$\underline{\text { Solution to Set } 1}$

1. (a) $\vec{a}=-\frac{1}{2} \vec{b} \quad$ therefore $\vec{a} \| \vec{b}$
(b) Let $\vec{a}=c \vec{b}$, then $\vec{i}+\vec{j}=c \vec{j}+c \vec{k}$.

There is no c that can create an \vec{i} component. Therefore, \vec{a} is not parallel to \vec{b}.
2. $\vec{a} \cdot \vec{b}=2-3-4=-5 \quad \cos \theta=-\frac{5}{\sqrt{3} \sqrt{29}}=-0.536$
$\theta=2.137$ radian $=122.4^{\circ}$
3. Determine whether $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ are perpendicular
$\overrightarrow{P Q}=(2,0,1)-(-1,3,0)=(3,-3,1) ;$
$\overrightarrow{P R}=(-1,1,-6)-(-1,3,0)=(0,-2,-6)$
$\overrightarrow{P Q} \cdot \overrightarrow{P R}=6-6=0 \quad \therefore \perp$
4. $\vec{a} \times \vec{b}=-\vec{i}+2 \vec{j}-\vec{k}$
$\vec{c} \cdot(\vec{a} \times \vec{b})=1+2+1=4$
5. The diagonals are $\vec{u}+\vec{v}$ and $\pm(\vec{u}-\vec{v})$. If their lengths are equal, then $|\vec{u}+\vec{v}|^{2}=|\vec{u}-\vec{v}|^{2}=$ $(\vec{u} \pm \vec{v}) \cdot(\vec{u} \pm \vec{v})$. Therefore, $2 \vec{u} \cdot \vec{v}=-2 \vec{u} \cdot \vec{v} \quad \Rightarrow \quad \vec{u} \cdot \vec{v}=0 \quad \Rightarrow \quad \vec{u} \perp \vec{v} \quad \Rightarrow \quad$ the figure is a rectangle.
6. Let \vec{P} and \vec{A} be the position vectors of points P and A. The directed line segments $\overrightarrow{P O}=-\vec{P}$ and $\overrightarrow{P A}=\vec{A}-\vec{P}$ are perpendicular to each other. Therefore,
$\vec{P} \cdot(\vec{P}-\vec{A})=|\vec{P}|^{2}-\cos \theta|\vec{P}||\vec{A}|=r^{2}-a r \cos \theta=0$
where θ is the angle between \vec{P} and the x-axis, $r=|\vec{P}|$, and $a=|\vec{A}|$. The above equation is equivalent to
$r=a \cos \theta$,
a standard polar equation for a circle with diameter a.

$\underline{\text { Solution to Set } 2}$

1. Two of the sides of the triangle are represented by the line segments $\vec{a}=(3,3,3)-(2,2,2)=(1,2,1)$ and $\vec{b}=(5,1,2)-(2,1,2)=(3,0,0)$.
The area of the triangle is given by $\frac{1}{2}|\vec{a} \times \vec{b}|$.
Since $\vec{a} \times \vec{b}=(\vec{i}+2 \vec{j}+\vec{k}) \times 3 \vec{i}=3 \vec{j}-6 \vec{k}$,
the area is $\frac{1}{2} \sqrt{36+9}=\frac{3}{2} \sqrt{5}$.
2. vector form: $\vec{r}=-2 \vec{i}+\vec{j}+t(3 \vec{i}-2 \vec{j}+\vec{k}) \quad-\infty<t<\infty$
parametric form: $\begin{cases}x & =-2+3 t \\ y & =1-2 t \\ z & =t\end{cases}$
3. $\vec{r}-\vec{P}_{0}=(x+1) \vec{i}+(y-1) \vec{j}+(z-3) \vec{k}$
$\vec{N} \cdot\left(\vec{r}-\vec{P}_{0}\right)=-2(x+1)+15(y-1)-\frac{1}{2}(z-3)=0$
equation: $\quad-4 x+30 y-z-31=0$
4. $(5,2,5)-(2,-1,4)=(3,3,1)$
$(2,1,3)-(2,-1,4)=(0,2,-1)$
Let $\vec{N}=(3 \vec{i}+3 \vec{j}+\vec{k}) \times(2 \vec{j}-\vec{k})=-5 \vec{i}+3 \vec{j}+6 \vec{k}$
equation: $\quad[(x-5) \vec{i}+(y-2) \vec{j}+(z-5) \vec{k}] \cdot(-5 \vec{i}+3 \vec{j}+6 \vec{k})=-5 x+3 y+6 z-11=0$
5. We are going to show that the vector $\vec{N}=a \vec{i}+b \vec{j}+c \vec{k}$ is perpendicular to any line lying on the plane (or any directed line segments on the plane).
Let $P=\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ be any two distinct points on a line that lies on the plane. The vector associated with the directed line segment connecting P to Q is $\overrightarrow{P Q}=\left(x_{2}-x_{1}\right) \vec{i}+\left(y_{2}-\right.$ $\left.y_{1}\right) \vec{j}+\left(z_{2}-z_{1}\right) \vec{k}$, and it is giving the direction of the line. Since P and Q are also on the plane, the equations $a x_{1}+b y_{1}+c z_{1}=d$ and $a x_{2}+b y_{2}+c z_{2}=d$ are both satisfied. Subtracting one from the other, one gets $a\left(x_{2}-x_{1}\right)+b\left(y_{2}-y_{1}\right)+c\left(z_{2}-z_{1}\right)=0$. This equation means that $\vec{N} \cdot \overrightarrow{P Q}=0$. Therefore, $a \vec{i}+b \vec{j}+c \vec{k}$ is perpendicular to $\overrightarrow{P Q}$.
6. Choose the origin at one vertex of the triangle and let two of the sides be represented by the line segments (vectors) \vec{a} and \vec{b}. The third side is then given by the line segment $\vec{b}-\vec{a}$. The midpoint of this side is at $\vec{a}+(\vec{b}-\vec{a}) / 2=(\vec{a}+\vec{b}) / 2$.
The line connecting the origin to this point is parameterized by the equation $\vec{r}=t(\vec{a}+\vec{b}) / 2$. Similarly, the line connecting the end point of \vec{a} (another vertex of the triangle) to the midpoint of the opposite line segment \vec{b} is parameterized by the equation $\vec{r}=\vec{a}+s(\vec{b} / 2-\vec{a})$.
The two lines intersect when $t(\vec{a}+\vec{b}) / 2=\vec{a}+s(\vec{b} / 2-\vec{a})$. In this equation, the coefficients of \vec{a} and \vec{b} can be equated respectively. This gives the solution $t=s=2 / 3$. Therefore the two lines meet at the location $(\vec{a}+\vec{b}) / 3$.
Similarly, it can be shown that the line connecting the end point of \vec{b} to the mid point of \vec{a} intersects with these lines at the same point.

Solution to Set 3

1. (a) Component functions:

$$
F_{1}(t)=\sqrt{t+1}, \quad F_{2}(t)=\sqrt{1-t}, \quad F_{3}(t)=1
$$

Domain:
For F_{1} to be defined (getting a real value), the following condition has to be satisfied

$$
t+1 \geq 0 \equiv t \geq-1
$$

For F_{2}, the condition is

$$
1-t \geq 0 \equiv t \leq 1
$$

No restrictions from F_{3}.
Combining the conditions on all the components, the conditions for \vec{F} are

$$
-1 \leq t \leq 1
$$

The domain is therefore $[-1,1]$.
(b) $\vec{F}(t)=\frac{1}{t} \vec{i}-\vec{j}+t \ln (t) \vec{k}$

Component functions:
$F_{1}(t)=\frac{1}{t}, F_{2}(t)=-1, F_{3}(t)=t \ln (t)$
Domain:
For F_{1} to be defined (getting a real value), the following condition has to be satisfied $t \neq 0$
No conditions on F_{2}
For F_{3}

$$
t>0
$$

Combining the conditions on all the components, the condition for \vec{F} is

$$
t>0
$$

The domain is therefore $(0, \infty)$.
2. (a) A straight line.
(b) A helix spiraling upward along the z-axis with projection on the xy-plane tracing a unit circle in the counterclockwise direction.
3. (a) $\lim _{t \rightarrow 0}\left(\frac{\sin t}{t} \vec{i}+(t+\sqrt{2}) \vec{j}+\frac{\left(e^{-t}-1\right)}{t} \vec{k}\right)=\vec{i}+\sqrt{2} \vec{j}-\vec{k}$
(b) $\lim _{t \rightarrow 0} \vec{F}(t)=\overrightarrow{0}$
4. (a) $\vec{F}^{\prime}(t)=\left(2 t \cos t-t^{2} \sin t\right) \vec{i}+\left(3 t^{2} \sin t+t^{3} \cos t\right) \vec{j}+4 t^{3} \vec{k}$
(b) $\vec{F} \times \vec{G}=\left(\frac{1+t^{2}}{2+\sin t}-\frac{e^{t}+e^{-t}}{\sqrt{t}+t}\right) \vec{k}$

Therefore,

$$
(\vec{F} \times \vec{G})^{\prime}=\left[\frac{(2+\sin t) 2 t-\left(1+t^{2}\right) \cos t}{(2+\sin t)^{2}}-\frac{(\sqrt{t}+t)\left(e^{t}-e^{-t}\right)-\left(e^{t}+e^{-t}\right)\left(\frac{1}{2 \sqrt{t}}+1\right)}{(\sqrt{t}+t)^{2}}\right] \vec{k}
$$

(c) $(f(t) \vec{F}(t))^{\prime}=2 t \vec{i}+\vec{j}$
(d) $\vec{F} \circ f=\vec{i}+\frac{1}{t^{2}} \vec{j}+\frac{1}{t^{4}} \vec{k}$

Therefore, $(\vec{F} \circ f)^{\prime}=-\frac{2}{t^{3}} \vec{j}-\frac{4}{t^{5}} \vec{k}$
5. velocity: $\dot{\vec{r}}(t)=-\sin t \vec{i}+\cos t \vec{j}+\vec{k} \quad$ speed: $\sqrt{\sin ^{2} t+\cos ^{2} t+1}=\sqrt{2}$
acceleration: $\ddot{\vec{r}}(t)=-\cos t \vec{i}-\sin t \vec{j}=-\vec{r} \quad|\ddot{\vec{r}}(t)|=1$

$\underline{\text { Solution to Set } 4}$

1. (a) The square root is real only if the argument is non-negative, namely
$1-x^{2}-y^{2} \geq 0 \quad \Leftrightarrow \quad x^{2}+y^{2} \leq 1$.
The domain is a closed disk (boundary included) centered at $(0,0)$ with radius 1 .
(b) The logarithmic function is defined only for a positive argument, namely $x+y>0$.
The domain is an open half plane above the line $x+y=0$ (135° with the x -axis).
2. (a) $c=0$ case: The level curve is defined by the equation

$$
f(x, y)=\sqrt{1-x^{2}-y^{2}}=0 \quad \Leftrightarrow \quad x^{2}+y^{2}=1 .
$$

It is a circle centered at $(0,0)$ with radius 1 .
$c=1 / \sqrt{2}$ case: The level curve satisfies
$x^{2}+y^{2}=1 / 2$
and is a circle centered at $(0,0)$ with radius $1 / \sqrt{2}$.
(b) $f(x, y)=x^{2}-y^{2} ; \quad c=-1,0,1 c=-1$ case: The level curve is the hyperbola $y^{2}-x^{2}=1$. $c=0$ case: The level curve is composed of the two lines $x= \pm y$.
$c=1$ case: The level curve is the hyperbola $x^{2}-y^{2}=1$.
3. Sketch the graph of f
(a) $f(x, y)=\sqrt{1-x^{2}-y^{2}} \quad$ (an ellipsoid)
(b) $f(x, y)=\sqrt{x^{2}+y^{2}} \quad$ (a cone)
(c) $f(x, y)=x^{2}+y^{2}+1 \quad$ (a paraboloid)
(d) $f(x, y)=x^{2}-y^{2}+1 \quad$ (a hyperbolic paraboloid)
4. (a) $\lim _{(x, y) \rightarrow(1,0)} \frac{x^{2}-x y+1}{x^{2}+y^{2}}=2$
(b) $\lim _{(x, y) \rightarrow(\ln 2,0)} e^{2 x+y^{2}}=4$
5. Let $x=r \cos \theta, y=r \sin \theta$, then
$\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{r^{2} \sin \theta \cos \theta}{r^{2}}=\sin \theta \cos \theta$
and is dependent on θ (not a unique constant). Therefore, the limit does not exist.
Note: If one wants to think about taking limit along paths, one can get different paths by choosing different fixed values of θ and use the parameterization $\vec{r}_{\theta}(t)=t(\cos \theta, \sin \theta)$ for the paths.
6. Let $x=r \cos \theta, y=r \sin \theta$, then
$\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} r^{2} \sin \frac{1}{r^{2}}=0=f(0,0)$
Therefore, the function is continuous at $(0,0)$.

Solution to Set 5

1. We proceed by showing that all points not in L are exterior points of L, so that L contains all the boundary points and is a close set.
Let (x, y) be a point not in L, then by the definition of $L, x \neq 0$. Pick an ϵ which has the value $|x|$, then all the points inside the open disk $D_{\epsilon}(x, y)$ are not in L
$\left((a, b) \in D_{\epsilon}(x, y) \quad \Rightarrow \quad|x-a|<\epsilon=|x| \quad \Rightarrow \quad a \neq 0\right)$.
Thus (x, y) is an exterior point of L.
2. First, it is easy to show that $f_{x}(0,0)=f_{y}(0,0)=f(0,0)=0$. Then define $\epsilon_{1}(x, y)=y \sin (x / y)$ and $\epsilon_{2}(x, y)=0$. In a small disk around $(0,0), \Delta x=x, \Delta y=y$, and $\Delta f=f(x, y)-f(0,0)$ can be written in the form

$$
\Delta f=f_{x}(0,0) \Delta x+f_{y}(0,0) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

The limit $\lim _{(x, y) \rightarrow(0,0)} \epsilon_{1}(x, y)$ is 0 as $\sin (x / y)$ is bounded by ± 1 and $\lim _{(x, y) \rightarrow(0,0)} y=0$. Therefore the definition of differentiability is satisfied at $(0,0)$.
3. (a) $\frac{\partial}{\partial u} w=-\frac{1}{v} \sin \frac{u}{v} \quad \frac{\partial}{\partial v} w=\frac{u}{v^{2}} \sin \frac{u}{v}$

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial u^{2}} w=-\frac{1}{v^{2}} \cos \frac{u}{v} \quad \frac{\partial^{2}}{\partial v^{2}} w=-\frac{u}{v^{3}}\left(\frac{u}{v} \cos \frac{u}{v}+2 \sin \frac{u}{v}\right) \\
& \frac{\partial^{2}}{\partial u \partial v} w=\frac{1}{v^{2}}\left(\frac{u}{v} \cos \frac{u}{v}+\sin \frac{u}{v}\right)
\end{aligned}
$$

(b) $\frac{\partial}{\partial x} z=y x^{y-1} \quad \frac{\partial}{\partial y} z=(\ln x) x^{y}$

$$
\frac{\partial^{2}}{\partial x^{2}} z=y(y-1) x^{y-2} \quad \frac{\partial^{2}}{\partial y^{2}} z=(\ln x)^{2} x^{y} \quad \frac{\partial^{2}}{\partial x \partial y} z=x^{y-1}+y(\ln x) x^{y-1}
$$

4. $f_{x}(x, y, z)=4 x^{3}-4 x y \sqrt{z}$
$f_{y}(x, y, z)=-2 x^{2} \sqrt{z}+3 z^{4} \quad f x y=-4 x \sqrt{z}=f y x$
5. $d f(x, y)=f_{x} d x+f_{y} d y=\left[y^{2} \ln (y / x)-y^{2}\right] d x+[2 x y \ln (y / x)+x y] d y$
6. $f_{x}=\frac{2 x}{x^{2}+y^{2}} \quad f_{y}=\frac{2 y}{x^{2}+y^{2}}$
$f(0,1)=\ln 1=0 \quad f_{x}(0,1)=0 \quad f_{y}(0,1)=2$
$f(-0.03,0.98) \approx f(0,1)+0 \cdot(-0.03)+2 \cdot(-0.02)=-0.04$
7.* Show that the expressions

$$
\begin{equation*}
\Delta f=f_{x} \Delta x+f_{y} \Delta y+\epsilon \sqrt{\Delta x^{2}+\Delta y^{2}} \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \epsilon=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta f=f_{x} \Delta x+f_{y} \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \epsilon_{1}=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \epsilon_{2}=0 \tag{2}
\end{equation*}
$$

can be equivalently used in the definition of differentiability.

Let's use Δ to represent $\sqrt{\Delta x^{2}+\Delta y^{2}}$. Then the last term of expression (1) can be rewritten as
$\epsilon \cdot \Delta=\epsilon \cdot \frac{\Delta}{|\Delta x|+|\Delta y|} \cdot(\beta(\Delta x) \Delta x+\beta(\Delta y) \Delta y)$
where the function β is defined as
$\beta(\Delta x)=\left\{\begin{array}{lll}\frac{|\Delta x|}{\Delta x} & \text { if } & \Delta x \neq 0 \\ 1 & \text { if } & \Delta x=0\end{array}\right.$.
One can choose $\epsilon_{1}=\epsilon \frac{\Delta}{|\Delta x|+|\Delta y|} \beta(\Delta x)$ and $\epsilon_{2}=\epsilon \frac{\Delta}{|\Delta x|+|\Delta y|} \beta(\Delta y)$ to obtain expression (2).
As $\left|\epsilon_{1}\right| \leq|\epsilon|$ (with triangle inequality applied to the ratio $\frac{\Delta}{|\Delta x|+|\Delta y|}$), $\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \epsilon_{1}=0$ (The situation of ϵ_{2} is similar).
$(2) \Rightarrow \quad(1)$
Given (2), ϵ can be idenified as $\epsilon=\left(\epsilon_{1} \Delta x+\epsilon_{2} \Delta y\right) / \Delta$. Clearly $\lim _{(\Delta x, \Delta y) \rightarrow(0,0)}\left(\epsilon_{1} \Delta x+\epsilon_{2} \Delta y\right) / \Delta=0$ as $|\Delta x|$ and $|\Delta y|$ are both less than Δ.

Solution to Set 6

1. Find $d z / d t$
(a) $\frac{\partial z}{\partial x}=2 x \quad \frac{\partial z}{\partial y}=-2 y$

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{1}{2} t^{-1 / 2} \quad \frac{d y}{d t}=2 e^{2 t} \\
& \frac{d z}{d t}=x t^{-1 / 2}-4 y e^{2 t}
\end{aligned}
$$

(b) $\frac{\partial z}{\partial x}=\cos x-y \sin x y \quad \frac{\partial z}{\partial y}=-x \sin x y$

$$
\begin{aligned}
& \frac{d x}{d t}=2 t \quad \frac{d y}{d t}=0 \\
& \frac{d z}{d t}=(\cos x-y \sin x y) 2 t
\end{aligned}
$$

2. (a) $\frac{\partial z}{\partial x}=\frac{1}{y^{2}} \quad \frac{\partial z}{\partial y}=-\frac{2 x}{y^{3}}$

$$
\begin{aligned}
& \frac{\partial x}{\partial u}=1 \quad \frac{\partial x}{\partial v}=1 \quad \frac{\partial y}{\partial u}=1 \quad \frac{\partial y}{\partial v}=-1 \\
& \frac{\partial z}{\partial u}=\frac{1}{y^{2}}-\frac{2 x}{y^{3}} \quad \frac{\partial z}{\partial v}=\frac{1}{y^{2}}+\frac{2 x}{y^{3}}
\end{aligned}
$$

(b) $\frac{\partial z}{\partial x}=4 x y e^{x^{2} y} \quad \frac{\partial z}{\partial y}=2 x^{2} e^{x^{2} y}$

$$
\begin{aligned}
\frac{\partial x}{\partial u} & =\frac{1}{2} \sqrt{\frac{v}{u}} & \frac{\partial x}{\partial v}=\frac{1}{2} \sqrt{\frac{u}{v}} & \frac{\partial y}{\partial u}=-\frac{1}{u^{2}}
\end{aligned} \frac{\partial y}{\partial v}=0
$$

3. $f_{x}=y^{2} \cos x y^{2} \quad f_{y}=2 x y \cos x y^{2}$
$f_{x}\left(\frac{1}{\pi}, \pi\right)=\pi^{2} \cos \pi=-\pi^{2} \quad f_{y}\left(\frac{1}{\pi}, \pi\right)=-2$
unit vector along \vec{u} is $\frac{1}{\sqrt{5}}(\vec{i}-2 \vec{j})$
$D_{a} f\left(\frac{1}{\pi}, \pi\right)=\frac{1}{\sqrt{5}}\left(-\pi^{2}+4\right)$
4. The component of $\vec{\nabla} f^{n}$ along the \vec{i} direction is $\partial f^{n} / \partial x=n f^{n-1} \partial f / \partial x$, and other components are similar (by replacing x with y or z). Therefore, $\vec{\nabla} f^{n}=n f^{n-1}\left(f_{x} \vec{i}+f_{y} \vec{j}+f_{z} \vec{k}\right)=n f^{n-1} \vec{\nabla} f$.
5. (a) Let $f(x, y)=\sin (\pi x y)$, the graph of the equation is the level curve $f(x, y)=\frac{\sqrt{3}}{2}$.
$f_{x}=\pi y \cos (\pi x y) \quad f_{y}=\pi x \cos (\pi x y)$
$f_{x}\left(\frac{1}{6}, 2\right)=2 \pi \cos \frac{\pi}{3}=\pi \quad f_{y}\left(\frac{1}{6}, 2\right)=\frac{\pi}{12}$
A normal vector is $\pi \vec{i}+\frac{\pi}{12} \vec{j}$.
(b) The graph is a level curve the function $f(x, y)=e^{x^{2} y}$.
$f_{x}=2 x y e^{x^{2} y} \quad f_{y}=x^{2} e^{x^{2} y}$
$f_{x}(1, \ln 3)=6 \ln 3 \quad f_{y}(1, \ln 3)=3$
A normal vector is $6 \ln 3 \vec{i}+3 \vec{j}$.
6. (a) $f_{x}=y-1 \quad f_{y}=1+x$
$f_{x}(0,2)=1 \quad f_{y}(0,2)=1$
A normal to the graph is $\vec{i}+\vec{j}-\vec{k}$.
An equation of the tangent plane is $(x-0)+(y-2)-(z-1)=0$.
(b) $f_{x}=-\frac{x}{\sqrt{1-x^{2}-2 y^{2}}} \quad f_{y}=-\frac{2 y}{\sqrt{1-x^{2}-2 y^{2}}}$ $f_{x}(0,0)=0 \quad f_{y}(0,0)=0$
A normal to the graph is
$-\vec{k}$.
An equation of the tangent plane is $z-1=0$.

Solution to Set 7

1. (a) $f_{x}=2 x-6 \quad f_{y}=4 y+8$
$f_{x}=f_{y}=0 \quad \Rightarrow \quad x=3, y=-2 \quad$ The ciritcal point is $(3,-2)$.
$f_{x x}=2 \quad f_{y y}=4 \quad f_{x y}=0$
$D=f_{x x} f_{y y}-f_{x y}^{2}=8>0$ and $f_{x x}>0 \quad \therefore$ The point is a relative minimum.
(b) $g_{x}=y e^{x y} \quad g_{y}=x e^{x y}$
$g_{x}=g_{y}=0 \quad \Rightarrow \quad x=0, y=0 \quad$ The ciritcal point is $(0,0)$.
$g_{x x}=y^{2} e^{x y} \quad g_{y y}=y^{2} e^{x y} \quad g_{x y}=e^{x y}+x y e^{x y}$
At $(0,0), D=g_{x x} g_{y y}-g_{x y}^{2}=-1 \quad \therefore$ The point is a saddle point.
(c) $f_{u}=3 u^{2}-6 v \quad f_{v}=3 v^{2}-6 u$
$f_{u}=f_{v}=0 \quad \Rightarrow \quad v=\frac{u^{2}}{2} \& \frac{u^{4}}{4}-2 u=0 \quad \Rightarrow \quad u\left(u^{3}-8\right)=0 \quad \Rightarrow \quad u=0$ or 2
The ciritcal points are $(0,0)$ and $(2,2)$.
$f_{u u}=6 u \quad f_{v v}=6 v \quad f_{u v}=-6$
$D=f_{u u} f_{v v}-f_{u v}^{2}=36(u v-1)$
At $(0,0), D=-36<0 \quad \therefore$ The point is a saddle point.
At $(2,2), D=108>0 \& f_{u u}=12>0 \quad \therefore$ The point is a relative minimum.
(d) $f_{x}=\frac{-x}{\sqrt{1-x^{2}-2 y^{2}}} \quad f_{y}=f_{x}=\frac{-2 y}{\sqrt{1-x^{2}-2 y^{2}}}$
$f_{x}=f_{y}=0 \quad \Rightarrow \quad x=0, y=0 \quad$ The ciritcal point is $(0,0)$.
Note that f_{x}, f_{y} are undefined at the boundary of the domain of f, but the boundary points need not be counted as critical points.
$f_{x x}=\frac{2 y^{2}-1}{\left(1-x^{2}-2 y^{2}\right)^{3 / 2}} \quad f_{y y}=\frac{2 x^{2}-2}{\left(1-x^{2}-2 y^{2}\right)^{3 / 2}} \quad f_{x y}=\frac{-2 x y}{\left(1-x^{2}-2 y^{2}\right)^{3 / 2}}$
At $(0,0), D=f_{x x} f_{y y}-f_{x y}^{2}=2>0 \& f_{x x}=-1<0$
\therefore The point is a relative maximum.
2. (a) The constraint is $g(x, y)=x^{2}+y^{2}=4$.
$f_{x}=1 \quad f_{y}=2 y \quad g_{x}=2 x \quad g_{y}=2 y$
The Lagrange multiplier equations are:
$\left\{\begin{array}{l}1=\lambda 2 x \\ 2 y=\lambda 2 y\end{array}\right.$
Consider the following cases:
(i) $\lambda=0 \quad \Rightarrow \quad 1=0$ impossible!
(ii) $\lambda \neq 0 \quad$ then $\lambda 4 x y=\lambda 2 y$

$$
\begin{aligned}
& \Rightarrow \quad 2 x y-y=(2 x-1) y=0 \quad \Rightarrow \quad y=0 \text { or } x=\frac{1}{2} \\
& y=0 \quad \Rightarrow \quad x= \pm 2 \\
& x=\frac{1}{2} \Rightarrow y= \pm \frac{\sqrt{15}}{2}
\end{aligned}
$$

Now compare values of all the solutions
$f(2,0)=2 \quad f(-2,0)=-2 \quad f\left(\frac{1}{2}, \pm \frac{\sqrt{15}}{2}\right)=\frac{17}{4}$
$\therefore \frac{17}{4}$ is the maximum value, and -2 is the minimum value.
(b) The constraint is $g(x, y)=(x+1)^{2}+y^{2}=1$.
$f_{x}=y \quad f_{y}=x \quad g_{x}=2(x+1) \quad g_{y}=2 y$
The Lagrange multiplier equations are:
$\left\{\begin{array}{l}y=\lambda 2(x+1) \\ x=\lambda 2 y\end{array}\right.$
Consider the following cases:
(i) if $\lambda=0, \quad$ then the two λ equations yield $x=y=0$
(ii) if $\lambda \neq 0, \quad$ then $\lambda 2 y^{2}=\lambda 2 x(x+1) \quad \Rightarrow \quad y^{2}=x(x+1)$

Substituting that into the constraint equation $\quad \Rightarrow \quad x(2 x+3)=0 \quad \Rightarrow \quad x=0$ or $x=-\frac{3}{2}$

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=0 \text { same solutions as case (i) } \\
& x=-\frac{3}{2} \quad \Rightarrow \quad y= \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

Now compare values
$f(0,0)=0 \quad f\left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right)=-\frac{3 \sqrt{3}}{2} \quad f\left(-\frac{3}{2},-\frac{\sqrt{3}}{2}\right)=\frac{3 \sqrt{3}}{2}$
$\therefore \frac{3 \sqrt{3}}{2}$ is the maximum value, and $-\frac{3 \sqrt{3}}{2}$ is the minimum value.
(c) The constraint is $g(x, y, z)=x^{2}+y^{2}+z^{2}=1$.

$$
\begin{array}{lll}
f_{x}=z^{2} & f_{y}=3 y^{2} & f_{z}=2 x z \\
g_{x}=2 x & g_{y}=2 y & g_{z}=2 z
\end{array}
$$

The Lagrange multiplier equations are:
$\left\{\begin{array}{l}z^{2}=\lambda 2 x \\ 3 y^{2}=\lambda 2 y \\ 2 x z=\lambda 2 z\end{array}\right.$
Consider the following cases:
(I) if $\lambda=0, \quad$ then the first two λ equations yield $z=y=0$

Substiting that into the constraint equation $\quad \Rightarrow \quad x= \pm 1$.
(II) if $\lambda \neq 0$, then the first and third λ equations yield $z^{3}=2 x^{2} z$.
(i) $x=0 \quad \Rightarrow \quad z=0 \&$ constraint $\quad \Rightarrow \quad y= \pm 1$
(ii) $y=0 \&$ constraint $\quad \Rightarrow \quad x^{2}=1-z^{2}$

$$
\begin{aligned}
& \Rightarrow \quad z\left(3 z^{2}-2\right)=0 \quad \Rightarrow \quad z=0 \text { or } z= \pm \sqrt{\frac{2}{3}} \\
& z=0 \quad \text { same solutions as case (I) } \\
& z= \pm \sqrt{\frac{2}{3}} \Rightarrow \quad x= \pm \sqrt{\frac{1}{3}} \text { for either value of } \mathrm{z}
\end{aligned}
$$

(iii) $z=0 \quad \Rightarrow \quad x=0 \quad \Rightarrow \quad y= \pm 1$
(iv) $x, y, z \neq 0 \quad \Rightarrow \quad \lambda=\frac{z^{2}}{2 x}=\frac{3 y}{2}=x \quad \Rightarrow \quad z^{2}=2 x^{2} \& y=\frac{2}{3} x$

$$
\Rightarrow \quad x^{2}+\frac{4}{9} x^{2}+2 x^{2}=1 \quad \Rightarrow \quad x= \pm \frac{3}{\sqrt{31}}
$$

$$
x=\frac{3}{\sqrt{31}} \quad \Rightarrow \quad y=\frac{2}{\sqrt{31}} \text { and } z= \pm \frac{3 \sqrt{2}}{\sqrt{31}}
$$

$$
x=-\frac{3}{\sqrt{31}} \quad \Rightarrow \quad y=-\frac{2}{\sqrt{31}} \text { and } z= \pm \frac{3 \sqrt{2}}{\sqrt{31}}
$$

Now compare values
$f(0,0, \pm 1)=0 \quad f(0,1,0)=1 \quad f(0,-1,0)=-1$
$f\left(\sqrt{\frac{1}{3}}, 0, \pm \sqrt{\frac{2}{3}}\right)=\frac{2}{3} \sqrt{\frac{2}{3}} \quad f\left(-\sqrt{\frac{1}{3}}, 0, \pm \sqrt{\frac{2}{3}}\right)=-\frac{2}{3} \sqrt{\frac{2}{3}}$
$f\left(\pm \frac{3}{\sqrt{31}}, \pm \frac{2}{\sqrt{31}}, \pm \frac{3 \sqrt{2}}{\sqrt{31}}\right)= \pm \frac{2}{\sqrt{31}}$
$\therefore 1$ is the maximum value, and -1 is the minimum value.
(d) The constraint is $g(x, y, z)=x^{2}+y^{2}+4 z^{2}=6$.
$f_{x}=y z \quad f_{y}=x z \quad f_{z}=x y$
$g_{x}=2 x \quad g_{y}=2 y \quad g_{z}=8 z$
The Lagrange multiplier equations are:
$\left\{\begin{array}{l}y z=\lambda 2 x \\ x z=\lambda 2 y \\ x y=\lambda 8 z\end{array}\right.$
These equations $\quad \Rightarrow \quad f^{2}(x, y, z)=(x y z)^{2}=\lambda^{3} 32 x y z$.
Consider the following cases:
(i) if $\lambda=0$ or any of $x, y, z,=0, \quad$ then $f(x, y, z)=0$.
(ii) if all of $\lambda, x, y, z, \neq 0$, then $\frac{y z}{x}=\frac{x z}{y}=\frac{x y}{4 z}$ and

$$
\Rightarrow \quad x^{2}=y^{2} \text { and } y^{2}=4 z^{2}
$$

Substituting these into the constraint equation $\quad \Rightarrow \quad 3 x^{2}=6 \quad \Rightarrow \quad x= \pm \sqrt{2}$
There are eight solutions: $\left(\pm \sqrt{2}, \pm \sqrt{2}, \pm \frac{1}{\sqrt{2}}\right)$ which produce the values $\pm \sqrt{2}$.
Therefore, the maximum value is $\sqrt{2}$, and the minimum value is $-\sqrt{2}$.

$\underline{\text { Solution to Set } 8}$

1. (a) $\int_{0}^{1} \int_{0}^{1} e^{x+y} d x d y=\left(\int_{0}^{1} e^{x} d x\right)\left(\int_{0}^{1} e^{y} d y\right)=(e-1)^{2}$
(b) $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} x d x d y=\int_{0}^{2}\left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{4-y^{2}}} d y=\frac{1}{2} \int_{0}^{2}\left(4-y^{2}\right) d y=\frac{8}{3}$
2. The reversed interated integral is
(a) $\int_{0}^{1} \int_{0}^{x} e^{x^{2}} d y d x=\int_{0}^{1} e^{x^{2}} x d x=\frac{1}{2}\left[e^{x^{2}}\right]_{0}^{1}=\frac{1}{2}(e-1)$
(b) $\int_{0}^{\pi^{2 / 3}} \int_{0}^{\sqrt{x}} \sin x^{3 / 2} d y d x=\int_{0}^{\pi^{2 / 3}}\left(\sin x^{3 / 2}\right) x^{1 / 2} d x=\frac{2}{3}\left[-\cos x^{3 / 2}\right]_{0}^{\pi^{2 / 3}}=\frac{4}{3}$
3. (a) $\iint_{R}(x+y) d A=\int_{0}^{4} \int_{0}^{y / 2}(x+y) d x d y=\int_{0}^{4}\left[\frac{x^{2}}{2}+y x\right]_{0}^{y / 2} d y=\int_{0}^{4} \frac{5}{8} y^{2} d y=\frac{40}{3}$
(b) $\iint_{R} x d A=\int_{-4}^{0} \int_{0}^{\sqrt{16-x^{2}}} x d y d x=\int_{-4}^{0} x \sqrt{16-x^{2}} d x=-\frac{64}{3}$
4. (a) $\iint_{R} x y d A=\int_{0}^{2 \pi} \int_{0}^{5} r^{2} \cos \theta \sin \theta r d r d \theta=\left(\int_{0}^{2 \pi} \cos \theta \sin \theta d \theta\right)\left(\int_{0}^{5} r^{3} d r\right)=0$
(b) $\iint_{R} x^{2} d A=\int_{0}^{\pi} \int_{0}^{4 \sin \theta} r^{2} \cos ^{2} \theta r d r d \theta=4^{3} \int_{0}^{\pi} \cos ^{2} \theta \sin ^{4} \theta d \theta=4 \pi$
5. (a) The projection R of the portion of the plane on the xy-plane is the triangle bounded by the two axes and the line $x=8-2 y$.
A unit normal to the surface is $\quad \vec{n}=\frac{1}{\sqrt{14}}(\vec{i}+2 \vec{j}+3 \vec{k})$.
$\vec{n} \cdot \vec{k}=\frac{3}{\sqrt{14}}$
Surface area $=\iint_{R} \frac{d A}{|\vec{n} \cdot \vec{k}|}=\int_{0}^{4} \int_{0}^{8-2 y} \frac{\sqrt{14}}{3} d x d y=\frac{16 \sqrt{14}}{3}$.
(b) The intersection of the paraboloid with the xy-plane is the circle $x^{2}+y^{2}=9$.

The projection R of the portion of paraboloid on the xy-plane is the disk with radius 3 .
A unit normal vector to the paraboloid is $\quad \vec{n}=\frac{1}{\sqrt{4 x^{2}+4 y^{2}+1}}(-2 x \vec{i}-2 y \vec{j}-\vec{k})$.
Surface area $=\iint_{R} \frac{d A}{|\vec{n} \cdot \vec{k}|}=\iint \sqrt{4 x^{2}+4 y^{2}+1} d A$.
In terms of polar coordinates, the integral becomes
$\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{4 r^{2}+1} r d r d \theta=\frac{\pi}{6}\left(37^{3 / 2}-1\right) \approx 37.3 \pi$.
6. (a) R is the annular region between $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$;

$$
\begin{aligned}
& \iint_{\sigma} z^{2} d S=\iint_{R}\left(x^{2}+y^{2}\right) \sqrt{\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}+1} d A \\
& =\sqrt{2} \iint_{R}\left(x^{2}+y^{2}\right) d A=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r^{3} d r d \theta=\frac{15}{2} \pi \sqrt{2} .
\end{aligned}
$$

(b) The projection of the surface σ (parameterized by $z=+\sqrt{1-x^{2}}$) on the $x y$-plane is the region $R=[-1,1] \times[0,1]$. The suface integral becomes

$$
\iint_{\sigma} x^{2} y d S=\int_{0}^{1} \int_{-1}^{1} x^{2} y \sqrt{\left(\frac{-x}{\sqrt{1-x^{2}}}\right)^{2}+1} d x d y=\frac{1}{2} \int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x
$$

With the substitution $u=\sin x$, the integral can be evaluated as $\int_{-\pi / 2}^{\pi / 2} \sin ^{2} u d u=\pi / 2$.
Therefore, $\iint_{\sigma} x^{2} y d S=\pi / 4$.

Solution to Set 9

1. $\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} x \cos z d y d x d z=\left(\int_{0}^{\pi / 2} \cos z d z\right)\left(\int_{0}^{1} x \sqrt{1-x^{2}} d x\right)=\frac{1}{3}$
2. (a) The parabolic sheet cuts the xy-plane at the lines $x= \pm 1$.

$$
\therefore \iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}} d z d A \text { where } R \text { is the rectangular region }[-1,1] \times[-1,2] \text {. }
$$

The volume is $\int_{-1}^{2} \int_{-1}^{1}\left(1-x^{2}\right) d x d y=3\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=4$.
(b) $\iiint_{D} d v=\iint_{R} \int_{0}^{x^{2}+y^{2}} d z d A$ where R is the triangular region with vertices $(0,0),(1,0),(0,1)$. The volume is $\int_{0}^{1} \int_{0}^{1-y}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{1}\left[\frac{1}{3}(1-y)^{3}+y^{2}(1-y)\right] d y=\frac{1}{6}$
3. (a) $\iiint_{D}\left(x^{2}+y^{2}\right) d v=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{4} r^{2} d z r d r d \theta=2 \pi$
(b) $\iiint_{D} z d v=\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{\sqrt{1-r^{2}}} z d z r d r d \theta=\frac{\pi}{16}$
4. (a) $\iiint_{D} x^{2} d v=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2}^{3} \rho^{2} \sin ^{2} \phi \cos ^{2} \theta \rho^{2} \sin \phi d \rho d \phi d \theta$

$$
=\left(\int_{0}^{2 \pi} \cos ^{2} \theta d \theta\right)\left(\int_{0}^{\pi} \sin ^{3} \phi d \phi\right)\left(\int_{2}^{3} \rho^{4} d \rho\right)=\pi \times \frac{4}{3} \times \frac{1}{5}\left(3^{5}-2^{5}\right) \approx 56.3 \pi
$$

(b) The cone angle (from axis to edge) is $\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6}$.

$$
\iiint_{D} \frac{1}{x^{2}+y^{2}+z^{2}} d v=\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{3}^{9} \frac{1}{\rho^{2}} \rho^{2} d \rho \sin \phi d \phi d \theta=2 \pi \times\left(1-\frac{\sqrt{3}}{2}\right) \times 6 \approx 1.6 \pi
$$

5. (a) $x=\frac{1}{5} u+\frac{2}{5} v, y=-\frac{2}{5} u+\frac{1}{5} v, \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{5} ; \quad \frac{1}{5} \int_{1}^{3} \int_{1}^{4} \frac{u}{v} d u d v=\frac{3}{2} \ln 3$.
(b) $x=u / 3, y=v / 2, z=w, \frac{\partial(x, y, z)}{\partial(u, v, w)}=1 / 6 ; S$ is the region in $u v w$-space enclosed by the sphere $u^{2}+v^{2}+w^{2}=36$. Therefore,

$$
\begin{aligned}
\iiint_{D} x^{2} d V_{x y z}= & \iiint_{S} \frac{u^{2}}{9} \frac{1}{6} d V_{u v w}=\frac{1}{54} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{6}(\rho \sin \phi \cos \theta)^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\frac{1}{54} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{6} \rho^{4} \sin ^{3} \phi \cos ^{2} \theta d \rho d \phi d \theta=\frac{192}{5} \pi
\end{aligned}
$$

$\underline{\text { Solution to Set } 10}$

1. (a) $\vec{\nabla} \cdot \vec{F}=2$

$$
\vec{\nabla} \times \vec{F}=\left(\partial_{x} y-\partial_{y} x\right) \vec{k}=\overrightarrow{0}
$$

(b) $\vec{\nabla} \cdot \vec{F}=\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{1}{\sqrt{x^{2}+y^{2}}}$

$$
\vec{\nabla} \times \vec{F}=\left(\frac{-x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right) \vec{k}=\overrightarrow{0}
$$

(c) $\vec{\nabla} \cdot \vec{F}=0$
$\vec{\nabla} \times \vec{F}=-2 \vec{k}$
(d) \vec{F} is not differentiable on the circle $x^{2}+y^{2}=1$.

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{F}= \begin{cases}0 & \text { for } \\
0 & x^{2}+y^{2}<1 \\
\text { for } & x^{2}+y^{2}>1\end{cases} \\
& \vec{\nabla} \times \vec{F}= \begin{cases}-2 \vec{k} & \text { for } x^{2}+y^{2}<1 \\
\left(\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) \vec{k}=\overrightarrow{0} & \text { for } x^{2}+y^{2}>1\end{cases}
\end{aligned}
$$

2. $\vec{\nabla} \cdot f \vec{F}=3 e^{x+y+z}$
$\vec{\nabla} \times f \vec{F}=\overrightarrow{0}$
3. Let F_{1}, F_{2}, F_{3} be the components of \vec{F}. The x component of $\vec{\nabla} \times(\phi \vec{\nabla} F)$ is $\partial_{y}\left(\phi F_{3}\right)-\partial_{z}\left(\phi F_{2}\right)=$ $\phi\left(\partial_{y} F_{3}-\partial_{z} F_{2}\right)+\left(\phi_{y} F_{3}-\phi_{z} F_{2}\right)$. It is the same as the x component of $\phi \vec{\nabla} \times \vec{F}+\vec{\nabla} \phi \times \vec{F}$. Similarly, the same can be shown for the y and z components.
4. First, note that $\frac{\partial f(r)}{\partial x}=f^{\prime} \frac{\partial r}{\partial x}$. Therefore, $\vec{\nabla} f(r)=f^{\prime} \vec{\nabla} r$.

Furthermore $\frac{\partial r}{\partial x}=\frac{\partial \sqrt{x^{2}+y^{2}+z^{2}}}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r}$. Thus, $\vec{\nabla} r=\frac{\vec{r}}{r}$.
$\vec{\nabla} \cdot \vec{F}=\vec{\nabla} \cdot f \vec{r}=f \vec{\nabla} \cdot \vec{r}+(\vec{\nabla} f) \cdot \vec{r}$
Since $\vec{\nabla} \cdot \vec{r}=3$ and $\vec{\nabla} f=f^{\prime} \vec{\nabla} r=f^{\prime} \frac{\vec{r}}{r}$,
$\vec{\nabla} \cdot \vec{F}=3 f+r f^{\prime}=0 \quad$ and $\quad \frac{f^{\prime}}{f}=\frac{d}{d r} \ln |f|=-\frac{3}{r}$.
$\ln |f|=\int-\frac{3}{r} d r=-3 \ln r+C \quad \Rightarrow \quad f=\frac{ \pm e^{C}}{r^{3}}$.
Therefore,

$$
\vec{F}=\frac{A}{r^{2}} \hat{r}
$$

where A is an arbitrary constant and $\hat{r}=\vec{r} / r$ is the unit vector along the direction of \vec{r}.

$\underline{\text { Solution to Set } 11}$

1. (a) $\frac{d \vec{r}}{d t}=\frac{3}{2} t^{1 / 2}(\vec{i}+\vec{j})$

$$
\begin{aligned}
& \vec{F} \cdot \frac{d \vec{r}}{d t}=[x(t)+y(t)] \frac{3}{2} t^{1 / 2}=3 t^{2} \\
& \int_{C} \vec{F} \cdot d \vec{r}=\int_{1}^{2} 3 t^{2} d t=7
\end{aligned}
$$

(b) $\frac{d \vec{r}}{d t}=2(-\sin t \vec{i}+\cos t \vec{j})$
$\vec{F} \cdot \frac{d \vec{r}}{d t}=-2 x(t) \sin t+2 y(t) \cos t=0$
$\int_{C} \vec{F} \cdot d \vec{r}=0$
(c) $\frac{d \vec{r}}{d t}=\frac{3}{2} t^{1 / 2}(\vec{i}+\vec{j})$
$\vec{F} \cdot \frac{d \vec{r}}{d t}=\frac{y(t)-x(t)}{x^{2}(t)+y^{2}(t)} \frac{3}{2} t^{1 / 2}=0$
$\int_{C} \vec{F} \cdot d \vec{r}=0$
(d) $\frac{d \vec{r}}{d t}=2(-\sin t \vec{i}+\cos t \vec{j})$
$\vec{F} \cdot \frac{d \vec{r}}{d t}=-\frac{2 y(t) \sin t+2 x(t) \cos t}{x^{2}(t)+y^{2}(t)}=-1$
$\int_{C} \vec{F} \cdot d \vec{r}=-2 \pi$
Note that $\vec{\nabla} \times \vec{F}=0$ everywhere except at $(0,0)$ (that makes the line integral of the closed loop non-zero).
2. (a) Define the function f by performing a line integral along the line segments $(0,0) \rightarrow(x, 0)$ and $(x, 0) \rightarrow(x, y)$
$f(x, y)=\int_{0}^{x}\left(e^{t}+0\right) d t+\int_{0}^{y}(x+2 t) d t=e^{x}+x y+y^{2}$
$\vec{\nabla} f=\left(e^{x}+y\right) \vec{i}+(x+2 y) \vec{j}=$ the field
\therefore the field is conservative $\Rightarrow \int_{C} \vec{F} \cdot d \vec{r}$ is path independent.
$\int_{(0,1) \rightarrow(2,3)} \vec{F} \cdot d \vec{r}=e^{2}+2 \cdot 3+3^{2}-\left(e^{0}+0+1\right)=e^{2}+13$
(b) Define the function f by performing a line integral along the line segments $(0,0) \rightarrow(x, 0)$ and $(x, 0) \rightarrow(x, y)$
$f(x, y)=\int_{0}^{x}(0+1) d t+\int_{0}^{y} 2 x^{2} t d t=x+x^{2} y^{2}$
$\vec{\nabla} f=\left(1+2 x y^{2}\right) \vec{i}+2 x^{2} y \vec{j}=$ the field
\therefore the field is conservative $\Rightarrow \int_{C} \vec{F} \cdot d \vec{r}$ is path independent.
$\int_{(-1,2) \rightarrow(2,3)} \vec{F} \cdot d \vec{r}=2+4 \cdot 9-(-1+4)=35$
3. (a) Let R be the region enclosed by the closed curve C.

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{R}\left(\partial_{x} 3 x-\partial_{y} y\right) d A=\iint_{R} 2 d A=8 \pi
$$

(b) Let R be the region enclosed by the closed curve C.

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{R}\left(\partial_{x} x^{3}-\partial_{y} y^{4}\right) d A=4\left[x^{3}\right]_{-2}^{2}-4\left[y^{4}\right]_{-2}^{2}=64
$$

$\underline{\text { Solution to Set } 12}$

1. (a) Σ is composed of two pieces of smooth surfaces, a hemisphere and a flat disk.
(i) The hemisphere is the graph of the function $f(x, y)=\sqrt{1-x^{2}-y^{2}}$.
$\partial_{x} f=-\frac{x}{\sqrt{1-x^{2}-y^{2}}} \quad \partial_{y} f=-\frac{y}{\sqrt{1-x^{2}-y^{2}}}$
The projection of the sphere on the xy-plane is the unit disk D centered at the origin. The surface integral over the hemisphere is given by

$$
\begin{aligned}
& \iint \vec{F} \cdot \vec{n} d S=\iint_{D}\left(-x \partial_{x} f-y \partial_{y} f+\sqrt{1-x^{2}-y^{2}}\right) d A=\iint_{D} \frac{1}{\sqrt{1-x^{2}-y^{2}}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \frac{r d r d \theta}{\sqrt{1-r^{2}}}=2 \pi
\end{aligned}
$$

(ii) On the disk, the outward unit normal is $-\vec{k}$ and $\vec{F} \cdot \vec{n}=-z=0$. Therefore, the flux integral over this piece is 0 .
In total, $\iint_{\Sigma} \vec{F} \cdot \vec{n} d S=2 \pi$.
(b) Σ is composed of three smooth pieces, a cylindrical surface and two flat disks.
(i) The cylindrical surface

To evaluate the flux integral over the cylindrical surface, one may cut the cylinder into two pieces and project them onto the xz-plane (or the yz-plane).
The two pieces are graphs of the two functions $f_{1}(x, z)=\sqrt{4-x^{2}}$ and $f_{2}(x, z)=-\sqrt{4-x^{2}}$. The projection of the graphs on the xz-plane is the rectangular region $R=(-2,2) \times(0,2)$.
Note that for the graph of f_{1} an outward-pointing normal is $-\partial_{x} f_{1} \vec{i}+\vec{j}-\partial_{z} f_{1} \vec{k}$ while that for the graph of f_{2} is $\partial_{x} f_{2} \vec{i}-\vec{j}+\partial_{z} f_{2} \vec{k}$.
In terms of the components F_{1}, F_{2}, F_{3} of the vector field (along the x, y, z directions respectively), the surface integral over the graph of f_{1} is

$$
\begin{aligned}
& \iint \vec{F} \cdot \vec{n} d S=\iint_{R}\left(-F_{1} \partial_{x} f_{1}+F_{2}-F_{3} \partial_{z} f_{1}\right) d A=\iint_{R}\left(\frac{x}{\sqrt{4-x^{2}}} \cdot x y+x y+0\right) d A \\
& =\int_{0}^{2} \int_{-2}^{2}\left(x^{2}+x \sqrt{4-x^{2}}\right) d x d z=\frac{32}{3}
\end{aligned}
$$

The surface integral over the graph of f_{2} is
$=\iint_{R}\left(F_{1} \partial_{x} f_{2}-F_{2}+F_{3} \partial_{z} f_{2}\right) d A=\iint_{R}\left(\frac{x}{\sqrt{4-x^{2}}} \cdot x y-x y+0\right) d A$
$=\int_{0}^{2} \int_{-2}^{2}\left(-x^{2}+x \sqrt{4-x^{2}}\right) d x d z=-\frac{32}{3}$.
The sum is therefore 0 .
An alternative argument that can lead to this conclusion faster is to note that in 3 D , the outward pointing unit normal to the cylindrical surface is $\frac{1}{\sqrt{x^{2}+y^{2}}}(x \vec{i}+y \vec{j})$.
Therefore $\vec{F} \cdot \vec{n}=\frac{x^{2} y+y^{2} x}{\sqrt{x^{2}+y^{2}}}$ and the surface integral can be found to be 0 by antisymmetry of the integrand or by writing it as
$\int_{0}^{2} \int_{0}^{2 \pi} \frac{8\left(\cos ^{2} \theta \sin \theta+\sin ^{2} \theta \cos \theta\right)}{2} 2 d \theta d z=0$.
(ii) The flat disks

For the piece at $z=0, \vec{n}=-\vec{k}, \vec{F} \cdot \vec{n}=-z^{2}=0$.
For the piece at $z=2, \vec{n}=\vec{k}, \vec{F} \cdot \vec{n}=z^{2}=4$.
$\therefore \iint \vec{F} \cdot \vec{n} d S=16 \pi$
In total $\iint_{\Sigma} \vec{F} \cdot \vec{n} d S=16 \pi$
2. (a) $\vec{\nabla} \cdot \vec{F}=3$
$\iiint \vec{\nabla} \cdot \vec{F} d V=3 \cdot \frac{1}{2} \cdot \frac{4 \pi 1^{3}}{3}=2 \pi$
(b) $\vec{\nabla} \cdot \vec{F}=y+x+2 z$
$\iiint \vec{\nabla} \cdot \vec{F} d V=\iiint(y+x) d V+2 \iiint z d V=2\left(\int_{0}^{2} z d z\right)\left(\pi 2^{2}\right)=16 \pi$
The integral with the integrand y (or x) is 0 due to antisymmetry.
3. (a) $\vec{\nabla} \times \vec{F}=\vec{i}+\vec{j}+\vec{k}$

The surface Σ is the graph of the function $f(x, y)=1-x^{2}-y^{2}$ over the unit disk D. For \vec{n} directed downward

$$
\begin{aligned}
& \oint_{C} \vec{F} \cdot d \vec{r}=\iint_{\Sigma} \vec{\nabla} \times \vec{F} \cdot \vec{n} d S=\iint_{D}(-2 x-2 y-1) d A \\
& =-\int_{0}^{1} \int_{0}^{\pi / 2}(2 r \cos \theta+2 r \sin \theta+1) d \theta r d r=-\left(\frac{4}{3}+\frac{\pi}{4}\right) .
\end{aligned}
$$

(b) $\vec{\nabla} \times \vec{F}=2 z \vec{j}-y \vec{k}$

The surface Σ is the graph of the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$ over the disk D centered at the origin with radius 2 . For \vec{n} directed upward
$\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{\Sigma} \vec{\nabla} \times \vec{F} \cdot \vec{n} d S=\iint_{D}\left(2 z \frac{y}{\sqrt{4-x^{2}-y^{2}}}-y\right) d A=\iint_{D} y d A=0$.

