$
\operatorname{Erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Show that $[\operatorname{Erf}(x)]^{2}=\frac{4}{\pi} \int_{0}^{\frac{\pi}{4}}\left(1-e^{-x^{2} / \cos ^{2} \theta}\right) d \theta$. Hence deduce that

$$
\operatorname{Erf}(x) \geqslant \sqrt{1-e^{-x^{2}}} .
$$

Qu Find the volume lying outside the cone $z^{2}=x^{2}+y^{2}$ and inside the sphere $x^{2}+(y-a)^{2}+z^{2}=a^{2}$.

