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Unified Gas-kinetic Wave-particle Method for

Multiscale Flow Modeling and Computation

Yipei CHEN

Department of Mathematics

Abstract

In this thesis, the unified gas-kinetic wave-particle (UGKWP) method for monatomic

and diatomic gas flow simulations has been constructed on three-dimensional un-

structured mesh with parallel computing capability. The time evolution in the

UGKWP method is composed of analytical wave and stochastic particles, where

the accumulating effect from particle transport and collision is modeled on the

mesh size scale within a time step. With the dynamic wave-particle decom-

position, the UGKWP method is able to capture the continuum wave interac-

tion and rarefied particle transport without resolving down to the kinetic scale.

Moreover, in UGKWP modeling, translational and rotational non-equilibrium

has been taken into consideration.

In addition, UGKWP achieves high efficiency in different flow regimes. With

the variation of local cell’s Knudsen number, the UGKWP becomes a parti-

cle method in the highly rarefied flow regime; in the continuum flow regime,

it automatically gets back to macroscopic variables-based flow solver without

particles, i.e., the so-called the gas-kinetic scheme (GKS) for the Navier-Stokes

solutions. In comparison with the discrete velocity method (DVM)-based unified

gas-kinetic scheme (UGKS), the computational cost and memory requirements

xvi



in UGKWP could be reduced by several orders of magnitude for high-speed and

high-temperature flow simulation.

In the highly rarefied regime, particle transport and collision play a dominant

role. Due to the single relaxation time modeling in particle collision term, there is

a noticeable discrepancy between the UGKWP solution and the full Boltzmann

or DSMC result, especially in the high Mach number and Knudsen number flow.

To go beyond the single relaxation model and benefit from the wave-particle de-

composition, a heuristic modeling can be directly developed and implemented in

UGKWP on the determination of individual particle’s collision time according to

its velocity. As a result, this direct modeling dramatically improves the accuracy

of UGKWP in capturing non-equilibrium transport for both monatomic and di-

atomic gas flow. There is a perfect agreement between UGKWP and reference

solutions in the highly rarefied regime, while the accuracy of UGKWP in the

continuum regime is still maintained.

In summary, the UGKWP method has been validated with the reference re-

sults and experimental measurements in various cases, from one-dimensional

shock structure to three-dimensional flows at different Mach and Knudsen num-

bers. Thanks to wave-particle formulation, even with a personal workstation, the

UGKWP method can be used in simulating three-dimensional multiscale trans-

port with the coexistence of continuum and rarefied flow regimes, particularly

for high-speed non-equilibrium flow around a spacecraft in near-space flight.

xvii



Chapter 1

Introduction

1.1 Motivation

In the aerospace industry, non-equilibrium gas flow appears in a wide range of

applications. For instance, as the space vehicle adjusts its orbit in the outer

space, non-equilibrium phenomenon is presented with the large density variation

in the thruster plume from the high density gas around the nozzle exit to the

near vacuum at far field region [1]. In the re-entry of the vehicle through the

upper planetary atmosphere, the high speed of the vehicle generates complicated

non-equilibrium aerothermodynamic flow field through the high temperature and

highly compressed air at the windward side to the highly expanded region in

the leeward side [2]. Another example would be the hypersonic vehicle flying

between 20 km and 100 km altitude. Because of the huge altitude change and

geometric effect, the localized flow structures surrounding the vehicle, such as

shock, rarefaction wave, and wake turbulence, are non-equilibrium in nature

during the hypersonic flight [3].

The non-equilibrium flows behave substantially different from the flows in near

equilibrium. According to the Knudsen number Kn = ℓ/L, which is defined as
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the ratio of the particle mean free path ℓ over a characteristic length scale L of

the system, the flow regime can be classified into continuum (Kn < 0.001), slip

(0.001 < Kn < 0.1), transition (0.1 < Kn < 10), and rarefied (10 < Kn) one [4].

In the continuum regime, the Euler and Navier-Stokes-Fourier (NSF) equations

are hydrodynamic equations that are applicable for the description of continuum

flow. However, they become less accurate in the near continuum and inaccurate

in the transition regimes. On the other hand, the Boltzmann equation [5] models

the evolution of the gas distribution function in the kinetic scale of particle mean

free path and mean collision time. With the resolution of kinetic scale, the

Boltzmann equation is theoretically valid in all flow regimes.

The conventional numerical schemes for non-equilibrium flow simulations target

to solve specific governing equations. However, in many engineering applications,

multiple flow regimes can co-exist in a single computation, which is either inaccu-

rate or inefficient in the description by single governing equations. For example,

for a vehicle in a near-space flight at Mach number 6 (hypersonic) and Reynolds

number 5000, the local Knudsen number defined by Knlocal = ℓ|∇ρ|/ρ can cover

a wide range of values with five orders of magnitude difference [6]. Specifically,

the multiple flow regimes around the vehicle, such as the high density leading

edge and rarefied trailing edge, can co-exist under a single flying condition. To

capture such a flow structure, the development of multiscale numerical method

for both equilibrium and non-equilibrium flow is required.

1.2 Numerical Methods for Non-equilibrium Gas

Dynamics

In general, there are three categories of numerical methods for the simulation of

non-equilibrium gas dynamics: deterministic, stochastic and hybrid approaches.
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1.2.1 Deterministic Methods

Moment methods are one class of deterministic approaches. Grad’s 13 moments

(G13) equations [7] are the most famous ones beyond the Navier–Stokes–Fourier

equations with Grad closure. By adding terms from higher moments, regulariza-

tion of Grad’s 13 moments (R13) [8] has been conducted. On the basis of Eu’s

generalized hydrodynamics, Myong et al. adopted nonlinearly coupled consti-

tutive relation (NCCR)[9]. However, the validity of these moment equations is

mostly limited to the near continuum flow regime.

On the other hand, the most prevalent deterministic methods are the so-called

discrete velocity method (DVM) for the Boltzmann and kinetic equations [10,

11, 12, 13, 14, 15, 16, 17]. Apart from the aforementioned discrete velocity meth-

ods developed within finite volume framework, semi-Lagrangian [18, 19] schemes

were also developed. Based on the DVM framework, many kinetic solvers are

constructed for monatomic and diatomic gases [20, 21]. A comprehensive review

can be found in [22].

Theoretically, the non-equilibrium single-species monatomic gas dynamics can

be described by the Boltzmann equation. To obtain the numerical solution in

all flow regimes, one can always resolve the kinetic scale solution by solving

the Boltzmann equation numerically using fast spectral method [23]. However,

the high-dimensionality of the equation, nonlinearity of collision term, and its

integro-differential nature make the deterministic Boltzmann solver extremely

expensive in memory requirement and computational cost.

Apart from the deterministic numerical scheme for the Boltzmann equation,

DVM-type schemes for the kinetic model equations have been extensively studied

in the last several decades [24, 25, 26, 27, 28, 29, 30]. Due to the complicated

collision term in the Boltzmann equation, many kinetic relaxation models have

been proposed to simplify the collisional operator of the Boltzmann equation in
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the study of rarefied flow, such as the Bhatnagar-Gross-Krook (BGK) model [31],

the ellipsoidal statistical BGK (ES-BGK) model [32], and the Shakhov BGK (S-

BGK) model [33]. These kinetic equations have been used to develop multiscale

methods in all flow regimes.

In terms of numerical software, Nesvetay-3D [24] is an implicit solver on unstruc-

tured mesh developed by Titarev et al. with both physical and velocity space

decomposed parallelization. Recently, Zhu et al. have implemented discrete

unified gas kinetic scheme (DUGKS) [25, 26] for 3D flow computation with the

Shakhov collision model [33] in the dugksFoam [34]. Unlike the traditional DVM

method, DUGKS is a multiscale scheme, and the time step is not restricted by

the particle collision time due to the coupled treatment of particle transport and

collision. In addition to the traditional parallel strategy in physical space decom-

position, dugksFoam features a parallel computing capability based on velocity

space decomposition.

However, many DVM solvers were designed utilizing the operator splitting tech-

nique that separate the particle transport and collision. This numerical treat-

ment requires an implicit enforcement that the numerical cell size and time step

should be on the physical kinetic scale. To get an accurate solution in the con-

tinuum regime, such as the boundary layer solution, the mesh size and time step

must be refined and tuned to scale of the particle mean free path and particle

collision time, which are particularly expensive in terms of computing cost at a

Knudsen number. Also, because the collision operator is stiff in the continuum

flow, the time step will be severely constrained [35]. To enhance the compu-

tational efficiency, the development of multiscale method for all flow regimes

becomes necessary and asymptotic preserving (AP) scheme [36] was proposed

with a focus on the hydrodynamic behaviors of a kinetic scheme at the Euler

limit. Recently, the concept of unified preserving (UP) [37, 38] has recently been

introduced as a generalization of AP that is capable of estimating the higher

4



order asymptotics, such as the Navier-Stokes limit in the continuum flow regime.

1.2.2 Stochastic Methods

In stochastic methods, discrete particles are employed to model the evolution

of the gas distribution function. The stochastic particle approaches, like other

Lagrangian-type schemes, can easily maintain the positivity and conservation

properties with super stability.

The direct simulation Monte Carlo (DSMC) method [39, 40, 41, 42] is one of the

most representative stochastic methods, in which it directly models the particle

transport and collision as in the derivation of Boltzmann equation. Instead of

solving the complicated collision term in the Boltzmann equation, the direct

simulation Monte Carlo (DSMC) mimics the transport and collision process of

real gas molecules and achieves great success in the study of high speed and

rarefied non-equilibrium gas flow. However, same as many direct Boltzmann

solvers, the cell size and time step in DSMC simulation are confined to be less

than the particle mean free path and collision time due to the splitting treatment

of particle transport and collision. Under such a constraint, the cell size and

time step must be diminished,and the computational cost of simulating near

continuum flow will rapidly rise. To alleviate the stiffness of the Boltzmann

collision term, asymptotic-preserving Monte Carlo methods (AP-DSMC) [43,

44, 45] have recently been presented. AP-DSMC permits the time step to be

independent of the mean collision time by mixing sampling from Maxwellian

distribution, but it can only recover the Euler limit.

For the low-speed flow simulation, the DSMC method is hampered by statisti-

cal noise. Many variants of DSMC, such as information preservation method

(IP-DSMC) [46], low-variance deviational simulation Monte Carlo (LVDSMC)

method [47], moment-guided Monte Carlo method (MG-DSMC) [48], have been

5



proposed to attack the noise issue.

Apart from the stochastic particle methods targetting on the solution of full

Boltzmann equation, other stochastic particle methods were developed as well

for kinetic model equations, such as the stochastic particle method for the Bhat-

nagar–Gross–Krook (BGK) relaxation model [49, 50], the ellipsoidal statistical

BGK (ES-BGK) model [51], and the Fokker-Planck (FP) model [52, 53].

Despite the difficulties encountered by particle methods with the decrease of

Knudsen number, the DSMC method is still the mainstream for practical high-

speed non-equilibrium flow computation due to its high efficiency. Developed at

Sandia National Laboratories, stochastic parallel rarefied-gas time-accurate an-

alyzer (SPARTA) [54] is an open source 2 & 3D DSMC simulator optimized for

exascale parallel computing and integrated with both static and dynamic load

balancing across processors. Particles in SPARTA advect through a hierarchical

oct-tree based Cartesian grid that overlays the simulation box. Additionally,

dsmcFoam [55] and its upgrade release dsmcFoam+ [56] have been developed

within the framework of OpenFOAM [57, 58, 59], which notably supports dy-

namic load balancing on arbitrary 2D/3D polyhedron mesh, molecular vibra-

tional and electronic energy modes, chemical reactions, and gravitational force.

Other DSMC programs, such as MONACO [60], SMILE [61], DAC [62] with dif-

ferent mesh topologies and collision treatments, can be found in the literature.

1.2.3 Hybrid Methods

In continuum regime, the Navier–Stokes (NS) solver, like GKS [63], is a highly

efficient methid because only a few conservative flow variables, like density, mo-

mentum, energy, are updated in calculation. In contrast, the particle based

direct simulation Monte Carlo method (DSMC) and DVM-type solver may be

used for the non-equilibrium flows simulation but its computational cost becomes
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unaffordable as the decrease of Knudsen number. Therefore, over the last two

decades, hybrid method that can combine the merits of both the efficiency of

classical CFD solver and accuracy of kinetic approaches in calculating aerody-

namic force and heat under flow conditions with a mixture both continuum and

rarefied regimes has attracted much attention.

The hybrid methods can be further classify as Particle-Fluid hybrid methods[64,

65] and Kinetic-Fluid hybrid methods[66, 67]. However, the foregoing hybrid

methods required buffer zone to match up kinetic and hydrodynamic solutions,

but the information exchange mechanism is artificial and the accuracy inside

buffer zone is unclear. As a result, the validity of hybrid methods is closed to

the success of buffer zone.

1.3 Direct Modeling and Computation for Mul-

tiscale Flow

From previous discussion, it is noticeable that designing numerical algorithms

for non-equilibrium flow simulation is typically a tough task due to its multiscale

nature. When designing a multiscale scheme, one aims to reach a reasonable

compromise between the accuracy in describing the physical reality and com-

putational efficiency, and the following mismatches must be effectively resolved

through appropriate modeling with scale variation.

Scale of modeling Mismatch of the physical scale (modeling scale of PDE)

and discretized scale (mesh/time scale in numerical simulation)

Degrees of freedom Mismatch between tremendous physical Degrees of free-

dom (e.g., Loschmidt number n0 = 2.687 × 1019cm3 is the number of gas

molecules in cm3 under standard state) and only a few flow variables in the
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macroscopic governing equations, e.g., density, bulk velocity, temperature,

etc.

Scale-dependent dynamics/evolution Mismatch of dynamics in the model-

ing scale, e.g., the transport and collision in mean free path scale, and

discretized scale in computation, e.g., a scale with enormous amount of

particle collision and free streaming.

The multiscale method has to resolve the above issues with the variation of scales.

1.3.1 Unified Gas-kinetic Scheme (UGKS)

The unified gas-kinetic scheme (UGKS) [16, 68, 69] is a multiscale scheme that

has been developed for both rarefied and continuum flow simulation. It adopts

the integral solution of the kinetic model equation for the modeling of gas evo-

lution in discretized scale directly. Under the UGKS framework, the numerical

flux is constructed by aggregating the effects of particle transport and collision

matching to mesh size and time step scale.

After a decade of research and advancement, the UGKS has been successfully ex-

tended for the modelings of various multiscale transport phenomena, such as ra-

diative transfer [70], neutron transport [71, 72], multicomponent and multiphase

flow [73, 74, 75], and plasma physics [76, 77]. The real gas effects in diatomic

gases with rotation and vibration mode were considered in UGKS [78, 79] for

the flow study in all regimes.

In the continuum flow regime, the UGKS has an asymptotic limit to the Navier-

Stokes (NS) equations without kinetic scale restrictions on time step and cell size,

known as the unified preserving (UP) property with order n = 2 [37]. Moreover,

the adaptive mesh [80, 81], memory reduction [82, 83], implicit and multi-grid

[84, 85, 86] techniques have also been incorporated into the UGKS to accelerate

8



convergence and enhance computational efficiency. A more recent review article

can be found in [87].

1.3.2 Unified Gas-kinetic Wave-particle (UGKWP)Method

Deterministic methods like UGKS and DUGKS are accurate in all flow regimes,

but almost impractical for aerospace engineering owing to its high memory and

computational cost. Stochastic particle methods are highly efficient for high-

speed rarefied 3D flow computations, but are difficult to preserve Euler and NS

solutions. Therefore, it is attractive to develop a physical-consistent numerical

scheme that can have both the advantages of deterministic UGKS and stochastic

particle methods.

In order to further increase efficiency and minimize memory cost, the DVM-

based gas distribution function in UGKS is replaced by an adaptive formulation

of stochastic particle and analytical wave in the newly developed unified gas-

kinetic wave-particle (UGKWP) method [88, 89, 90] for monatomic and diatomic

gases. UGKWP is extended to other multiscale transport simulations as well,

such as radiation [91] and plasma physics [92].

The essential dynamics of UGKWP, like UGKS, is characterized by the integral

solution, which is composed of the hydrodynamic wave evolution regulated by the

integration of equilibrium state and the kinetic particle free transport emerged

from the initial non-equilibrium gas distribution. In UGKWP, the gas parti-

cles are divided into hydro-particle, collisional particle, and collisionless particle.

Physically, the collisionless particles are mainly employed to represent the non-

equilibrium transport, whereas hydro-particles are utilized for equilibration. In

UGKWP, the macroscopic flow variables will be updated under a finite volume

framework, with both analytical wave and stochastic particles contributing to

the cell interface flux.
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The computing cost of the UGKWP method is comparable to particle methods

in the rarefied regime and hydrodynamic flow solver in the continuum regime,

which is one of the distinguishable features of UGKWP method. Specifically,

the fraction of particles in UGKWP is proportional to exp (−1/Knc), which is a

function of the cell Knudsen number. In the continuum flow regime, due to the

small cell Knudsen number, the number of particles will be significantly reduced

and the UGKWP method automatically converges to the gas-kinetic scheme

(GKS) for the Navier-Stokes solutions [63], which has the similar efficiency as

a conventional NS solver. In the highly rarefied regime, similar to DSMC, the

particle will play a dominant role in the flow evolution with the association of

statistical noise.

The UGKWP method can present numerical solution in all flow regimes from

the kinetic scale particle free transport to the Navier-Stokes wave propagation

without the constraint on the numerical cell size and time step being smaller

than the particle mean free path and collision time. Due to the adaptive wave-

particle decomposition, the hydrodynamic equilibrium wave evolution and the

kinetic non-equilibrium particle free transport within a time step are coupled in

the flux evaluation and solution update, which release the numerical cell size and

time step in UGKWP from the kinetic scale resolution [35].

In contrast, because particle transport and collision are treated separately, DSMC

requires a cell size to be a fraction of the particle mean free path and becomes

particularly expensive in the transition and near continuum flow regimes. More-

over, the DSMC method handles the collision process by selecting particle colli-

sion pairs. In the low Knudsen number case, intensive collisions have to be dealt

with, which makes DSMC impractical in the near continuum flow simulation,

such as the flying vehicle at an altitude below 80km. On the other hand, in the

continuum flow regime at high Reynolds number, the UGKWP method reverts

to the standard Navier-Stokes flow solver with a numerical time step significant
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larger than the particle collision time.

In conclusion, the UGKWP is well suited to multiscale flow computations, es-

pecially those with the coexistence of both continuum and rarefied flow regimes.

For the simulation of hypersonic flow, the steady-state solution can be obtained

by averaging the time-accurate evolution solution. The UGKWP method is sig-

nificantly more efficient than the original DVM-based UGKS due to the use of

stochastic particle instead of regular grid discretization in velocity space. Fur-

thermore, with the deployment of particles in UGKWP, the ray effect [93] ob-

served in DVM-type schemes in the highly non-equilibrium zone owing to the

inadequate numerical resolution in the particle velocity space can be completely

eliminated.

1.4 Objectives and Organization of the Thesis

The main objectives of the current research are the followings:

• Construct UGKWP method in 3D unstructured mesh and validate the

scheme for monatomic gas flows;

• Extend the UGKWP method to diatomic molecular flows;

• Improve the accuracy of UGKWP in rarefied flow regime through the con-

struction of particle-velocity dependent collision time.

The thesis is organized as follows:

Chapter 2 starts with a brief introduction of the Boltzmann equation and re-

laxation model equations. Then, the unified gas-kinetic wave-particle method for

single-component monatomic gas is presented on three-dimensional unstructured
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mesh. Some numerical examples are provided to validate the multiscale property

and efficiency of the method.

Chapter 3 first briefly introduces the properties of diatomic gas and the Rykov

relaxation model equation. Next, the UGKWP method is extended to diatomic

gas with rotational mode. The asymptotic property of the UGKWP method

is investigated and several numerical experiments are conducted to validate the

scheme.

Chapter 4 presents a simple comparison between relaxation model equation

and Boltzmann equation. Then, the direct modeling on particle collision time in

UGKWP framework is conducted. Numerical test cases in rarefied regimes are

shown to demonstrate the effectiveness of the new modeling.

Chapter 5 summaries the thesis and discusses the future research directions.
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Chapter 2

Unified Gas-kinetic

Wave-particle Method for

Monatomic Gas Flow

In this chapter, the unified gas-kinetic wave-particle method for monatomic gas

flows will be constructed on 3D unstructured mesh with spatial decomposition

based parallel computation. The UGKWP program is applicable to 3D flow

simulation with complex geometry in all flow regimes.

The organization of the chapter is as follows. The Boltzmann equation and re-

laxation models are introduced in Section 2.1. In Section 2.2, the numerical pro-

cedure of the UGKWP method on unstructured mesh is presented. Section 2.3

covers the construction of 3D UGKWP on parallel framework. In Section 2.4,

several numerical examples, including the 3D Sod shock tube inside a square-

column, Lid-driven cubic cavity flow, and the high-speed flow around a cube and

space vehicle, will be computed to demonstrate the performance of the current

algorithm in multiscale flow simulation. Conclusion is given in the last section.
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2.1 Boltzmann Equation and Relaxation Mod-

els

In the classical kinetic theory [94], the Boltzmann equation for a single-species,

monatomic gas without external forces can be written as

∂f

∂t
+ u · ∇xf = Q(f, f), (2.1)

where f(t,x,u) is the one-particle gas distribution function of time t ∈ R+,

physical position x ∈ R3, and particle velocity u ∈ R3.

Q(f, f) is the nonlinear Boltzmann collision operator describing the binary col-

lisions among particles.

Q(f, f) =

∫
R3

∫
S2

B(|g|,Ω)[f(u′)f(u′
∗)− f(u)f(u∗)] dΩ du∗, (2.2)

where B(|g|,Ω) = |g|σ(|g|,Ω) ≥ 0 is the collision kernel depending on the

differential cross-section σ(|g|,Ω) and the relative velocity of the second particle

to the first particle g = u∗ − u, before encounter in the pre-collision. Ω is the

direction vector of the post-collision relative velocity g′ = u′
∗ − u′ that varying

over the unit sphere S2.

Since the elastic intermolecular collisions conserved the momentum and energy,

the pre- and post- collision velocity pairs (u,u∗) and (u′,u′
∗) can be expressed

as

u′ =
u+ u∗

2
+

|g|
2
Ω, u′

∗ =
u+ u∗

2
− |g|

2
Ω. (2.3)

From classical scattering theory [95], the differential cross section σ(|g|,Ω) is

defined as

σ(|g|,Ω) dΩ = σ(|g|, cosχ) sinχ dχ dϵ = −b db dϵ (2.4)

where ϵ is the angle that between the collision plane and a reference plane. b

called impact parameter is the distance of closest approach of the undisturbed
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trajectories.

The scattering angle χ (angle between g and g′) can be expressed as

cosχ =
Ω · g
|g|

. (2.5)

Therefore, given the interaction potential between particles, the specific form of

collision kernel B(|g|,Ω) = B(|g|, cosχ) = |g|σ(|g|, cosχ) can be determined

from the differential cross-section σ(|g|, cosχ)

σ(|g|, cosχ) = b

sinχ

∣∣∣∣ dbdχ
∣∣∣∣ . (2.6)

Due to the difficulty of incorporating inelastic collision such as rotational and

vibrational energy exchange, and other non-equilibrium flow physics into the

complete collision integral term, which is nonlinear and involve high-dimensional

integral, the collision term Q(f, f) is usually simplified by other relaxation-type

collision models S(f), such as Bhatnagar-Gross-Krook (BGK) [31], the ellipsoidal

statistical BGK (ES-BGK) [96], and the Shakhov model [33]. In general, the

kinetic model can be written as

∂f

∂t
+ u · ∇xf = S(f). (2.7)

Throughout this chapter, the BGK relaxation model

ft + u · ∇xf =
geq − f

τ
(2.8)

will be used to construct the UGKWP method. Here τ denotes the relaxation

time, which is related to the dynamic viscosity coefficient µ and the pressure p,

i.e., τ = µ/p.

The local equilibrium state geq is the Maxwellian distribution

geq = ρ

(
λ

π

) 3+K
2

exp[−λ((u−U)2 + ξ2)], (2.9)
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with density ρ, macroscopic velocity U, internal degree of freedom K (K = 0

for monatomic gases), and the internal variable ξ = (ξ1, . . . , ξK). λ is related to

the temperature T by λ = m/(2kBT ) = 1/(2RT ). Here, m and kB represent

the molecular mass and the Boltzmann constant, respectively. R = kB/m is the

specific gas constant.

Although the BGK model retains all the features of the Boltzmann equation

which describes the gas evolution from free molecular motion to the hydrody-

namic equilibrium in a statistical way, it yields a unit Prandtl number Pr = 1,

while the exact value for a monammic gas is 2/3. To fix the Prandtl number,

the Shakhov model is used when necessary

ft + u · ∇xf =
g̃eq − f

τ
, (2.10)

where a modified equilibrium distribution function g̃eq is obtained through the

expansion of geq in a series of Hermitian polynomials,

g̃eq = geq

[
1 +

(1− Pr)

5

q · c
pRT

(
c2

2RT
− 5

2

)]
, (2.11)

where c = u−U is the peculiar velocity and q is the heat flux.

The relaxation parameter in the kinetic model can be calculated through

τ =
µ

p
=

µref

p

(
T

Tref

)ω

, (2.12)

where µref , Tref are the reference viscosity coefficient and temperature, and ω is

power index, which is used for recovering the scattering model like Variable Hard

Sphere (VHS) or Variable Soft Sphere (VSS) Models [97].
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2.2 Unified Gas-kinetic Wave-particle Method

for Monoatomic Gas

In this section, the unified gas-kinetic wave-particle (UGKWP) method for monatomic

gas will be introduced.

2.2.1 Unified Gas-kinetic Framework

The unified scheme is a direct modeling in the discretized space
∑

i Ωi ⊂ R3

and time tn ∈ R+ [35]. The cell averaged conservative flow variables Wi =

(ρi, (ρU)i, (ρE)i) on a physical cell Ωi is defined as

Wi =
1

|Ωi|

∫
Ωi

W(x) dx, (2.13)

and the cell averaged distribution function fi on physical cell Ωi is defined as

fi =
1

|Ωi|

∫
Ωi

f(x) dx. (2.14)

In terms of conservative flow variables, from tn to tn+1 on cell Ωi, the discretized

conservation laws for Wi and fi are

Wn+1
i = Wn

i − 1

|Ωi|
∑

j∈N(i)

Fij|Sij|, (2.15)

and

fn+1
i = fn

i − 1

|Ωi|
∑

j∈N(i)

Fij|Sij|+
∫ tn+1

tn
S(fi) dt, (2.16)

where |Ωi| is the volume of cell i and set N(i) contains all the interface-adjacent

neighboring cells’ index of cell i. Fij and Fij denote the macroscopic and mi-

croscopic fluxes across the interface ij between cells i and j, respectively. |Sij|

is referred to the area of the interface ij. ∆t = tn+1 − tn is the discretized time

step.
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It should be noted that Eqs. (2.15) and (2.16) are the fundamental conservation

laws on the scale of mesh size and time step. Its physical evolution of macroscopic

flow variables and microscopic gas distribution function are determined by the

macroscopic and microscopic fluxes Fij and Fij, respectively. The macroscopic

conservative flow variables, their fluxes, and the flux for the particle transport

are related to the moments of the gas distribution function through

Wi =

∫
fiψ dΞ, (2.17)

Fij =

∫ tn+1

tn

∫
u · nijfij(t)ψ dΞdt, (2.18)

and

Fij =

∫ tn+1

tn
u · nijfij(t) dt, (2.19)

where nij is the unit normal vector of the interface ij pointing from cell i to

cell j and fij(t) is the time-dependent distribution function on the cell interface.

ψ = (1,u, 1
2
(u2+ξ2)) is the collision invariants and dΞ = du dξ, du = du dv dw,

and dξ = dξ1 dξ2 · · · dξK .

The BGK/Shakhov relaxation term satisfies the compatibility condition∫
S(f)ψ dΞ =

∫
geq − f

τ
ψ dΞ =

∫
g̃eq − f

τ
ψ dΞ = 0 (2.20)

for the mass, momentum, and energy conservations during the particle collision

process.

2.2.2 Interface Flux Evalutaion

The multiscale flow evolution in the unified algorithm relies on the construction

of the flux function at the cell interfaces. The time-dependent gas distribution

function fij(t) with coupled particle free streaming and collision determines the

flow physics in different regime. The integral solution of the BGK model is

f(t,x0,u) =
1

τ

∫ t

t0

g(t,x′,u)e−(t−t′)/τ dt′ + e−(t−t0)/τf0(x0 − u(t− t0),u), (2.21)
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where x0 is the point for the evaluation of the local gas distribution function,

x′ = x0 − u(t − t′) is the particle trajectory. Typically, x0 is denoted as the

center of a cell interface xij for flux evaluation. g(t,x,u) is the equilibrium state

distributed (g = geq for BGK model, g = g̃eq for Shakhov model) and f0(x) is

the initial distribution function around x0 at the beginning of each step t0 = tn.

Specifically, for second-order accuracy, without loss of generality, we can set

t0 = 0, x = 0 and the local expansions of the gas distribution functions are

g(t,x,u) = g +∇xg · x+ ∂tg t, (2.22)

and

f0(x,u) = f0 +∇xf · x. (2.23)

The time-dependent distribution function at xij can be obtained as

fij(t) = c1g + c2∇xg · u+ c3∂tg︸ ︷︷ ︸
feq
ij (t)

+ c4f0 + c5∇xf · u︸ ︷︷ ︸
ffr
ij (t)

, (2.24)

with the coefficients

c1 = 1− e−t/τ ,

c2 = te−t/τ − τ(1− e−t/τ ),

c3 = t− τ(1− e−t/τ ),

c4 = e−t/τ ,

c5 = −te−t/τ .

(2.25)

Note that f eq
ij (t) and f fr

ij (t) are the terms related to the evolution of the local

equilibrium state g(x, t) and the initial distribution function f0(x), respectively.

The initial gas distribution function f0 at a cell interface in Eq. (2.24) is recon-

structed from the updated gas distribution function at tn, which has the form

f0(xij) =


fn
i + (∇xf)

n
i · (xij − xi), nij · u ≥ 0,

fn
j + (∇xf)

n
j · (xij − xj), nij · u < 0,

(2.26)
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where fn
i and fn

j are the initial distribution functions at neighboring cells around

the cell interface ij. Here (∇xf)
n
i is the spatial gradient of the initial distribu-

tion function inside the cell i and can be reconstructed via least square with

Venkatakrishnan’s limiter [98] or Barth and Jespersen limiter [99].

The local equilibrium state g in Eq. (2.24) is computed from the compatibility

condition

W =

∫
gψ dΞ =

∫
f0ψ dΞ, (2.27)

and the gradient of conservative variables can be obtained through the micro-

macro relationship

∇xW =

∫
∇xg ⊗ψ dΞ =

∫
∇xf ⊗ψ dΞ, (2.28)

and the temporal derivatives of conservative variables are determined by the

conservative requirements on the first order Chapman-Enskog expansion [5],

Wt =

∫
∂tgψ dΞ = −

∫
u · ∇xgψ dΞ. (2.29)

Equations (2.21) and (2.24) present a transition from the initial non-equilibrium

to the equilibrium state with the increment of particle collision. It shows an evo-

lution process from the kinetic to the hydrodynamic scale, and the real solution

depends on the local parameter τ/∆t, i.e., the local cell Knudsen number.

Specifically, the microscopic flux transport over a time step gives

Fij =

∫ ∆t

0

u · nijfij(t) dt

= u · nij(q1g + q2∇xg · u+ q3∂tg︸ ︷︷ ︸
Feq

ij

+u · nij(q4f0 + q5∇xf · u)︸ ︷︷ ︸
Ffr

ij

,
(2.30)

where F eq
ij and Ffr

ij are the equilibrium microscopic flux and the free transport

microscopic flux, respectively. Similarly, the macroscopic fluxes for conservative

variables are splitting into the equilibrium macroscopic flux Feq
ij and the free
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streaming macroscopic flux Ffr
ij

Fij =

∫ ∆t

0

∫
u · nijfij(t)ψ dΞdt =

∫
F eq

ij ψ dΞ︸ ︷︷ ︸
Feq

ij

+

∫
Ffr

ij ψ dΞ︸ ︷︷ ︸
Ffr

ij

, (2.31)

with the coefficients

q1 = ∆t− τ(1− e−∆t/τ ),

q2 = 2τ 2(1− e−∆t/τ )− τ∆t− τ∆te−∆t/τ ,

q3 =
∆t2

2
− τ∆t+ τ 2(1− e−∆t/τ ),

q4 = τ(1− e−∆t/τ ),

q5 = τ∆te−∆t/τ − τ 2(1− e−∆t/τ ).

(2.32)

With the variation of τ/∆t, Eqs. (2.30) and (2.31) can provide multiscale flow

evolution solution. When ∆t ≫ τ , only the terms F eq
ij with q1 ≈ ∆t and q3 ≈

∆t2/2 are remained on account of intensive particle collisions; when ∆t ≪ τ , only

the terms related to non-equilibrium particle free transport Ffr
ij with q4 ≈ ∆t

and q5 ≈ −∆t2/2 are kept.

In deterministic UGKS [16], the cell averaged distribution function fi is fur-

ther discretized in the particle velocity space with discrete velocity points uk to

capture the non-equilibrium distribution function. Compared with many other

DVM with separate particle free-streaming and collision, the mesh size and time

step in UGKS are not limited by the particle mean free path and collision time

due to their coupled evolution solution for the flux evaluation. Moreover, the NS

solutions can be obtained automatically by UGKS in the continuum regime even

with ∆t ≫ τ , such as in the laminar boundary layer solution resolved by a few

grid points at high Reynolds number.

For UGKWP, instead of discretizing the particle velocity space with discrited

velocity points, both kinetic particles and hydrodynamic wave will be coupled

together to represent the non-equilibrium gas distribution function.
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2.2.3 Particle Evolution

The particle dynamics in UGKWP method is to track particle trajectory until

the collision happens. Once the particle collides with other particles, it will

be merged into the macroscopic flow quantities, and get re-sampled from the

updated macroscopic flow variables at the beginning of the next time step.

The integral solution of the kinetic model equation (2.21) can be rewritten as

f(t,x,u) = (1− e−t/τ )gh(t,x,u) + e−t/τf0(x− ut,u), (2.33)

where

gh = g +

(
te−t/τ

1− e−t/τ
− τ

)
u · ∇xg +

(
t

1− e−t/τ
− τ

)
∂tg. (2.34)

Equation (2.33) states that the distribution function at time t is a combination

of the initial distribution function f0 and the modified equilibrium state gh. In

the perspective of particles’ dynamics, it means that the simulation particle has

a probability of e−t/τ to free stream, and has a probability of (1 − e−t/τ ) to

collide with other particle and the post-collision particle distribution follows the

hydrodynamic distribution gh.

The time for the free streaming to stop and follow the distribution gh is called the

first collision time or particle free streaming time tf . Its cumulative distribution

function is

F (t) = P(tf ≤ t) = 1− e−t/τ . (2.35)

A particle Pk(mk,xk,uk, ek, t
f
k) can be represented by its mass mk, position xk,

velocity uk, and internal energy ek. Its free transport time is

tf = min(−τ ln(η),∆t), (2.36)

where η is a random number generated from a uniform distribution on the interval

(0, 1), i.e., η ∼ U(0, 1). Remind that the min in Eq. (2.36) is to ensure tf is the
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free streaming time of the particle within the current time step, but not the total

free stream time of the particle.

Moreover, the particle Pk keeps free transport for a time period of tf and its

location x∗ right before its first collision can be accurately tracked,

x∗
k = xn

k + ukt
f , (2.37)

where the particle velocity uk keeps the same value.

In a numerical time step from tn to tn+1, all simulating particles can be cate-

gorized into two groups according to the time tf assigned to each particle. The

particles with tf = ∆t are called collisionless particles P f , and the particles

with tf < ∆t are called collisional particles P c.

• For the collisionless particle P f
k , its trajectory is fully tracked during the

whole time step.

• For collisional particle P c
k , the particle trajectory is tracked till tf . Then the

particle’s mass, momentum, and energy are merged into the macroscopic

quantities in that cell and the simulation particle gets eliminated.

Those eliminated particles will get re-sampled from hydrodynamic distribution

gh once the updated macroscopic quantities Wn+1 are obtained. i.e.,

un+1
k ∼ gh(Wn+1

i ). (2.38)

And the re-sampled particles are defined as hydro-particle P h. The macro-

scopic quantities corresponding to the hydro-particles are defined as hydrody-

namic wave Wh.

The position of the re-sampled particle xn+1
k is uniformly distributed inside the

cell Ωi where the collision happens.

xn+1
k ∼ U(Ωi) (2.39)
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Similarly to the DSMC method, the internal energy en+1
k is sampled according

to the temperature and internal degree of freedom K. The particles mass mk

can be prescribed and will be discussed later.

Figure 2.1: The diagram illustrates the classification and evolution of particles

from tn to tn+2. Collisionless particles (black hollow circle), collisional particles

(black solid circle), hydro-particle (red dash circle). Solid line means particle

keeps free streaming within the time step while dash/dot line mean the particle

is merged into hydrodynamic wave after collision.

As shown in Fig. 2.1, the hydro-particles (red dash circle) will be sampled at the

beginning of each time step and become the candidates for collisionless/collisional
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particles (black hollow/solid circle) again in the next time step evolution accord-

ing to their newly-sampled tf . The new initial distribution f0 in cell i is repre-

sented by the newly sampled particles and remaining particles from the previous

time step.

The above particle evolution strategy is called the unified gas-kinetic particle

(UGKP) method. However, the UGKP can be simplified and further developed.

Note that not all particles from Wh,n+1
i need to be sampled, because some sam-

pled particles will become collisional hydro-particles from tn+1 to tn+2 and merge

into wave by collision. Therefore, the collisional hydro-particles can be repre-

sented by wave (as shown inside the blue shadow rectangle of Fig. 2.1), and only

the collisionless hydro-particles need to be sampled and retained at the end of

the next time step.

Therefore, only collisionless hydro-particles from the hydrodynamic wave Wh
i =

Wi−Wp
i need to be re-sampled with tfk = ∆t at the beginning of each time step.

And the dynamic impact of collisional hydro-particles, such as the contribution

to the flux, can be calculated analytically. This is the basic idea of the unified

gas-kinetic wave-particle (UGKWP) method.

Here, Wp
i is the total conservative quantities of collisionless particles remained

in cell Ωi at the end of each time step,

Wp
i =

1

|Ωi|
∑
xk∈Ωi

ϕk, (2.40)

where the vector ϕk = mk(1,uk,
1
2
(u2

k + ek)) denotes the mass, momentum, and

energy carried by the particle Pk.

Based on the cumulative distribution function of the particles’ free streaming

time in Eq. (2.35), the collisionless hydro-particles sampled from gh(Wn+1
i ) takes

only a portion of the updated hydrodynamic wave density ρh from the previous
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time step, i.e.

ρhp = e−∆t/τρh. (2.41)

Based on this observation, the noise variance in near continuum regime can be

reduced because we can avoid re-sampling collisional particles repeatedly.

The interplay of waves and particles in the UGKWPmethod is illustrated through

a series of figures in Fig. 2.2 and the particle evolution procedure in the UGKWP

method can be summarized as

1. Obtain free streaming time tfk for the remaining particles P f,n
k .

2. Sample the collisionless particles P f,n
k from hydrodynamic wave with dis-

tribution gh(Wn). Note that the collisionless particles with total mass

density ρhp,n = e−∆t/τρh,n have the free streaming time tf = ∆t.

3. Stream all particles and evolve into two categories, i,e, collisionless particles

P f,n+1
k and collisional particles P c,∗

k .

4. Remove collisional particles P c,∗
k and keep collisionless particles P f,n+1

k . The

total conservative quantities of collisionless particles Wp,n+1 remained can

be calculated according to Eq. (2.40). The quantity of hydrodynamic wave

Wh,n+1 is obtained from the updated total conservative quantities Wn+1

as Wh,n+1 = Wn+1 −Wp,n+1. The detailed formulation in Eq. (2.15) for

the update of Wn+1 will be presented in the next subsection.

From Fig. 2.2c, the multi-efficiency property of UGKWP [88] is clearly indi-

cated, i.e., the computational efficiency of UGKWP goes to the highest efficient

approach in the corresponding regime. For example, in near continuum regime,

i.e., τ → 0, the proportion of collisionless particle decreases exponentially and

the wave becomes dominant (gray region in Fig. 2.2c). The UGKWP becomes
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Figure 2.2: The diagram illustrates the interplay of wave and particles in the

UGKWP method. Wave (gray block), collisional particle (solid circle), collision-

less particle (hollow circle). (a) Initial field; (b) Classification of the collisionless

particles and collisional particles for the part of Wp according to the free trans-

port time tf ; (c) Sample collisionless particles Whp from hydrodynamic waves

Wh; (d) Update solution on both macroscopic and microscopic level.
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a scheme without particles, and its computational cost is comparable to a tradi-

tional NS solver. On the other hand, for rarefied gas flow with τ ≫ ∆t, such as

highly non-equilibrium hypersonic flow, the particles will play a dominant role

to capture the non-equilibrium transport (circle in Fig. 2.2c), and the efficiency

of the scheme will go to the stochastic particle method, such as DSMC.

It has been shown in [88] that the UGKWP method is a kinetic equation solver

in the rarefied regime and preserves the Navier-Stokes solution in the continuum

regime as the particles are re-sampled from the first-order approximation of gh.

Even though the particles are sampled uniformly inside the control volume, the

spatial accuracy can be still kept in the near continuum regime, because in the

update of W, the portion of particles e−∆t/τ is minimal while the hydrodynamic

wave evolution is dominant and is computed analytically with second-order ac-

curacy.

Compared with the DSMC method, which requires free streaming time tf = ∆t

to be less than the particle mean collision time, the free transport time tf ≤ ∆t in

UGKWP method is obtained by the sampling process in Eq. (2.36). Moreover,

the particle collisional effect, such as evolving to the equilibrium distribution

gh, has been modeled in UGKWP method through the evolution solution in

Eq. (2.33). Without using this evolution solution with time accumulating particle

collision effect, or any other equivalent form, it is impossible to design a multiscale

method, which can recover the NS solution in the continuum flow regime.

2.2.4 Update of Macroscopic Variables

The UGKWP updates the macroscopic variables in each control volume from

Eq. (2.15). The equilibrium part flux Feq
ij is directly calculated from the macro-

scopic flow field as given by Eq. (2.31).
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In UGKWP, the free streaming flux Ffr
ij in Eq. (2.31) is divided into two parts and

computed partially by particles free steaming and partially by the contribution

of gh(Wh) analytically. The free streaming flux from collisional hydrodynamic

waves of (1−e−∆t/τ )Wh can be calculated analytically. The other free streaming

flux from collisionless particles e−∆t/τWh in the hydrodynamic wave and the

remained particles of Wp can be evaluated by counting the particles going in

and out the cell during a time step.

The free streaming flux contributed from the collisional hydro-particles of (1 −

e−∆t/τ )Wh on the cell interface ij is

Ffr,h
ij = Ffr,UGKS

ij (Wh)− Ffr,DVM
ij (Whp)

=

∫
u · nij

[
(q4g

h + q5u · ∇xg
h)− e−∆t/τ

∫ ∆t

0

(gh − tu · ∇xg
h) dt

]
ψ dΞ

=

∫
u · nij

[
(q4 −∆te−∆t/τ )gh + (q5 +

∆t2

2
e−∆t/τ )u · ∇xg

h

]
ψ dΞ,

(2.42)

where gh is the Maxwellian distribution with temperature and bulk velocity

determined by macroscopic variables W, except the density is same as Wh. ghx

is the gradient of the Maxwellian distribution, which can be obtained from the

reconstruction of W and Wh.

Statistically, the subtraction of Ffr,DVM
ij (Whp) from Ffr,UGKS

ij (Wh) aims to re-

move the accumulating free transport fluxes from the collisionless hydro-particle

sampled from Wh.

The total non-equilibrium free streaming flux Ffr
ij also includes the contribution

from the remaining particles Pk from the previous time step. During the free

transport process, the contribution of particles to the microscopic flux of cell i

can be obtained by counting the particles across the cell interfaces during a time

step,

Ffr,p
i =

∑
xn+1
k ,x∗

k∈Ωi

ϕk −
∑
xn
k∈Ωi

ϕk. (2.43)
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Finally, the updates of the conservative flow variables in the UGKWP method

are

Wn+1
i = Wn

i − 1

|Ωi|
∑

j∈N(i)

Feq
ij |Sij| −

1

|Ωi|
∑

j∈N(i)

Ffr
ij |Sij|,

= Wn
i − 1

|Ωi|
∑

j∈N(i)

Feq
ij |Sij| −

1

|Ωi|
∑

j∈N(i)

Ffr,h
ij |Sij|+

Ffr,p
i

|Ωi|
.

(2.44)

In conclusion, the UGKWP method improves UGKP method mainly in the fol-

lowing two aspects:

• The free transport terms in numerical flux contributed by the collisional

hydro-particles are evaluated analytically as Ffr,h;

• Only collisionless hydro-particles are sampled.

2.2.5 Boundary Conditions

The proper treatment of boundary condition is crucial for a numerical scheme.

For a diffusive wall condition with normal direction n pointing toward the com-

putational domain, the incoming distribution function fin(t) at boundary is given

by Eq. (2.24). The distribution function of emitted particles from the wall has a

Maxwellian distribution

gw = ρw

(
1

2πRTw

) 3+K
2

exp

[
−(u−Uw)

2 + ξ2

2RTw

]
, (2.45)

where Tw and Uw are prescribed wall temperature and velocity. Based on the

non-penetration condition, ρw in the above Maxwellian is given by∫ ∆t

0

∫
n·(u−uw)<0

n·(u−uw)fin(t) dΞ dt = ∆t

∫
n·(u−uw)≥0

n·(u−uw)gw dΞ. (2.46)

In UGKWP method, the boundary treatment involves macroscopic fluxes eval-

uation and particle reflection. The evaluation of macroscopic fluxes Feq
ij and
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Ffr,h
ij are straightforward by assuring mass flux equal to zero, from which ρw is

obtained.

As for particle reflection, the procedure is the same as the diffuse reflection in

DSMC simulation. Without loss of generality, let Uw = 0 and (u, v, w) be the

reflected velocity, where u is normal to the surface oriented toward the compu-

tational domain, v, w are the tangential components. Given an incident particle,

once it hits the wall, the scattered velocity follows

ugw du dv dw = ρw

(
λw

π

)1/2

u exp(−λwu
2) duf(v)f(w) dv dw, (2.47)

where

f(v)f(w) dv dw =
λw

π
exp[−λw(v

2 + w2)] dv dw. (2.48)

With polar coordinates transformation, v = r cos θ and w = r sin θ, one will have

f(v)f(w) dv dw =
λw

π
exp(−λwr

2)r dr dθ = exp(−λwr
2) d(λwr

2) d
θ

2π
. (2.49)

Hence, the cumulative distribution function of λwr
2 is

F (λwr
2) = 1− exp(−λwr

2), (2.50)

and θ/(2π) is uniformaly distributed between 0 and 1.

The normal component u of the particle is scattered off the surface diffusely and

has a distribution function of the form

f(u) du = Cu exp(−λwu
2) du = C/(2λw) exp(−λwu

2) d(λwu
2), (2.51)

and its cumulative distribution function is the same as Eq. (2.50).

Finally, given η1, η2, η3 ∼ U(0, 1) are random numbers generated from a uniform

distribution on the interval (0, 1), we can sample the velocity of reflected particle
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as following,

u = (− ln η1/λw)
1/2,

r = (− ln η2/λw)
1/2, θ = 2πη3

v = r cos θ, w = r sin θ.

(2.52)

2.2.6 Miscellaneous Details

(a) Time Step on Unstructured Mesh

Follow the implementation in [100], the time step for unsteady flow simulation

is obtained from

∆t = Cmin
i

Ωi

Λx
i + Λy

i + Λz
i

, (2.53)

with Courant number C typically satisfied by 0 < C < 1 and convective spectral

radii of cell i

Λx
i = (|Ui|+ c)∆Sx

i ,

Λy
i = (|Vi|+ c)∆Sy

i ,

Λz
i = (|Wi|+ c)∆Sz

i ,

(2.54)

where c = 3σi = 3
√
RTi is approximately the sound speed, ui = (Ui, Vi,Wi) is the

macroscopic velocity. The variables ∆Sx
i , ∆Sy

i , and ∆Sz
i , respectively, represent

projections of the control volume on the y-z-, x-z-, and x-y-plane, which are given

by

∆Sx
i =

1

2

∑
j∈N(i)

|Sx
ij|,

∆Sy
i =

1

2

∑
j∈N(i)

|Sy
ij|,

∆Sz
i =

1

2

∑
j∈N(i)

|Sz
ij|,

(2.55)

where Sx
ij, S

y
ij, and Sz

ij denote the x-, y-, and the z-component of the face vector

Sij = |Sij|nij.
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(b) Particle Sampling

At the beginning of each time step, the velocity of collisionless particles associated

with hydrodynamic waves will be sampled in pairs from Maxwellian distribution

function g(Wn). Specifically, given with the macroscopic velocityU = (U, V,W ),

temperature T , and vector η that sampled from the normal distribution using

the Marsaglia polar method [101], a pair of particles with microscopic velocities

u = U+
√
RTη and u′ = U−

√
RTη will be sampled.

To determine the sampling particle number Nsam in the cell, a prescribed pref-

erence number Nref is required. Further, the reference mass mref can be deter-

mined from the total particle mass and the reference number Nref

mref =
(ρp + ρhp)|Ω|

Nref

=
(ρp + e−∆t/τρh)|Ω|

Nref

. (2.56)

Once the reference mass mref is available, the number of particles to be sam-

pled symmetrically (antithetic variates method for variance reduction [102]) is

determined by

Nsam = 2

⌈
ρhp|Ω|
2mref

⌉
= 2

⌈
e−∆t/τρh|Ω|

2mref

⌉
. (2.57)

If the reference mass mref is the same for all cells, then the total number of

particles per cell would be exactly equal to Nref . By this means, the total number

of particles in each cell can be controlled around the given reference number

Nref in near continuum regime regardless of mesh distribution. Moreover, the

minimum number of particles Nmin per cell can be prescribed to adjust the

sampled particles’ number such that

Nsam = max{Nsam, Nmin −Nleft}, (2.58)

where Nleft is the collisionless particles left at the beginning of each time step.

Finally, the sampled mass weight msam for each sampled particle is

msam =
ρhp|Ω|
Nsam

=
e−∆t/τρh|Ω|

Nsam

, (2.59)
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which guarantees that the total sampled mass is exactly equal to ρhp|Ω|.

For Shakhov model, following the importance sampling strategy [102], we only

need to modify the sampling weight mk by multiplying a factor

mk

[
1 +

(1− Pr)

5

q · c
pRT

(
c2

2RT
− 5

2

)]
.

As for the determination of the simulation parameter Nref , it depends on the

Knudsen number Kn and the desired accuracy. As pointed out in [102], the root

mean square error (RMSE) in Monte Carlo integration is E[ϵN [f ]
2]1/2 = σN−1/2,

that is of size O(N1/2) with a constant σ as the variance of the integrand f . In

the UGKWP method, under the same numerical setup, the noise reduces as the

square root of the increasing number of particles.

Furthermore, the variance in the RMSE is no longer constant. It decrease as

e−∆t/τ since the portion of particle decrease as e−∆t/τ in UGKWP method, which

distinguishes UGKWP method from other stochastic particle methods based on

kinetic model equations [50, 51].

Generally speaking, for a three-dimensional steady-state problem, the Nref can

range from a few hundred to a few thousand simulated particles per cell. If the

quantities of second-order moments like temperature are not emphasized, dozens

of particles per cell are enough.

(c) Time Averaging

For steady-state solution, the flow field W̄ starts to be averaged after a given

time step Navg,

W̄ =

∑
n>Navg

∆tnWn∑
n>Navg

∆tn
(2.60)

where ∆tn = tn − tn−1.
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The averaged flow field W̄ is assumed to be convergent if the relative change in

two-successive steps is less than a given tolerance, such as ε = 10−8. Then, the

flow variables, such as the temperature T̄ and macroscopic velocity Ū, can be

obtained from the averaged conservative flow variables W̄.

(d) Numerical Dissipation

The UGKWP targets the continuum and rarefied flow. In the continuum flow

regime, the strong shock structure is usually unresolved by the mesh size. There-

fore, numerical dissipation is added through relaxation time to enlarge the shock

thickness to the mesh size scale,

τnum =
µ

P
+ C2

|Pl − Pr|
|Pl + Pr|

∆t, (2.61)

where Pl and Pr are the reconstructed pressures at the left and right side of

the cell interface and C2 is a constant, such as C2 = 10 for strong shock in the

continuum regime.

2.3 Implementation Details

UGKWP solver is constructed under a finite volume framework on 3D unstruc-

tured mesh. It includes not only the reconstruction and flux evaluation module

as in the traditional finite volume solver, but also the particle sampling and

tracking module as in pure particle method.

2.3.1 Structure of the Solver

The main components of UGKWP solver are sketched in Fig. 2.3. As shown in

the diagram, the program starts with the pre- and post-processor module, where
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UGKWP solver

Pre/Post prosessor

Parallel IO

Mesh partition for MPI

Initialization && Setup
of boundary condition

Sample  and set particle status

Sample particles from 

Compute macro flux 
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Sample inflow/outflow particles

Move particles and particle 
boundary treatment

Update the conservative variables 

Calculate 

Steady average

Reconstruct the gradient
of  and 

Parallel data transfer

Pack up particles for parallel transfer

Calculate the micro flux 

Figure 2.3: The structure and main components of the UGKWP solver

the mesh partition, initialization, setup of boundary condition, and parallel IO

are handled inside. In UGKWP solver, the numerical procedures are organized

into a macroscopic field level and a microscopic particle level. Accordingly, the

macroscopic components surrounded by the blue dash line consist of the parallel

data transfer, reconstruction of the macroscopic gradient, and macroscopic flux

calculation with boundary treatment. The green dash block contains the compo-

nents for microscopic particles which are stored in the doubly-linked list. There

are frequent operations, such as tracking particles and calculating the macro-

scopic fluxes. The insert/delete operation is efficient in the scenario of parallel

transfer and sampling/elimination of the particles.

2.3.2 Parallelization

The parallelization of the current code adopts Message Passing Interface (MPI)

on the physical mesh decomposition. Every MPI process deals with a non-
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overlapping sub-domain, and the information like conservative variables and

particles are communicated with the neighboring domain through corresponding

boundaries. Since the macroscopic solver has second-order accuracy, no padding

area of sub-domain is required.

The code was evaluated on Tianhe-2, a supercomputer at China’s National Su-

percomputer Center in Guangzhou. Tianhe-2 has 16,000 nodes, each with an

Intel Xeon E5-2692 CPU with 12 cores running at 2.2 GHz and 88 gigabytes of

memory (64 used by the Ivy Bridge processors, and 8 gigabytes for each of the

Xeon Phi processors). The computing nodes of Tianhe-2 are interconnected by

TH Express-2 network.

To test the parallel efficiency and scalability of the UGKWP, the code is compiled

using Intel C/C++ compiler of version 18.0.0 with -O3 optimization flag, and

are linked to the MPICH2 with a customized GLEX channel. Since the scaling

is problem-specific (depending on Knudsen number and preference number of

particles per cells Nref ), multiple test cases and factors affecting the performance

will be analyzed in a series of three-dimensional lid-driven cavity flow tests.

Macroscopic Field Computation

Firstly, only the parallel speedup of pure macroscopic field computation using

different MPI processes is measured to eliminate the computation of particles and

communication of particle parallel transfer. Without the involvement of particle

generation and particle transportation, the UGKWP degenerates to the gas-

kinetic scheme (GKS) for the continuum flow computation [103]. As it becomes

a deterministic solver, for simplicity, the Knudsen number is fixed at 10−4 in the

following parallel computation. The averaged running time (wall clock time) of

a single iteration step is measured, and the measurement is ensured to be over

100 seconds, and no IO time is counted.
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To investigate the Amdahl’s law (strong scaling) at different fixed problem size,

the physical domain is discretized as D3, where D is the number of cells along

each direction and D has the values 64, 128, 256 cells. To test the Gustafson’s

law (weak scaling), we concern the speedup for a scaled problem size to the

number of processors. Hence, D = 64 on one node with 24 cores is chosen as

the baseline, i.e., keeping the number of cells per processors as 643/24, and the

grid size increased simultaneously as the increment of the number of processors

P . The corresponding speedup is measured based on the averaged single-node

simulation time, i.e., SP = 24Tp/T24.

Both strong and weak scaling analysis is plotted in Fig. 2.4. The solid red line

represents the ideal linear speedup. From the diagram, the overall computational

time of the various physical grid sizes scales well with the number of processing

cores (or MPI processes). Although strong scaling is very sensitive towards the

serial fraction of the program, the communication overhead (e.g., synchroniza-

tion) could further degrade the performance. But the worst efficiency still has

73.8% for the case D = 64 with P = 960 number of processors. Moreover, it is

observed that strong scaling performance increases considerably as the increase

of grid size. The strong scaling parallel efficiency for the largest problem size

D = 256 can reach 85.4% despite the usage of P = 1536 number of processing

cores. Finally, the weak scaling is also verified by increasing both the job size

and the number of processing cores, and a satisfactory weak scaling efficiency up

to 92% has been achieved even with P = 1536 number of processing cores.

Involvement of Microscopic Particles

Next, the particles are included in the experiment to explore the scalability and

parallel efficiency of the implementation. Problems with different numbers of

cells D3, Knudsen number Kn, and preference number of particles per cell Nref
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Figure 2.4: Strong and weak scaling analysis without the involvement of particles

are run across different nodes. The maximum problem size is limited by the

total memory available on each node, and no IO time is recorded. The average

computing time (wall clock time) for a single iteration step is averaged from 1001

to 1100 steps to ensure sufficient running time and reach a steady-state solution.

The averaged CPU time (second) per step against the number of cores is shown

in Fig. 2.5. The results indicate that the scaling performance is good for all

simulations because the CPU time decreases almost linearly as the increase in

the number of processing cores. Actually, from Table 2.1 and Table 2.2, the

parallel efficiency EP = SP/P for cases with D ≥ 72 is over 86% even with

P = 864 number of processing cores.

Furthermore, several interesting patterns have been observed. Firstly, for the

cases of both Nref = 50 and Nref = 500, we can observe that the absolute

CPU time raises with not only the increment of grid size, but also the Knudsen

number. The reason is that the mean free path of the particles becomes large at

a high Knudsen number, which produces the unbalanced distribution of particles

among different sub-domains as well as in the processing cores. Secondly, the

scaling performance deteriorates as the shrinkage of grid size, especially in high-

Knudsen number cases, because the proportion of communication time would
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increase with the decrease of number of cells per core. The uneven effect of

particles distributed among processing cores are amplified. Accordingly, the

worst parallel efficiency E864 = 68.7% is observed for the case D = 36 at Kn = 1

with respect to P = 864 number of cores. Lastly, the parallel efficiency would

increase as the enlargement of the reference number of particles.

Another interesting phenomenon is that maximum parallel efficiency can be

greater than one. For instance, the maximum parallel efficiency observed can

be E864 = 123.2% in the cases of D = 72, Kn = 10−2 and Nref = 500 using

P = 864 cores. Actually, the parallel efficiency in transition regime (Kn = 10−2)

is even higher than that in the near continuum regime (Kn = 10−4) with the

same grid size D and reference number of particles Nref . Besides, the worst par-

allel efficiency is even larger than 86.3% for all cases at Kn = 10−4, 10−2. This

counterintuitive parallel efficiency in the transition regime is probably due to the

doubly-linked list data structure for storing particles. In the transition or near

continuum regime, the collision between particles is intensive, and the frequent

elimination/resampling of particles involves frequent delete/insert operation in

memory. Nonetheless, the bottleneck caused by the implemented data structure

can be alleviated through the replacement of a sequence container, like the STL

vector.

In summary, intensive parallel tests of cavity flow show satisfactory strong and

weak scaling performance of the UGKWP code. The current implementation

becomes a valuable tool for simulating complex flow problems across thousands of

processing cores in parallel computation. However, the actual parallel efficiency

might vary for particular simulation setup.
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Figure 2.5: Performance scaling on Tianhe-2 where each node has 24 cores (a)

Nref = 50 and (b) Nref = 500

Nodes Cores
D = 72 D = 120

Kn = 10−4 Kn = 10−2 Kn = 1 Kn = 10−4 Kn = 10−2

1 24 100% 100% 100% 100% 100%

4 96 97.1% 101.7% 101.9% 103.2% 103.9%

8 192 91.8% 102.6% 97.4% 98.1% 102.3%

12 288 93.5% 101.7% 95.8% 97.1% 105.8%

24 576 84.2% 98.8% 85.9% 96.6% 112.3%

36 864 86.3% 91.2% 88.5% 94.3% 109.6%

Table 2.1: Parallel efficiency for cases with Nref = 50 on Tianhe-2
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Nodes Cores
D = 72 D = 48 D = 36

Kn = 10−4 Kn = 10−2 Kn = 1 Kn = 1 Kn = 1

1 24 100% 100% 100% 100% 100%

4 96 101.2% 106.7% 96.4% 92% 92%

8 192 100.3% 116.3% 96.5% 92.4% 86.5%

12 288 102.7% 119.3% 99.5% 87.2% 82.4%

24 576 102.1% 119.3% 98.2% 82.5% 72.1%

36 864 101% 123.2% 94.8% 80.8% 68.7%

Table 2.2: Parallel efficiency for cases with Nref = 500 on Tianhe-2

2.4 Numerical Results

In this section, the accuracy and computational efficiency of the UGKWP solver

will be evaluated through many test cases with a wide range of Knudsen and

Mach numbers. The numerical Sod shock tube problem in 3D, lid-driven cubic

cavity flow, high-speed flow passing through a cube, and the flow around a space

vehicle, are tested. The results are compared with those from UGKS/DUGKS

and DSMC. Without further statement, the fully diffusive boundary condition is

applied on the isothermal wall boundary. The code is compiled with GCC version

7.5.0, and all computations are carried out on a workstation with [Dual CPU]

Intel®Xeon(R) Platinum 8168 @ 2.70GHz with 48 cores and 270 GB memory

unless indicated otherwise.
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2.4.1 3D Sod Shock Tube

The Sod shock tube problem insides a square-column is simulated for diatomic

gas at different Knudsen numbers to validate the current UGKWP method, and

the result is compared with the 1D UGKS solution.

In this test case, the following non-dimensionalization is used

ρ̂ =
ρ

ρ∞
, Û =

U

C∞
, V̂ =

V

C∞
, Ŵ =

W

C∞
, T̂ =

T

T∞
, P̂ =

P

ρ∞C2
∞
,

t̂ =
t

t∞
, x̂ =

x

L
, C∞ =

√
2kBT∞

m
, t∞ =

L

C∞
,

and the initial condition for the non-dimensional variables is

(ρ̂, Û , V̂ , Ŵ , P̂ ) =

 (1, 0, 0, 0, 1), 0 < x̂ < 0.5,

(0.125, 0, 0, 0, 0.1), 0.5 < x̂ < 1.
(2.62)

For UGKWP simulation, the physical domain is a [0, 1]× [−0.1, 0.1]× [−0.1, 0.1]

square-column tube, which is discretized by 100×5×5 uniform mesh points. The

preset reference numbers of particles are Nref = 200, 400, 1000, 2000, 3200, 3200

for the cases at Kn = 10−4, 10−3, 10−2, 0.1, 1, 10 respectively. Least square recon-

struction with Venkatakrishnan limiter is utilized. For the UGKS simulation,

the 1D physical domain [0, 1] is discretized uniformly with 100 cells. Composed

Newton-Cotes quadrature with 101 velocity points in range [−6, 6] is fixed to

discretize the one-dimensional velocity space. van Leer limiter is used for the

reconstruction of both conservative variables and discrete distribution function.

The left and right boundaries are treated as far-field, and the others are treated

as symmetric planes. The CFL number for both UGKWP and UGKS simula-

tion is 0.9, and the reference viscosity is given in Eq. (2.12) with ω = 0.74. The

results at the time t = 0.12 in all flow regimes are presented.

The density, velocity, and temperature obtained by the UGKS and the UGKWP

method at different Knudsen numbers are plotted in Figures 2.6 to 2.11, where
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the three-dimensional flow field computed by UGKWP is projected to the x-

direction by taking ensemble average over the cells on y-z plane. No time aver-

aging is applied, and the statistical noise is satisfactory for this unsteady flow

simulation. For all the cases in different flow regimes, the 3D UGKWP solutions

agree well with the 1D UGKS data. The slight difference is due to different lim-

iters, i.e., van Leer limiter for UGKS and Venkatakrishnan limiter for UGKWP.

The capability of the UGKWP method for numerical simulations in both con-

tinuum and rarefied regime is confirmed.

The distinguishable feature of multi-efficiency [88] can also be demonstrated

here. For UGKS, the computational costs will be on the same order for all

Knudsen number cases since the discretization in the particle velocity space is

the same. While for the UGKWP method, the computational cost is reduced at

small Knudsen number, e.g., Kn = 10−4 in near continuum regime, where the

hydrodynamic wave is dominant, and few particles are sampled and tracked. The

computational cost of UGKWP for 3D simulation is admissible because only a

few hundred or thousand particles are enough to adaptively discretize the velocity

space, whereas it becomes possible that 1013 mesh points in the velocity space

may be required in DVM-based UGKS for high speed flow. For steady-state

simulation, the number of particles can be reduced further since the statistical

noise can be suppressed through the temporal ensemble.

2.4.2 Lid-driven Cubic Cavity Flow

For low-speed flow, the UGKWPmethod is applied to study the three-dimensional

lid-driven cubic cavity flow in the transition regime, and the results are compared

with the solution predicted by dugksFoam [34].

The side length of the cubic cavity is L = 1m with the computational domain

[0, 1] × [0, 1] × [0, 1], which is divided non-uniformly into 403 hexahedrons with
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Figure 2.6: Sod shock tube at Kn = 10−4. (a) Density, (b) X-Velocity U, and

(c) Temperature.
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Figure 2.7: Sod shock tube at Kn = 10−3. (a) Density, (b) X-Velocity U, and

(c) Temperature.
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Figure 2.8: Sod shock tube at Kn = 10−2. (a) Density, (b) X-Velocity U, and

(c) Temperature.
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Figure 2.9: Sod shock tube at Kn = 0.1. (a) Density, (b) X-Velocity U, and (c)

Temperature.
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Figure 2.10: Sod shock tube at Kn = 1. (a) Density, (b) X-Velocity U, and (c)

Temperature.
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Figure 2.11: Sod shock tube at Kn = 10. (a) Density, (b) X-Velocity U, and (c)

Temperature.
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the cell size gradually increased towards to the cavity center. The ratio of the

cell size in the center and the boundary is about 2. The lid (top boundary)

of the cavity moves in the positive x-direction with a constant velocity Uw =

50m/s, while the other walls are kept fixed. All sidewalls have the diffusive

boundary condition and keep a uniform temperature Tw = 273K. The cavity

is composed of monatomic argon gas with molecular mass m = 6.63 × 10−26kg

and diameter d = 4.17 × 10−10m. The Knudsen number is Kn = λ/L = 0.075,

where the mean free path λ is calculated from the initial uniform gas density by

λ = m/(
√
2πd2ρ). The gas viscosity depends on the temperature by Eq. (2.12)

with reference temperature Tref = Tw = 273K and reference viscosity µref given

by variable hard sphere (VHS) model with ω = 0.81.

Since it is a low-speed flow with small temperature variance, Nref = 5000 ref-

erence number of simulation particles is used. The time-averaging is starting

from 1000 steps in order to reduce the statistical noises of high moments quanti-

ties, such as the temperature. The CFL number is set to be 0.95, and the least

square reconstruction with Venkatakrishnan limiter is employed for the gradient

calculation. Physical space parallelization with 48 cores is adopted for UGKWP.

In the dugksFoam simulation, the three-dimensional velocity space is discredited

using 28 half-range Gauss-Hermit quadrature points in each direction. The CFL

number is set to be 0.8. The gradients are calculated by least square method.

The Prandtl number is fixed as Pr = 1.0 in DUGKS simulation to eliminate the

model difference since the BGK model is used in the construction of UGKWP.

The velocity space decomposition approach is adopted for dugksFoam with 48

cores on the same machine.

Figure 2.12 presented the temperature iso-surfaces predicted by UGKWP and

dugksFoam. Even though the UGKWP solution exhibits strong fluctuation, the

two results agree well in general. To compare the solutions more precisely, the
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contours on the symmetric X-Z plane are shown in Figure 2.13, where the low

order quantities between these two schemes, such as density, X and Y components

of the velocity (U and V ), match well. For the temperature, as a higher moment

quantity, the UGKWP solutions generally agree with that of dugksFoam, but still

exhibit relatively large statistical noise, although a long time averaging has been

performed in UGKWP. It is also noteworthy that the noise incurred by three-

dimensional particles in real three-dimensional simulation is larger than that in

the two-dimensional simulation with particles without Z-direction velocity, e.g.,

2D Cavity flow [89].

The computational time for dugksFoam is around 154.1 hours with 5000 iter-

ations to reach a velocity residual of 2.4 × 10−7. The UGKWP solution takes

93.2 hours, including 23000 steps of averaging. The total memory consumption

of dugksFoam reaches 205 GB, whereas UGKWP is 70.1 GB. For the low-speed

flow calculation in the transition regime, the UGKWP method is as expensive

as the explicit DUGKS. However, as the Knudsen number decreases further to

the continuum regime, the computational cost of UGKWP method approaches

to the gas-kinetic scheme (GKS) [63] for the Navier-Stokes solutions, which has

the similar efficiency as a standard NS solver and is much more efficient and less

memory consumption than that of dugksFoam. What’s more, the low variance

technique used in DSMC [104, 47] can be adopted in the UGKWP method to

improve its efficiency for the low speed flow simulations.

2.4.3 Flow Passing a Cube

Supersonic Flow in Rarefied Regime

The first case is a supersonic rarefied gas flow passing through a cube at Ma = 2

and Kn = 1. The cube center is located at (0, 0, 0), and the cube volume is 1m3.
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Figure 2.12: Comparison of the temperature iso-surfaces predicted by DUGKS

(left) and UGKWP (right).

The surfaces of the cube are diffusive wall boundary condition with a constant

temperature Tw = 273K. Due to the symmetry, only a quadrant of the cube

is simulated by UGKWP. The computational domain [−6, 8] × [0, 8] × [0, 8] is

discretized by (32 + 14 + 34) × (7 + 34) × (7 + 34) = 80 × 41 × 41 cells with

uniformly distributed grids on the surface of the cube. The cell size is stretched

from the cube surface with a ratio of 1.0764 up to the front side and a ratio of

1.083 at the rear and lateral sides of the cube. The inflow is monatomic argon gas

with molecular mass m = 6.63× 10−26kg and diameter d = 4.17× 10−10m. The

CFL number for UGKWP simulation is 0.9, and the reference viscosity is given

by the variable hard sphere (VHS) model with ω = 0.81. To capture the lowest

temperature that appears at the rear of the cube caused by the expanding flow,

a large number of particles Nref = Nmin = 5000 is required. The simulation

is carried out with first-order spatial accuracy to reduce the noises caused by

unreliable wave reconstruction. The time-averaging starts from 1400 steps with

an initial field computed by 1000 steps GKS. The simulation runs 120.8 hours
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Figure 2.13: Symmetric X-Z cut-plane contour of cavity flow at Kn = 0.075.

Background: UGKWP; Black lines with label: dugksFoam. (a) Density contour,

(b) Temperature contour, (c) U-velocity contour, (d) W-velocity contour.
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with 48 cores and consumes 183 GB memory, including 8600 steps of averaging.

Figure 2.14 presents the temperature, density, and velocities distributions on

the X-Z symmetry plane [105] which are compared with the benchmark DSMC

result of dsmcFoam [55]. Similar to UGKWP simulation, a quadrant of the cube

is simulated in DSMC with a much finer physical grid of 191 × 91 × 91. Each

cell has 50 particles on average, and the time step is 2.0× 10−7s. The averaging

begins from 1000 steps and continues for 68000 steps, which take 128.5 hours

on 128 CPU cores (Xeon E5-2680v3 (Haswell) @2.5 GHz). The results have

a satisfactory agreement overall, especially the flow field near the cube wall.

However, regarding temperature contour, visible differences can be observed at

the front of the bow shock and at the rear part of the cube. The differences

come from different kinetic models in UGKWP and DSMC. The UGKWP uses

the BGK model and the DSMC solves the full Boltzmann collision term.

Another notable point is that UGKWP requests at least 5000 particles per cell in

the rear part of the cube to get the temperature field at such a low-density region.

In contrast, to use roughly 500 particles per cell in UGKWP is enough to capture

the nonequilibrium shock structure in front of the cube. The reason is that when

τ ≫ ∆t, the mass portion of collisionless particle increases, and the stochastic

noise becomes significant. Instead of choosing collision pairs in DSMC, UGKWP

re-sample the collisional particles according to the cell averaged temperature

and macroscopic velocity. When the temperature has a small variance, such as

in the low-speed cavity flow, the inadequate particle number could deteriorate

the temperature with noise. Then, the re-sampled collisional particles inherit

the inaccuracy and poison the low-temperature distribution at the rear part

of the cube, where artificial heating with over-estimated temperature appears.

Even with the above weakness, UGKWP can perform simulation on a coarse

mesh than that used in the DSMC. Consequently, UGKWP and DSMC have

comparable computational cost in the rarefied regime.
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In DVM method [105], the implicit discretization with memory reduction tech-

nique on GPU is implemented. The full cube is simulated with a physical grid

191 × 181 × 181 and a velocity grid 483. The velocity points are distributed

uniformly to cover a range of [−4
√
2RTw, 4

√
2RTw]

3, and the trapezoidal rule is

used to calculate the moments. The simulation takes approximately 20 hours,

with 41 iteration steps on the Tesla K40 GPU. Figure 2.15 shows the detailed

comparisons of the temperature, density, and velocities distributions on the X-Z

symmetry plane with DVM solutions. Similar to the comparison with DSMC, the

shock thickness and the separation distance between the density and tempera-

ture profiles have small variations between UGKWP and implicit DVM solutions,

where the Shakhov model is used in DVM. Again, the UGKWP uses the BGK

model. The differences in the shock structure solution between the BGK and

Shakhov model have been presented in [106]. For computational time, owing to

the implicit treatment and implementation of GPU acceleration, the DVM sim-

ulation is around an order faster than the current UGKWP simulation at such

a low Mach number (Ma = 2) simulation.

Like UGKS [69], more realistic models, such as the Shakhov and the full Boltz-

mann collision term, can be used in the construction of the UGKWP method via

importance sampling [102]. The research in this direction is under investigation.

The preliminary result for incorporating the Shakhov model into the UGKWP

method is shown in Fig. 2.16, which shows the temperature distributions on the

X-Z symmetry plane at Pr = 2/3 with the comparison of the benchmark DSMC

result and the implicit DVM solution. Even though both UGKWP and DVM are

based on an identical relaxation model, UGKWP solution matches much better

with the result of DSMC than DVM. This surprising phenomenon is mainly due

to the particle nature of the UGKWP method in the rarefied regime.
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Figure 2.14: Comparison of distributions between UGKWP and DSMC on the

X-Z symmetric cut-plane at Ma = 2 and Kn = 1. Dashed red lines with colored

background represent the UGKWP result, and the solid white lines denote the

DSMC solution. (a) temperature contour, (b) density contour, (c) contour of U

(X-component velocity) and (d) contour of W (Z-component velocity).
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Figure 2.15: Comparison of distributions between UGKWP and DVM on the

X-Z symmetric cut-plane at Ma = 2 and Kn = 1. Dashed red lines with colored

background represent the UGKWP result, and the solid white lines denote the

DVM solution. (a) temperature contour, (b) density contour, (c) contour of U

(X-component velocity) and (d) contour of W (Z-component velocity).
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Figure 2.16: Temperature distribution on the X-Z symmetric cut-plane at Ma = 2

and Kn = 1 with Prandtl number Pr = 2/3. Dashed red lines with colored

background represent the UGKWP result, and the solid white lines denote the

(a) DSMC solution, (b) DVM solution.
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Hypersonic Flow in Transition Regime

To highlight the efficiency and capability of UGKWP, hypersonic flow at Ma =

20 is simulated in the transition regime (Kn = 0.05). All the parameters are

the same as the previous case except the inflow temperature 5K and the wall

temperature 300K. The cube is contained in a volume with base and top side

lengths of a = 16m, b = 10m, and height h = 14m.

As shown in Figure 2.17, a unstructured mesh with total 420702 cells is generated,

which is composed of 8305 hexahedra, 52 prisms, 25030 pyramids and 387315

tetrahedra with a minimum cell height 0.0248m near the cube wall. Distinguish-

able from the rarefied case, the number of particles required drops dramatically.

Here, the reference and minimum number of particles per cell Nref = Nmin = 400

are used. The simulation is conducted with the least square reconstruction and

Barth and Jespersen limiter. An initial field is firstly computed with 5000 steps

by GKS, and after 8000 steps of UGKWP calculation the time averaging of the

flow field starts for the steady-state solution. The simulation runs 59.9 hours

with 48 cores and consumes 68.1 GB memory, including 7000 steps of averaging.

X

Y

Z

(a)

X

Y

Z

(b)

Figure 2.17: Unstructured mesh configuration at Ma = 20 and Kn = 0.05 (a)

Full view and (b) local enlargement
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Figure 2.18 shows the distributions of temperature, density, and velocities on

the X-Z symmetry plane. The hypersonic flow computation in the transition

regime is a challenge for both stochastic and deterministic methods. For the

DSMC, an extremely fine mesh in physical space is required. For the DVM-type

deterministic solvers, a tremendous amount of discrete velocity points becomes

necessary. The UGKWP is an idealized method for the hypersonic flow in all

flow regimes. Due to the high Mach number, even with a low inflow temperature

of 56K, the maximum temperature inside the shock region can get to 6500K

and over. In the future, the physics associated with high temperature, such as

ionization and chemical reaction, will be added in UGKWP.

To further illustrate the multiscale nature of the simulation, the local Knudsen

number [107] based on the gradient KnGLL = l|∇ρ|/ρ for the above two cases

are presented in Fig. 2.19, which presents five orders of magnitude difference.

The decline of parallel efficiency in the rarefied regime, as presented in Sec-

tion 2.3.2, can be visualized through the averaged number of particles per cell

in the simulation. Figure 2.20 shows the distribution of normalized particle

number per cell N/Nref on symmetric X-Z cut-plane at Ma = 2, Kn = 1 and

Ma = 20, Kn = 0.05. The probability of particle collision in the cell becomes

lower with the increment of τ/∆t. Therefore, the particles tend to keep free

streaming and concentrate in the rearward of the computational domain, espe-

cially in the cell with a large volume. This mechanism causes an imbalance in the

distributions of particles across different CPU cores. Nevertheless, this problem

can be mitigated by implementing dynamic load balancing as used in the DSMC

implementation.
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Figure 2.18: Symmetric X-Z cut-plane contour of various flow fields at at Ma = 20

and Kn = 0.05. (a) temperature contour, (b) density contour, (c) contour of U

(X-component velocity) and (d) contour of W (Z-component velocity).
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Figure 2.19: Local Knudsen number contour on symmetric X-Z cut-plane at

(a)Ma = 2 and Kn = 1 and (b)Ma = 20 and Kn = 0.05

X

Z

6 4 2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

N/N
ref

3.000

2.700

2.400

2.100

1.800

1.500

1.200

1.024

1.008

1.003

0.999

(a)

X

Z

5 0 5
0

2

4

6

N/N
ref

19

17

15

13

11

9

7

5

3

1

(b)

Figure 2.20: Distribution of normalized particle number per cell on symmetric

X-Z cut-plane at (a)Ma = 2 and Kn = 1 and (b)Ma = 20 and Kn = 0.05
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2.4.4 Hypersonic Flow over a Space Vehicle

The last example is hypersonic flow at Mach numbers 6 and 10 over a space

vehicle in the transition regimes Kn = 10−3. This case shows the efficiency

and capability of UGKWP for simulating three-dimension hypersonic flow over

complex geometry configuration. The angle of attack is 20◦ degrees in this case.

As seen in Fig. 2.21, the unstructured mesh of 560593 cells consists of 15277

pyramids and 545316 tetrahedra with minimum cell height 0.001L near the front

of the vehicle surface. The reference length for the definition of Knudsen number

is L = 0.28m. The boundary condition on the vehicle surface is a diffusive one, on

which the temperature maintains at Tw = 300K. Due to the symmetry, only half

of the vehicle is simulated. The inflow is monatomic argon gas with molecular

mass m = 6.63 × 10−26kg and diameter d = 4.17 × 10−10m at T∞ = 300K.

The CFL number for the simulation is 0.95, and the reference viscosity is given

by the variable hard sphere (VHS) model with ω = 0.81. The least square

reconstruction with Venkatakrishnan limiter is used in the simulation.

Figure 2.22 presents the distribution of temperature, heat flux, pressure, local

Knudsen number, and streamlines around the vehicle at Mach number 6. Fig-

ure 2.23 shows the solutions at Mach number 10. Even the free-stream Knudsen

number is relatively small, no vortex flow is observed in the rear part of the

vehicle, see Figs. 2.22d and 2.23d, which is observed in the simulation of near

continuum flow [6]. Meanwhile, from Figs. 2.22c and 2.23c, the density-based

local Knudsen number KnGLL can cover a wide range of values with five orders

of magnitude difference. Therefore, a multi-scale method, like UGKWP, is nec-

essary to capture the flow physics in different regimes correctly. As presented in

Figs. 2.22a and 2.23a, a high-temperature region is detected at the leeward side

despite the low intensity of heat exchange upon vehicle surface. This is mainly

caused by particle collisions in the strong recompression region with a relatively

low free-stream Knudsen number.
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As for the computational cost, for the Ma = 6 case, the initial field is obtained

by GKS with 6000 local time stepping, and the time-averaging starts after 12000

steps of UGKWP computation. The simulation runs 24.87 hours with 48 cores

and consumes 35 GB memory, including 8000 steps of averaging. For the case of

Ma = 10, Nref = Nmin = 400 particles is used. The simulation is conducted on

Tianhe-2 with 8 nodes or 192 cores, and it takes 22.8 hours, including 5000 steps

GKS calculation with local time stepping for the initial field, and 9000 steps

of time averaging after 10000 steps UGKWP calculation for the steady-state

solution.

(a) (b)

Figure 2.21: Surface mesh of space vehicle (a) local enlargement, (b) global view

2.5 Conclusion

In this chapter, a unified gas-kinetic wave-particle (UGKWP) method is con-

structed on three-dimensional unstructured mesh with parallel computing on

supercomputer. The scheme is validated for flow simulation of monatomic gas

in both continuum and rarefied regimes at different flow speeds. Compared with
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(a) (b)

(c) (d)

Figure 2.22: Space vehicle at Ma = 6 and Kn = 10−3. (a) Temperature and

surface distribution of heat flux, (b) Pressure distribution, (c) Kundsen number

distribution, (d) Streamlines color by magnitude of velocity.
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(a) (b)

(c) (d)

Figure 2.23: Space vehicle at Ma = 10 and Kn = 10−3. (a) Temperature and

surface distribution of heat flux, (b) Pressure distribution, (c) Kundsen number

distribution, (d) Streamlines color by magnitude of velocity.
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other popular flow solvers, such as the DSMC method and the deterministic

DVM-based Boltzmann solver, the UGKWP has multiscale property and is ef-

ficient in simulating 3D supersonic/hypersonic flow, especially in the transition

and near continuum flow regime.
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Chapter 3

Unified Gas-kinetic

Wave-particle Method for

Diatomic Molecular Flow

This chapter is about to construct UGKWPmethod for diatomic gas. The Rykov

kinetic model will be used in the construction of the evolution solution of the

gas distribution function, which controls the distributions of particle and wave

and the rate of energy exchange between translational and rotational modes. A

simple and efficient way to set up the correct transport coefficients is presented

in this chapter. A weighted method is applied to sample the particles from a

modified distribution function of the Rykov model. The overall UGKWP method

for diatomic gas is very efficient and has excellent performance for high speed

flow simulation with the translational and rotational non-equilibrium.

The rest of the chapter is organised as follows. In Section 3.1, the Rykov ki-

netic model will be introduced first. Then, the unified gas-kinetic wave-particle

method will be presented in Section 3.2. The asymptotic preserving property

of the UGKWP method for diatomic gas in the continuum regime will be intro-
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duced in Section 3.3. Section 3.4 includes various numerical tests to validate the

scheme. Section 3.5 is the conclusion.

3.1 Diatomic Molecule and Rykov Model

As hypersonic spacecraft flying at a high altitude, the temperature at the stag-

nation point can over thousand Kelvin. At such high stagnation temperature,

the non-equilibrium exchange of internal energy (transnational, rotational, vibra-

tional and electronic energy) of diatomic molecule cannot be neglected. All of

these energy modes affect the partition functions and hence the thermodynamic

properties.

Proceed from the Schrodinger equation, for the simplest rigid rotator model

and harmonic oscillator model representing the rotation and vibration of the

molecule, the discrete energies εr,J and εv,n can be attained

εr,J = J(J + 1)kBΘr, J = 0, 1, 2, . . . Rigid rotator (3.1)

εv,n = (
1

n
+ 1)kBΘv, n = 0, 1, 2, . . . Harmonic oscillator (3.2)

where J and n are the quantum number of rotation and vibration, respectively. In

the above equations, Θr and Θv are introduced as the characteristic temperature

of rotation and vibration, respectively, which describe the quantum energy levels

of molecules.

For N2, NO and O2, the characteristic temperatures of rotation have the val-

ues in the range of only several Kelvin: Θr = 2.88K, 2.44K, 2.07K; and their

characteristic temperatures of vibration are: Θv = 3371K, 2719K, 2256K [108].

For these molecules, Θr is three orders of magnitude smaller than Θv. For most

diatomic molecules at normal temperature, Θr is small enough and quantum

effects can be ignored, although hydrogen, H2 is an exceptional case[95].
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Since Earth’s atmosphere is composed mostly of diatomic molecules (about 78%

nitrogen, 21% oxygen), and the temperatures range of aerospace applications

is 300K ≤ T ≤ 2000K, the effects of rotation are more important than those

for vibrational energy modes. Moreover, for the temperature of a few thousand

Kelvin at the most, for both oxygen and nitrogen atoms, almost all particles lie

in their electronic ground state and the partition function is simply a constant.

Thus, there is no participation in thermodynamics from the electronic mode.

In summary, at moderate temperature, both translational (Kt = 3) and ro-

tational mode (Kr = 2) are fully excited and treated in classical statistical

mechanics. The quantized vibrational mode (0 ≤ Kv ≤ 2) is forzen at low

temperature and its contribution to the internal energy and specific heats can be

neglected. Therefore, only the translational and rotational degrees of freedom

will be considered for diatomic molecule in this chapter.

Similar to monatomic gas, the state of the diatomic gas can be described by

the particle velocity distribution function f(t,x,u, ϵr), where x is the spatial

coordinate, t is the time, u is the molecular translational velocity, and ϵr is the

rotational energy of molecule. The relations between distribution function and

macroscopic variables W = (ρ, ρU, ρE, ρEr) are defined as

W =

∫
ψf dΞ,

where ψ =
(
1,u, 1

2
(u2 + 2ϵr

m
), ϵr

m

)
is the vector for the moments of distribution

function and ρEr is the rotational energy density.

Different from monatomic gas, the evolution of the diatomic gas distribution

function f cannot be simply characterized by Boltzmann Equation (2.1) for

monatomic gas due to the inelastic nature of collision. However, the phenomeno-

logical Rykov model [109] and its generalized model [110] with the inclusion of

Boltzmann collision term can be served as a relaxation model for the description

of energy exchange.
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In this chapter, instead of using the Wang Chang-Uhlenbeck (WCU) equation

[111] for the semiclassical treatment of internal energy with discrete values, the

Rykov kinetic model is used

∂f

∂t
+ u · ∇xf =

g̃t − f

τt︸ ︷︷ ︸
Elastic

+
g̃r − f

τr︸ ︷︷ ︸
Inelastic

, (3.3)

where the collision operator on the right-hand side consists of two components,

corresponding to elastic and inelastic collisions. τt and τr are relaxation times

of translational and rotational mode, respectively, which are independent of the

molecular rotational energy.

Therefore, the overall relaxation time τ

1

τt
+

1

τr
=

1

τ
=

pt
µ(Tt)

=
ρRTt

µ(Tt)
(3.4)

depends on the translational temperature Tt for colliding particles, not on the

equilibrium temperature Teq. µ(Tt) is the dynamic viscosity of diatomic gas.

Moreover, the rotational collision number is defined as Zr = τr/τ , which is a

function of translational and rotational temperature and indicates the number

of collisions needed for the full rational-translational energy exchange.

Hence, the collision term of Rykov model can be rewritten as

∂f

∂t
+ u · ∇xf =

g̃t − f

τ
+

g̃r − g̃t
Zrτ

, (3.5)

where g̃t is the modified equilibrium distribution function for the elastic collision.

Similar to the Shakhov model, we expand g̃t about the equilibrium state for

translation mode in series of orthogonal polynomials in the peculiar velocity c

g̃t = gt + g+t ,

gt = ρ

(
λt

π

) 3
2

e−λtc2
2λr

m
e−λr

2ϵr
m ,

g+t = gt

(
(1− Pr)

4λ2
tqt · c
5ρ

(
2λtc

2 − 5
)
+ (1− δ)

4λtλrqr · c
ρ

(
λr

2ϵr
m

− 1

))
,

(3.6)
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and in the absence of external electric and magnetic fields that capable of produc-

ing a significant dominant orientation of the angular momentum of the molecules,

the modified equilibrium distribution function for inelastic collision g̃r has the

form

g̃r = gr + g+r ,

gr = ρ

(
λeq

π

) 3
2

e−λeqc2
2λeq

m
e−λeq

2ϵr
m ,

g+r = gr

(
ω0(1− Pr)

4λ2
eqqt · c
5ρ

(
2λeqc

2 − 5
)
+ ω1(1− δ)

4λ2
eqqr · c
ρ

(
λeq

2ϵr
m

− 1

))
,

(3.7)

where λt,r,eq = 1/(2RTt,r,eq), the subscript t, r, eq in Tt,r,eq represent transla-

tional, rotational and equilibrium temperature, respectively. The parameter

δ = µ(Tt)/(ρD) depends on the molecular potential with D as gas self-diffusion

coefficient. ω0 and ω1 are set to have proper relaxation of heat flux in Eq. (3.19).

In this chapter, these coefficients adopt the values δ = 1/1.55, ω0 = 0.2354,

ω1 = 0.3049 for nitrogen [78].

The stress tensor P, and the heat fluxes qt and qr for the transfer of random

translational and rotational energies, can be calculated by f as,

P =

∫
c⊗ cf dΞ,

qt =
1

2

∫
cc2f dΞ,

qr =
1

2

∫
c
2ϵr
m

f dΞ,

with dΞ = du dϵr.

The total heat flux q is the sum of qt and qr,

q =

∫
1

2
c

(
c2 +

2ϵr
m

)
f dΞ = qt + qr.
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3.2 Unified Gas-kinetic Wave-particle Method

for Diatomic Gas

3.2.1 General Framework of the UGKWP method

The Rykov model kinetic equation can be rewritten in a more convenient form,

∂f

∂t
+ u · ∇xf =

g∗ − f

τ
, (3.8)

where g∗ is defined as the convex combination of two modified equilibrium dis-

tribution functions

g∗ = (1− 1

Zr

)g̃t +
1

Zr

g̃r (3.9)

Now the Rykov kinetic model has the relaxation form same as BGK model with a

different equilibrium distribution function. Assuming a local constant relaxation

time τ , the integral solution of Eq. (3.8) can be written as,

f(t,x,u, ϵr) =
1

τ

∫ t

0

e−(t−t′)/τg∗(t′,x′,u, ϵr) dt
′ + e−t/τf0(x− ut,u, ϵr), (3.10)

where the equilibrium distribution g∗ is integrated along the characteristics x′ =

x− u(t− t′) and f0 is the initial distribution function at t = 0.

The equilibrium flux term Feq
ij related to the Maxwellian distribution is

Feq
ij

def
=

∫ ∆t

0

∫
1

τ

∫ t

0

e−(t−t′)/τg∗(t′,x′,u, ϵr) dt
′u · nijψ dΞdt, (3.11)

and the free streaming flux terms Ffr
ij related to the initial distribution is

Ffr
ij

def
=

∫ ∆t

0

∫
e−t/τf0(xij − ut,u, ϵr)u · nijψ dΞdt. (3.12)

Different from Eq. (2.15) for monatomic gas, the macroscopic governing equations

of Wi include an extra source term

Wn+1
i = Wn

i − 1

|Ωi|
∑

j∈N(i)

Fij|Sij|+ Si, (3.13)

70



and

S =

∫ ∆t

0

∫
g∗ − f

τ
ψ dΞdt =

∫ tn+1

tn
s dt,

where s can be expressed as

s =

(
0,0, 0,

ρEeq
r − ρEr

Zrτ

)T

.

Note that while the elastic collision conserves the translational energy, the inelas-

tic collision exchanges the translational and rotational energy. The equilibrium

rotational energy ρEeq
r is determined under the assumption Tr = Tt = Teq such

that

ρEeq
r =

Krρ

4λeq

and λeq =
Kr + 3

4

ρ

ρE − 1
2
ρ(U2 + V 2 +W 2)

. (3.14)

with Kr = 2 is the rotational degrees of freedom.

3.2.2 The Construction of Equilibrium Flux

In this subsection, the construction of the equilibrium flux Feq
ij will be presented.

Recall that

g∗ = g̃t +
g̃r − g̃t
Zr

= gt +
gr − gt
Zr

+ g+q ,

(3.15)

and

g+q = g+t +
g+r − g+t

Zr

(3.16)

as the term for the heat flux correction.

A straightforward method to construct the equilibrium flux is to expand the first

two terms in Eq. (3.15) around the cell interface, and this was the construction

method used in the diatomic UGKS [78].

However, based on the following lemma, the calculation of the equilibrium can

be simplified.
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Lemma 3.2.1. If gt and gr are defined as that in Eqs. (3.6) and (3.7) then we

have

gr − gt
Zr

= O(τ) or
gr − gt
Zr

≪ τ, as τ → 0.

Proof. Firstly, consider the case that Zr = O(τ−1) or Zr ≫ τ−1, we can obtain

gr − gt
Zr

= O(τ) or
gr − gt
Zr

≪ τ

Next, for the other case that Zr ≪ τ−1, we have Zrτ
2 ≪ τ . With the condition

that Zrτ ≪ 1, the leading order approximation in [112, 113] gives,

Tt − Tr = −2

3
ZrτTeq∇x ·U+O(Z2

r τ
2), (3.17)

from which |Teq − Tt|/Zr = O(τ) can be estimated.

The linearized Maxwell distribution function gt around the equilibrium temper-

ature Teq is

gt =gr +
Tt − Teq

Teq

gr

[(
c2

2RTeq

− 3

2

)
− 3

Kr

(
ϵr

kBTeq

− Kr

2

)]
+O(|Teq − Tt|2)

=gr +
Tt − Teq

Teq

gr

[(
c2

2RTeq

− 3

2

)
− 3

Kr

(
ϵr

kBTeq

− Kr

2

)]
+O(Z2

r τ
2).

Hence,

gr − gt
Zr

=
Tt − Teq

Zr

gr
Teq

[(
c2

2RTeq

− 3

2

)
− 3

Kr

(
ϵr

kBTeq

− Kr

2

)]
+O(Zrτ

2) = O(τ)

Therefore, the second term (gr − gt)/Zr in Eq. (3.15) is of order τ . Since g+q

related to heat flux is also a high order term, only the first term of g∗, i.e., gt, is

expanded around xij in the calculation of the equilibrium flux.

gt(t,x,u, ϵr) =gt(t
n,xij,u, ϵr) +∇xgt(t

n,xij,u, ϵr) · x̄+ ∂tgt(t
n,xij,u, ϵr)(t− tn)

=gt(t
n,xij,u, ϵr) [1 + ax̄+ bȳ + cz̄ + A(t− tn)] ,

(3.18)
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where x̄ = (x̄, ȳ, z̄), x̄ = x− xij, ȳ = y − yij, and z̄ = z − zij.

The derivative terms in gt, denoted as a, b, c, and A, have the following form

a = a1 + a2u+ a3v + a4w +
1

2
a5u

2 +
1

2
a6

2ϵr
m

,

...

A = A1 + A2u+ A3v + A4w +
1

2
A5u

2 +
1

2
A6

2ϵr
m

.

with u = (u, v, w).

Taking a as an example, it is calculated from the x-direction derivatives of gt.

a =
1

gt

(
∂gt
∂x

)
,

with

a6 =
4λ2

r

Kr

1

ρ

(
2
∂ρEr

∂x
− 1

2

Kr

λr

∂ρ

∂x

)
,

a5 =
4λ2

t

3
(B − 2UR1 − 2V R2 − 2WR3) ,

a4 = 2λtR3 − a5W,

a3 = 2λtR2 − a5V,

a2 = 2λtR1 − a5U,

ρa1 =
1

ρ

∂ρ

∂x
− a2U − a3V − a4W − 1

2
a5(U

2 +
3

2λt

)− 1

2
a6

Kr

2λr

,

with the defined variables

B =
1

ρ

(
2
∂(ρE − ρEr)

∂x
− (U2 +

3

2λt

)
∂ρ

∂x

)
,

R1 =
∂U

∂x
=

1

ρ

(
∂ρU

∂x
− U

∂ρ

∂x

)
,

R2 =
∂V

∂x
=

1

ρ

(
∂ρV

∂x
− V

∂ρ

∂x

)
,

R3 =
∂W

∂x
=

1

ρ

(
∂ρW

∂x
−W

∂ρ

∂x

)
,

where U = (U, V,W ) and the derivatives of macroscopic quantities are evaluated

at (xij, t
n).
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Theoretically, the modified term g+q in Eq. (3.16) only contributes to the heat

conduction coefficient in the energy flux. By following the treatment in [114],

the calculation of equilibrium flux can be simplified. We can ignore the modified

terms and correct the heat flux by modifying only the spatial derivatives of

temperature.

Based on the Chapman-Enskog expansion and the linearisation around transla-

tion temperature Tt [112], the heat fluxes qt and qr become

qt = −5R

2
µ(Tt)

(
Pr +

(1− ω0)(1− Pr)

Zr

)−1

∇xTt,

qr = −Rµ(Tt)

(
δ +

(1− ω1)(1− δ)

Zr

)−1

∇xTr,

(3.19)

where µ(Tt) = τpt and the pressure pt is related to the translational temperature

only through pt = ρRTt.

We can modify the computed coefficients in the expansion of Maxwellian to get

the above heat fluxes by re-scaling the translational and rotational temperature

gradients, such as changing a5 = −2∂xλt and a6 = −2∂xλr to

ã6 = a6

/(
δ +

(1− ω1)(1− δ)

Zr

)
ã5 = a5

/(
Pr +

(1− ω0)(1− Pr)

Zr

)
.

Thus, only few additional floating point operations are needed for each spatial

slope reconstruction to correct the heat flux, and the final form of Feq
ij becomes

Feq
ij =

∫ [
q1

(
gt(t

n,xij,u, ϵr) +
gr(t

n,xij,u, ϵr)− gt(t
n,xij,u, ϵr)

Zr

)
+ gt(t

n,xij,u, ϵr)(q2(ãu+ b̃v + c̃w) + q3A)

]
u · nijψ dΞ,

(3.20)

with the above scaled coefficients ã5, ã6 and q1, q2, q3 defined in Eq. (2.32).

In the UGKWP method, the distribution of the hydro-quantities Wh is known

as g∗, the flux contributed by the free transport of collisional hydro-particles can
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be partially evaluated analytically,∑
j∈N(i)

Ffr
ij |Sij| =

∑
j∈N(i)

Ffr,h
ij |Sij| − Ffr,p

i .

As in Eq. (2.42) for monatomic gas, Ffr,h
ij is the free transport flux contributed

by the hydro-quantities [88],

Ffr,h
ij =

∫ [
q̃4

(
ght (t

n,xij,u, ϵr) +
ghr (t

n,xij,u, ϵr)− ght (t
n,xij,u, ϵr)

Zr

)
+ q̃5g

h
t (t

n,xij,u, ϵr)(ãu+ b̃v + c̃w)

]
u · nijψ dΞ,

(3.21)

where

q̃4 = q4 −∆te−∆t/τ ,

q̃5 = q5 +
∆t2

2
e−∆t/τ .

(3.22)

3.2.3 The Evolution of Particles

The simulation particle Pk(mk,xk,uk, er,k, t
f
k , ωk, κk) is represented by its mass

mk, position coordinate xk, velocity coordinate uk, free streaming time tfk and

rotational energy er,k. ωk and κk are the weights coming from the Rykov kinetic

model.

Note that the evolution of particles follows the integral form of the Rykov model

in Eq. (3.10)

f(t,x,u, ϵr) = (1− e−t/τ )M∗(t,x,u, ϵr) + e−t/τf0(x− ut,u, ϵr). (3.23)

A first order approximation of M∗ can be expressed as

M∗(t,x,u, ϵr) = g∗(t,x,u, ϵr), (3.24)

and the second order expansion gives

M∗(t,x,u, ϵr) = g∗(t,x,u, ϵr)+
e−t/τ (t+ τ)− τ

1− e−t/τ
(∂tg

∗(t,x,u, ϵr)+u·∇xg
∗(t,x,u, ϵr)).

(3.25)
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Here M∗ is named as the hydrodynamic distribution function with analytical

formulation. In this chapter, the approximation (3.24) for M+ is used for a

simple particle-sampling algorithm [40].

At the beginning of each step, we need to sample particles from g∗ defined in

Eq. (3.9). For cell Ωi with hydro quantities Wh
i = (ρhi , (ρU)hi , (ρE)hi , (ρErot)

h
i ),

using the stratification for variance reduction [102], hydro-particles can be sam-

pled from the modified Maxwellian distribution g̃t with a total mass of (1 −

1/Zr)ρ
h
i |Ωi| and the modified Maxwellian distribution g̃r with a total mass of

ρhi |Ωi|/Zr, respectively.

Taking g̃t as an example, its reduced distribution function in rotational variable

ϵr can be written as

Gt =

∫
g̃t dϵr = Gm(λt)

[
1 + (1− Pr)

4λ2
tqt · c
5ρ

(
2λtc

2 − 5
)]

,

Rt =

∫
2ϵr
m

g̃t dϵr =
Kr

2λr

Gm(λt)

[
1 + (1− Pr)

4λ2
tqt · c
5ρ

(
2λtc

2 − 5
)
+ (1− δ)

4λtλrqr · c
ρ

]
,

with

Gm(λ) = ρ

(
λ

π

) 3
2

e−λc2 .

Observed that the hydro quantities Wh
i can be calculated from the moments of

the above reduced distributions

Wh
i =

∫


Gt

uGt

u2

2
Gt +

1
2
Rt

1
2
Rt


i

du =

∫


Gt

Gm
Gm

u Gt

Gm
Gm(

u2

2
Gt

Gm
+ 1

2
Rt

Gm

)
Gm

1
2

Rt

Gm
Gm


i

du

≈
∑


ωk

mk

|Ω|i

ωk
mkuk

|Ω|i

ωk
mku

2
k

2|Ω|i + κk
mker,k
2|Ω|i

κk
mker,k
2|Ω|i


.

(3.26)

To sample the velocity efficiently and recover the hydro quantities Wh
i exactly
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on the macroscopic level. The idea of importance sampling [102] is followed. The

sampled particles Pk, k = 1, ..., Ni follow

uk ∼ Gm(λt,i) xk ∼ U(Ωi), er,k =
mKr

4λr,i

(3.27)

where the rotational energy ϵr,k of particle Pk is simply set as equal partition

instead of sampled from distribution 2λr

m
e−λr

2ϵr
m .

The addition weights ωk and κk are required to ensure the consistency between

the moment of the sampled particles Pk and the macro quantities Wh
i . As shown

in Eq. (3.26), ωk and κk are determined by the coefficients Gt/Gm and Rt/Gm,

respectively, i.e.

ωk = 1 + (1− Pr)
4λ2

t,iqt,i · ck
5ρi

(
2λt,ic

2
k − 5

)
,

κk = 1 + (1− Pr)
4λ2

t,iqt,i · ck
5ρi

(
2λt,ic

2
k − 5

)
+ (1− δ)

4λt,iλr,iqr,i · ck
ρi

.

(3.28)

Similar to monatomic gas, the symmetric sampling is adopted here to reduce the

variance. Since the numerical flux contributed by the streaming of collisional

particles can be evaluated by Ffr,h
ij analytically, only the collisionless hydro-

particle will be sampled.

Based on the cumulative distribution function of the first collision time Eq. (2.35),

the collisionless hydro-particles are sampled with the total mass of

mk =

(
1− 1

Zr

)
e−∆t/τiρhi |Ω|i

Ni

. (3.29)

Now all the quantities of Pk are determined.

The net free streaming flux contributed by the streaming of all left collision-

less and collisional particles can be calculated by counting the particles passing

through the cell interface, which can be written as,

Ffr,p
i =

∑
k∈P

∂Ω+
i

WPk
−

∑
k∈P

∂Ω−
i

WPk
, (3.30)
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where WPk
= (ωkmk, ωkmkuk,mk(

1
2
ωku

2
k + κkek), κkek), P∂Ω+

i
is the index set of

the particles streaming into cell Ωi during a time step, and P∂Ω−
i
is the index set

of the particles streaming out of cell Ωi.

3.2.4 The Update of Macroscopic Variables with Source

Term

Therefore, the evolution of macroscopic flow variables in Eq. (2.44) now becomes

W∗
i = Wn

i +
1

|Ωi|

(
−

∑
j∈N(i)

Feq
ij |Sij| −

∑
j∈N(i)

Ffr,h
ij |Sij|+ Ffr,p

i

)
. (3.31)

from which ρn+1, (ρU)n+1 and (ρE)n+1 can be updated. Then, from Eq. (3.14),

the equilibrium rotational energy (ρEeq
r )n+1 can be updated as well.

Due to existence of the source term in the update of rotational energy, a semi-

implicit scheme is used to update ρEr, and the source term for rotational energy

can be approximated as

S =
∆t

2

(
2(ρEeq

r )n+1 − (ρEr)
∗ − (ρEr)

n+1

Z∗
r τ

∗

)
, (3.32)

and finally (ρEr)
n+1 can be updated

(ρEr)
n+1 =

(
1 +

∆t

2Z∗
r τ

∗

)−1(
(ρEr)

∗ +
∆t

2

(
2(ρEeq

r )n+1 − (ρEr)
∗

Z∗
r τ

∗

))
. (3.33)

The algorithm of UGKWP method for diatomic gases can be summarized as

following:

1. Sample free streaming time tfk by Eq. (2.36) for particles Pk fromW p. These

particles are classified into collisionless particles and collisional particles.

Then, stream all the particles by Eq. (2.37). For the first step, W p = 0.

2. Sample the particle quantities (mk,xk,uk, er,k, ωk, κk) by Eqs. (3.27) to (3.29)

for each newly added collisionless hydro-particle Pk from the hydro-quantities
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Wh. These particles are all defined as collisionless particles which have

tf = ∆t. For the first step, W h = W n=0.

3. Calculate the particle free streaming flux Ffr,p by Eq. (3.30), and evaluate

the equilibrium flux Feq
ij and hydrodynamic wave free transport flux Ffr,h

ij

by Eqs. (3.20) and (3.21), respectively.

4. Update macroscopic flow variables W by Eqs. (3.31) and (3.33). Cal-

culate the macro-quantities of collisionless particles Wp by collecting the

macro-quantities of collisionless particles, from which the density of hydro-

quantities Wh is obtained by ρh = ρ− ρp.

5. Keep collisionless particles and remove collisional particles. Then, go to

step 1.

3.3 Analysis and Discussion

3.3.1 Collisionless Limit

Consider the collisionless limit when τ → ∞, the coefficients in Eqs. (2.32)

and (3.22) become

lim
τ→∞

qi = 0, i ∈ {1, 2, 3}

lim
τ→∞

q̃i = 0, i ∈ {4, 5}
(3.34)

Therefore, the equilibrium flux Feq and the analytical flux Ffr,h will be 0. The

only contribution to the flux is the particle free streaming flux Ffr,p.

The free streaming time for the particles becomes

lim
τ→∞

tf = ∆t (3.35)

which means that all particles will be streamed without collision. And hence the

UGKWP method degenerates to a collisionless Boltzmann solver.
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3.3.2 Asymptotic Behavior in Continuum Regime

In this section, we are going to analyze the asymptotic behavior of the UGKWP

method with diatomic relaxation in continuum regime. For simplicity, the follow-

ing analysis is based on two-dimensional case. Following the Chapman-Enskog

procedure, one can show that the macro description of the Rykov model [112]

can be written as,

∂ρ

∂t
+

∂(ρU)

∂x
+

∂(ρV )

∂y
= 0,

∂(ρU)

∂t
+

∂(ρU2 + pt)

∂x
+

∂(ρUV )

∂y
=

∂τxx
∂x

+
∂τyx
∂y

,

∂(ρV )

∂t
+

∂ρUV

∂x
+

∂(ρV 2 + pt)

∂y
=

∂τxy
∂x

+
∂τyy
∂y

,

∂(ρE)

∂t
+

∂(ρEU + ptU)

∂x
+

∂(ρEV + ptV )

∂y
=

∂(Uτxx + V τxy + qx)

∂x
+

∂(Uτyx + V τyy + qy)

∂y
,

∂(ρEr)

∂t
+

∂(ρErU)

∂x
+

∂(ρErV )

∂y
=

∂qrx
∂x

+
∂qry
∂y

+
ρEeq

r − ρEr

Zrτ
.

(3.36)

Here the viscous and heat conduction terms are

τxx = τpt

[
2
∂U

∂x
− 2

3

(
∂U

∂x
+

∂V

∂y

)]
,

τyy = τpt

[
2
∂V

∂y
− 2

3

(
∂U

∂x
+

∂V

∂y

)]
,

τxy = τyx = τpt

(
∂U

∂y
+

∂V

∂x

)
(qx, qy)

T = qr + qt,

(qrx, qry)
T = qr,

(3.37)

where qr and qt are defined in Eq. (3.19). The pressure pt = ρRTt is only related

to the translational temperature.

Proposition 3.3.1 (Asymptotic preserving property). Consider a well resolved

flow region with glt = grt and ∇xg
l
t = ∇xg

r
t at cell interface, for fixed time ∆t,

and small τ , the scheme is asymptotically equivalent, up to O(τ 2), to a first order

scheme for the system (3.36) and (3.37).
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Proof. For cell i, the total mass of the sampled collisionless hydro-particles is

mh = e−∆t/τi |Ωi|ρhi , and the total mass of the collisionless and collisional particles

mp is proportional to mh, i.e. mp ∼ O(e−∆t/τi).

Therefore, the numerical flux contribution by collisionless and collisional particle

streaming is Ffr,p
i ∼ O(e−∆t/τi).

In the free transport flux of hydro-quantities Ffr,h
ij given by Eq. (3.21), the hy-

drodynamic distribution function M∗(t,x,u, ϵr) in Eq. (3.25) becomes

M∗(t,x,u, ϵr) = g∗ − τ (∂tgt + u∂xgt + v∂ygt) +O(τ 2). (3.38)

Substituting Eq. (3.38) into Eq. (3.21), and assuming n point to x-direction, the

total analytical flux Fan of the macroscopic variables becomes

Fan =Feq + Ffr,h

=

∫
u

{
(q1 + q̃4)g

∗ + (q2 − τ q̃4 + q̃5)(u∂xgt + v∂ygt) + (q3 − τ q̃4)∂tgt

}
ψ dΞ +O(τ 2)

=

∫
u

{
g∗ − τ(u∂xgt + v∂ygt + ∂tgt) +

1

2
∆t∂tgt

}
ψ dΞ +O(τ 2).

(3.39)

If O(τ 2) terms are neglected, Eq. (3.39) becomes

Fan =

∫
u

{
g∗ − τ(u∂xgt + v∂ygt + ∂tgt) +

1

2
∆t∂tgt

}
ψ dΞ

=



ρU

ρU2 + pt − τxx

ρUV − τxy

ρE + ptU − Uτxx − V τxy − qx

ρEr + ρErU − qrx


+

1

2
∆t



∂ρU
∂t

∂ρU2

∂t
+ ∂pt

∂t

∂ρUV
∂t

∂ρE
∂t

+ ∂ptU
∂t

∂ρEr

∂t
+ ∂ρErU

∂t


(3.40)

It can be observed that the numerical flux is consistent with the flux in system

(3.36) and (3.37). Therefore, in the continuum regime, the UGKWP method

converges to Eq. (3.36), which is a first order scheme for the system (3.36) and

(3.37).
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For the limiting Euler system with the absence of viscous and heat conduction

terms, we can have the following proposition.

Proposition 3.3.2. Consider a well resolved flow region with glt = grt and ∇xg
l
t =

∇xg
r
t at cell interface, for fixed time ∆t, in the limit τ → 0, the scheme becomes

a second order method for the limiting Euler system with the absence of viscous

and heat conduction terms in system (3.36) and (3.37).

Proof. As τ → 0, following directly from Eq. (3.40), we have

Fan =



ρU

ρU2 + pt

ρUV

ρE + ptU

ρEr + ρErU


+

1

2
∆t



∂ρU
∂t

∂ρU2

∂t
+ ∂pt

∂t

∂ρUV
∂t

∂ρE
∂t

+ ∂ptU
∂t

∂ρEr

∂t
+ ∂ρErU

∂t


.

Combining with the semi-implicit update of source term, it can be observed that

this is exactly a second order scheme for the limiting Euler system.

In the limit of total equilibrium state with Zr = 1, both the translational temper-

ature and the rotational temperature converge to the equilibrium temperature

as τ → 0. From Eq. (3.17), the pressure pt can be rewritten as,

pt = p+ pt − p = p− 4

15
Zrτp

(
∂U

∂x
+

∂V

∂y

)
. (3.41)

When Zr = 1, the second term on the right hand side of Eq. (3.41) is exactly

the bulk viscosity for rotational degrees of freedom in NS equations.

In the continuum regime with ∆t ≫ τ , for a fixed particle mass mk, the number

of sampled collisionless hydro-particles in cell i is e−∆t/τi |Ωi|ρhi /mk, where the

total simulation particle number Np in such regime decreases exponentially, Np ∼

O(e−∆t/τ ). Therefore, the computational cost of UGKWP in continuum regime

becomes comparable to hydrodynamic NS solvers, such as recovering GKS for

the NS solution [63].
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3.4 Numerical Results

3.4.1 Normal Shock

To demonstrate the accuracy of UGKWP method in capturing the highly non-

equilibrium flow, one dimensional shock wave is studied. For the nitrogen gas,

the viscous coefficient is given as

µ = µref

(
T

T0

)ω

, (3.42)

with the temperature dependency index ω = 0.72, and the reference viscosity

µref =
15
√
π

2(5− 2ω)(7− 2ω)
Kn. (3.43)

In this calculation, the reference length is the upstream mean free path, and

the computational domain is [-25,25] with 100 cells. The upstream (x ≤ 0)

and downstream (x > 0) flow variables are connected by the Rankine-Hugoniot

condition. The collision rotation number used in the UGKWP is Zr = 2.4. In

order to reduce the statistical noise, 5 × 103 simulation particles are used in

each cell. The normalized temperature and density from UGKWP and DSMC

[78] at Ma = 1.53, 4.0, 5.0, 7.0 are plotted in Fig. 3.1. As analyzed before, since

the Rykov model reduces to Shakhov model at large Zr, the early rising of the

temperature occurs at high Mach number.

The reason for the early rising of temperature is due to the use of the single

relaxation time in these kinetic models, which is inconsistent with the physical

reality that the high speed particles should have shorter relaxation time. In

Chapter 4, by a simple control on the relaxation time of the high speed particles,

one can get significant improvement on the problem of early temperature rising.
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Figure 3.1: Comparison of UGKWP and DSMC results of nitrogen shock wave at

different Mach numbers for nitrogen gas. (a)Ma = 1.53; (b)Ma = 4.0; (c)Ma =

5.0; (d)Ma = 7.0. The x-coordinate is normalized by ℓ. The symbols are DSMC

results from Ref. [78].

3.4.2 Flow Passing a Flat Plate

Following the experiment conducted by Tsuboi and Matsumoto [115], the hyper-

sonic rarefied gas flow over a flat plate is simulated using UGKWP for nitrogen

gas. The case is run 34, where the nozzle exit Mach number is Ma = 4.89,

the nozzle exit pressure is Pe = 2.12Pa, the stagnation pressure is P0 = 983Pa
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and the nozzle exit temperature is Te = 116K. The stagnation temperature is

T0 = 670K, which is used as a reference temperature to determine the viscosity

coefficient,

µ = µref

(
Tt

T0

)ω

.

The reference viscosity is defined as

µref =
5
√

2πRTref

16
ρref lmfp,

where ρref = 6.15× 10−5kg m −3 is the reference density, lmfp = 0.78mm is the

mean free path and Tref = 116K is the reference temperature. The flat plate

has a constant wall temperature of 290K and the diffusive boundary condition

is adopted at the plate. In this case, the relaxation collision number Zr is set to

be 3.5.

In this study, 59×39 grid points are used above the plate and 44×25 grid points

are used below the plate, with the same configuration as that used in UGKS [78].

The contours of density, equilibrium temperature, rotational temperature and

translational temperature are shown in Fig. 3.2. The temperature distribution

along the vertical line above the flat plate at x = 5mm and x = 20mm are shown

in Fig. 3.3, which show good agreement with the experiment measurements.

3.4.3 Flow Passing a Sphere

The three dimensional case is about Ma = 4.25 nitrogen gas flow passing through

a sphere at Kn = 0.031 and Kn = 0.121 in the transition regime. The radius

of sphere is 10−3m and the surface mesh of the sphere is divided into 6 blocks

with 16× 16 mesh points in each block with a minimum surface spacing 6.255×

10−5m. Diffusive wall boundary condition with a constant temperature Tw =
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Figure 3.2: (a)Density and (b)temperature (c)rotational temperature (d) trans-

lational temperature contour for the hypersonic flow passing a flat plate

302K is imposed on the surface. The computational domain is composed of 29700

hexahedra with growth rate 1.1 and smallest cell height 5× 10−5 m. The inflow

is diatomic nitrogen gas with molecular mass m = 4.65× 10−26kg and diameter

d = 4.17 × 10−10m. The upstream flow temperature is set to be T∞ = 65K.

The reference viscosity is given by the variable hard sphere (VHS) model with

ω = 0.74.

For the case of Kn = 0.031, the time-averaging starts from 2500 steps and con-
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Figure 3.3: Temperature profiles along vertical lines at (a) x = 5mm and (b) x

= 20 mm. The experiment results [115] are shown in symbol, and the UGKWP

solutions are shown in line.

tinues for 13000 steps with an initial field computed by 1000 steps GKS. The

total computation takes 13500 time steps, and runs on a workstation with (Dual

CPU) Intel Xeon Platinum 8168 at 2.70 GHz with 48 cores. The distribution of

density, velocity, temperature, and rotational temperature are shown in Fig. 3.4.

For the case of Kn = 0.121, the time-averaging starts from 2500 steps and con-

tinues for 17000 steps with an initial field computed by 1000 steps GKS. The

distribution of density, velocity, temperature, and rotational temperature are

shown in Fig. 3.5. Figure 3.6 shows the relative error in drag coefficient (Air)

given by UGKWP and experiments [116].

Both UGKS and UGKWP can obtain satisfactory drag coefficients compared

with the experimental data. However, the computational efficiency is greatly

improved by the UGKWP method.The detail comparison of the computational

cost between UGKWP method and the implicit UGKS [6] is shown in Table 3.1.

Apart from the above two cases, a hypersonic case with Ma = 10 and Kn = 0.01
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Figure 3.4: (a)Density and (b)x direction velocity (c)temperature (d) rotational

temperature contour for Kn = 0.031 and Ma = 4.25.

Ma∞ Kn∞ Time of Implicit UGKS Time of UGKWP(Nitrogen) Time ratio UGKS
UGKWP

4.25 0.121 265.6 hours 32 hours 8.3

4.25 0.031 265.6 hours 3.1 hours 85.7

Table 3.1: Comparison of the computational cost between UGKWP method and

the implicit UGKS in 48 cores.
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Figure 3.5: (a)Density and (b)x direction velocity (c)temperature (d) rotational

temperature contour for Kn = 0.121 and Ma = 4.25.

is also calculated. In order to calculate this hypersonic case, the computational

cost for the UGKS will become unaffordable since it needs a huge discrete velocity

space to get an accurate solution. For the UGKWP method, the computation

for Mach 10 case needs only 1.46 hour with a personal 48 cores workstation.

The distribution of density, velocity, temperature, and rotational temperature

are shown in Fig. 3.7. The drag coefficient is also shown in Table 3.2.
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Figure 3.6: Relative error of the drag coefficient at Kn = 0.031 (left) and Kn =

0.121 (right).

Ma∞ Kn∞ Experiment(Air)
UGKWP(Nitrogen) UGKS(Nitrogen)

Drag coefficient Relative error Drag coefficient Relative error

4.25 0.121 1.69 1.636± 0.0005 −3.21%± 0.03% 1.694 −0.27%

4.25 0.031 1.35 1.346± 0.0007 −0.25%± 0.05% 1.355 −0.39%

10 0.01 - 1.215± 0.0001 - - -

Table 3.2: Comparison of the drag coefficients

3.5 Conclusion

In this chapter, the unified gas-kinetic wave-particle method has been developed

for diatomic gas, where the Rykov model is used for the molecular collision

term with the exchange of translational and rotational energy. The UGKWP

for diatomic gas has been validated in many test cases. Reasonable agreements

have been obtained among UGKWP solutions, DSMC results, and experimental

measurements.

Moreover, following the same strategy in current chapter, one can easily extend
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Figure 3.7: (a)Density and (b)x direction velocity (c)temperature (d) rotational

temperature contour for Kn = 0.01 and Ma = 10.

the current scheme to vibration by adding

2

m

λ
Kv/2
v

Γ(Kv/2)

(
2ϵv
m

)Kv/2−1

e−λv
2ϵv
m (3.44)

to the end of Eqs. (3.6) and (3.7).

91



Chapter 4

Further Development of Unified

Gas-kinetic Wave-particle

Method

This chapter is arranged as follows. Section 4.1 stress the motivation and the pos-

sibility for the further development of the UGKWP method. Section 4.2 reviews

the kinetic model equation-based multiscale UGKWP method and presents the

calculation of particle collision time according to particle velocity. Section 4.3

tests the UGKWP in shock structure calculations for diatomic gases and flow

passing through a cylinder at high Mach numbers. The last section is the con-

clusion.

4.1 Motivation

The evolution of particle and wave in UGKWP is controlled by the integral so-

lution of the kinetic relaxation model. Even though, accurate solutions can be

obtained from UGKWP in all flow regimes, especially in the near continuum
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and continuum regimes, there are still some discrepancies in the solution in the

highly non-equilibrium flow regime, such as the temperature distribution inside

shock layer at high Mach number. The reason for the difference is mainly coming

from the single relaxation time approximation for all speed particles in the ki-

netic model equation, while the physical relaxation time varies according particle

velocity, as expressed in the Boltzmann collision term and the DSMC.

In fact, according to basic kinetic theory, the particle collision time τ is di-

rectly related to the particle mean free path ℓ and particle velocity |u|, such as

τ = ℓ/|u|. Due to the wave-particle decomposition in UGKWP, in the highly

rarefied regime, the flow evolution in UGKWP is mainly controlled by particles.

Therefore, the collision time of particle transport in UGKWP can be simply

modified according to particle velocity. Since this only affects the free transport

distance of individual particle, the mass, momentum, and energy of the system

are fully conserved. This direct modeling on the particle transport greatly im-

proves the performance of UGKWP for the rarefied flow solution, where excellent

results can be obtained and matched with the Boltzmann or DSMC solutions.

The direct modeling on the determination of particle collision time improves the

physical foundation of UGKWP and goes beyond the single relaxation kinetic

model equation. Multiple relaxation time according to particle velocity can be

directly modeled and implemented in the scheme. In the near continuum regime,

the particles in UGKWP will disappear and a Navier-Stokes flow solver with all

correct transport coefficients is recovered in the continuum flow regime.

4.2 Methodology

Note that the Boltzmann Equation (2.1) can be formulated as

∂f

∂t
+ u · ∇xf = Q(f, f) = ν(f+ − f). (4.1)
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Here ν is the collision frequency, Q+ is the inverse collision integral,

Q+ =

∫
S2

B(|g|,Ω)f(u′)f(u′
∗) dΩ du∗, (4.2)

ν =

∫
S2

B(|g|,Ω)f(u) dΩ du∗, f+ =
Q+

ν
. (4.3)

In above equation, the collision frequency ν(u) depends on the particle velocity,

except that the Maxwellian molecule’s differential cross-section σ is inversely

proportional to the relative velocity g of the colliding pair.

In the kinetic relaxation model for the evolution of gas distribution function f

∂f

∂t
+ u · ∇xf =

M − f

τ
, (4.4)

where the equilibrium state M is given differently in the BGK [31], ES [32],

Shakhov models [33] for monatomic gases, and Rykov model [112] for diatomic

gases.

Recall that to obtain the integral solution of relaxation Eq. (4.4),

f(t,x,u, ξ) =
1

τ

∫ t

0

e−(t−t′)/τM(t′,x′,u, ξ) dt′ + e−t/τf0(x− ut), (4.5)

the local relaxation time τ is assumed to be a local constant and is independent

of particle velocity u. Moreover, comparing relaxation Eq. (4.4) with Boltz-

mann Equation (4.1), in highly rarefied regime, the equilibrium state M in the

relaxation model would deviate from the Boltzmann counterpart f+.

In traditional DVM-type methods, it is very hard to define a particle velocity-

dependent relaxation time τ(u) with the complete satisfaction of conservation

from the collision term. In stochastic particle methods, the real individuality

of particle movement makes it easy determine particle collision according to its

velocity. In the wave-particle formulation, the use of particle for the capturing

of non-equilibrium transport also helps to include realistic physical process.
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The UGKWP updates both the macroscopic flow variables and the gas distribu-

tion function in the presence of particles. Specifically, the macroscopic variables

will be updated in a conservative form

Wn+1
i = Wn

i − 1

|Ωi|
∑

j∈N(i)

Feq
ij |Sij| −

1

|Ωi|
∑

j∈N(i)

Ffr,h
ij |Sij|+

Ffr,p
i

|Ωi|
. (4.6)

One of the outstanding features of UGKWP is that the initial gas distribution

function f0 is composed of collisional particle and collisionless particle in the

evolution process within a time step ∆t. The flux in Ffr,h from the collisional

particle can be evaluated analytically. The collisionless particle number reduces

as exp(−∆t/τ). In the continuum flow regime, all particles in f0 will become col-

lisional particles and the UGKWP becomes a standard NS solver for the update

W only.

The particle evolution follows the same integral solution of the kinetic model

equation,

f(t,x,u, ξ) = (1− e−t/τ )M+(t,x,u, ξ) + e−t/τf0(x− ut,u, ξ). (4.7)

The above M+ is named as the hydrodynamic distribution function with analyt-

ical formulation, i.e., the wave formulation of the gas distribution function. The

initial particle distribution f0 has a probability of e−t/τ for free streaming and a

probability of (1− e−t/τ ) for colliding with other particles, and the post-collision

distribution follows the distribution M+(t,x,u, ξ).

In a numerical time step from tn to tn+1, all simulating particles in UGKWP

method can be categorized into two groups: the collisionless particle P f and

the collisional particle P c. And all the particles will take free streaming for a

period of tfk ,

x∗
k = xn

k + ukt
f
k . (4.8)

The net free streaming flow of cell i within a time step ∆t can be calculated by
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counting all particles passing through the cell interface, which can be written as,

Ffr,p
i =

∑
k∈P

∂Ω+
i

WPk
−

∑
k∈P

∂Ω−
i

WPk
. (4.9)

The update of hydrodynamic flow variables originated from the eliminated par-

ticles are

Wn+1,h
i = Wn+1

i −Wn+1,p
i , (4.10)

where Wn+1,p
i is macroscopic flow variables of all remaining particles in the cell i,

which can be evaluated by adding their mass, momentum, and energy together.

In UGKWP, the number of particles used in evolution depends on the cell Knud-

sen number Knc = τ/∆t and takes a fraction of macroscopic variables e−1/KncW

inside each control volume. In the continuum flow regime with ∆t ≫ τ , the par-

ticle will gradually disappear and the UGKWP will become a gas-kinteic scheme

for the Navier-Stokes equations [63].

The above UGKWP is based on the single relaxation kinetic model. Even though

the viscosity and heat conduction coefficients can be correctly defined through

the Shakhov or Rykov models, all particles have the same relaxation time τ which

is used in the determination of free steaming time of the particle in UGKWP.

In physical reality, the particle mean free path ℓ has a clear definition, such as

the hard sphere model [40],

ℓ =
16

5

(
m

2πkBT

)1/2
µ

ρ
. (4.11)

And the particle collision time is related to the particle relative velocity |g|, such

as ℓ/|g|.

In order to incorporate this physical reality, a direct modeling on the modification

of particle transport in UGKWP is to get a more reliable particle collision time

for those particles with a relative high velocity. The newly modeled relaxation
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time τ ∗ = τ ∗(u) can depend on the particle velocity and has the form

τ∗ =

 τ if |u−U| ≤ 5σ

1
1+0.1∗|u−U|/στ if |u−U| > 5σ

(4.12)

where σ =
√
RT is the variance in Gaussian distribution.

For the particle, the free streaming time is determined by

tf = min(−τ∗ ln(η),∆t). (4.13)

For high speed particles, the relative collision time will be reduced according

to the particle velocity. For other particles, the free steaming time remains

the same, which has been taken into account properly by the kinetic relaxation

model, such as recovering the viscosity and heat conduction coefficients.

The above modification of particle collision time will not affect the conservation

of the scheme. For a specific particle, its mass, momentum, and energy will

remain the same, and the only difference is about the distance it travels. The

modification of particle free streaming time can be done directly in the UGKWP.

For the DVM-based UGKS, it is very hard to modify the collision time at a

particular particle velocity and keep the conservation.

However, compared with the Boltzmann equation (4.1), since we only model the

relaxation time and left the equilibrium state M unchanged in Eq. (4.4). The

compatibility condition (2.20) of collision term, which is mainly used to determine

the spatial and time evolution of equilibriums states, is not fully satisfied in the

UGKWP-τ ∗, and its effect on the solution of rarefied flow is reduced significantly

due to the absence of wave contribution.

All examples in the next section are computed with the above modified UGKWP-

τ∗. The idea of τ∗ modification in UGKWP has the physical similarity with the

previous effort [117] of generalizing the Chapman-Enskog expansion for non-

equilibrium flow study.

97



4.3 Numerical Results

In this section, the modified UGKWP will be tested in both 1D shock struc-

ture and 2D flow passing through cylinder case at different Mach and Knudsen

numbers.

4.3.1 Nitrogen Gas Shock Structure

Since the 1950s, shock structure computation has played an essential role in

validating kinetic theory and numerical schemes in non-equilibrium flow studies

[118]. The internal structure of a normal shock wave is one of the simplest

and most fundamental non-equilibrium gas dynamic phenomena that may be

exploited for model validation. This is due to mostly two factors. First, the

shock wave depicts a flow situation that is far from thermodynamic equilibrium.

Second, shock wave phenomena is unique once the upstream and downstream are

determined by the Rankine–Hugoniot relations, and it permits the separation of

fluid dynamics from boundary condition.

In order to validate the flow physics from the newly modified UGKWP, the shock

structures at different Mach numbers for diatomic gases will be calculated. The

density and temperature distributions will be presented and compared with the

reference solutions of DSMC.

In the following calculations, the viscous coefficient is given by,

µ = µref

(
T

T0

)ω

, (4.14)

with the reference viscosity

µref =
15
√
π

2(5− 2ω)(7− 2ω)

ℓ

L
, (4.15)

where L is the characteristic length, ω is the index for viscosity coefficient.
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The diatomic gas UGKWP method is presented in Chapter 3. For diatomic

gas, besides the translational relaxation, the rotational relaxation is included as

well. The relaxation time between the rotational and translation energy exchange

is determined by the rotational collision number Zr. For the nitrogen gas, the

viscous coefficient follows Eqs. (4.14) and (4.15) with the temperature dependent

index ω = 0.74.

In this calculation, the reference length is the upstream mean free path, and the

computational domain is [-25,25] with 100 cells.The rotational collision number

used in the UGKWP is Zr = 2.4. The normalized temperature and density

comparison between UGKWP and DSMC at Ma = 1.53, 4.0, 5.0, 7.0 are plotted

in Fig. 4.1. With the modification of particle collision time, the UGKWP avoids

the early temperature rising problem and presents good agreement with the

DSMC result. In comparison with the Rykov model-based UGKS results [78],

significant improvement has been observed.

4.3.2 Flow Passing a Circular Cylinder

In order to further validate the newly modified UGKWP method in the high

speed rarefied flow regime, the flow of argon gas passing through a circular cylin-

der at different Mach numbers is calculated. Two Mach numbers Ma = 10 and

20 with the Knudsen number Kn = 0.1 will be tested. The Knudsen number is

defined as the ratio of the mean free path over the cylinder radius.

The radius of the cylinder is given by R = 0.01m. For Ma = 10, the incoming

argon gas has a velocity U∞ = 3077.587m/s, the temperature T∞ = 273K,

molecular number density n∞ = 1.2944 × 1021/m3, and the reference viscosity

µ∞ = 2.117 × 10−5N · s/m2. The viscosity is calculated by Eq. (4.14) with

ω = 0.81. The cylinder has constant surface temperature Tw = 273K, and

diffusive boundary condition is adopted here. For Ma = 20, the only change is
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Figure 4.1: Comparison of UGKWP and DSMC results of nitrogen shock wave at

different Mach numbers for nitrogen gas. (a)Ma = 1.53; (b)Ma = 4.0; (c)Ma =

5.0; (d)Ma = 7.0. The x-coordinate is normalized by ℓ. The symbols are DSMC

results from Ref. [78].
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the incoming velocity with a value of U∞ = 6155.174m/s.

For both cases, the simulation results from UGKWP are compared the solutions

of the DSMC and the UGKS-Shakhov [119]. For Ma = 10 case, Fig. 4.2 shows the

density, x-velocity, and temperature along the central symmetric line in front of

the stagnation point, where both UGKWP and UGKS-Shakhov solutions agree

with the DSMC solutions, except that the temperature in UGKS-Shakhov solu-

tions rises a little bit earlier. The comparison of the heat flux, shear stress, and

pressure along the surface of the cylinder are shown in Fig. 4.3, which have good

agreement with DSMC solution.

For Ma = 20 case, the results are plotted in Figs. 4.4 and 4.5. As shown in

Fig. 4.4, the differences in temperature distributions from the UGKS-Shakhov

and the DSMC are much more obvious than that in the Ma = 10 case, where

the results from the modified UGKWP have good agreement with the DSMC

solution, especially for the pressure and heat flux distributions along the surface

of the cylinder.

4.4 Conclusion

In this chapter, a newly modified UGKWP method has been proposed for mod-

eling and computation of non-equilibrium flow. The main idea is to adjust par-

ticle collision time according particle velocity, which is more consistent with the

physical reality rather than the single relaxation kinetic model. The modeling in

UGKWP is beyond the traditional BGK-type kinetic models.

With the implementation of particle velocity-dependent collision time, the non-

equilibrium solution can be captured accurately, such as the shock structure

calculations. Based on the simulation results, no obvious discrepancy between

the UGKWP and DSMC results can be observed. Intrinsically, the DSMC colli-

101



X

D
e

n
s

it
y

0.04 0.03 0.02 0.01
5

0

5

10

15

20

25

30

UGKWP
DSMC

UGKS(Shakhov)

(a)

X
X

v
e

lo
c

it
y

0.04 0.03 0.02 0.01
2

0

2

4

6

8

10

12

UGKWP
DSMC
UGKS(Shakhov)

(b)

X

T
e

m
p

e
ra

tu
re

0.04 0.03 0.02 0.01
5

0

5

10

15

20

25

30

35
UGKWP

DSMC

UGKS(Shakhov)

(c)

Figure 4.2: Flow distributions for argon gas along the central symmetric line in

front of the stagnation point at Ma = 10 and Kn = 0.1.
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Figure 4.3: Surface quantities along the surface of the cylinder for argon gas at

Ma = 10 and Kn = 0.1.
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Figure 4.4: Flow distributions for argon gas along the central symmetric line in

front of the stagnation point at Ma = 20 and Kn = 0.1.
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Figure 4.5: Surface quantities along the surface of the cylinder for argon gas at

Ma = 20 and Kn = 0.1.
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sion rate is determined by the relative particle velocity, which has the similarity

with the modification of collision time according to particle velocity here. Since

the dynamic effect from most particles around the average velocity has been

taken into account in the kinetic relaxation model, only the collision time for

these particles with extremely high speed needs to be modified.

Under such a modeling, the UGKWP method is still fully conservative. The

only modification is the distance travelled by the very high speed particle. The

additional work introduced in the modification of collision time doesn’t increase

any computational cost of UGKWP. In the continuum flow regime, the UGKWP

will automatically recover the gas-kinetic scheme for the Navier-Stokes solutions

with correct transport coefficients, while the distribution function has analytical

Chapman-Enskog formulation. For the flow simulation with the co-existing mul-

tiple flow regimes, the UGKWP method can achieve high efficiency and present

very accurate physical solution in all flow regimes.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis concentrates on the construction and modeling of the unified gas-

kinetic wave-particle method on three dimensional unstructured mesh for the

simulation of monatomic and diatomic gas in all flow regimes.

The UGKWP solver is an outstanding multiscale solver, which is able to simu-

late the flow dynamics in all flow regimes with an efficient and unified approach.

Based on the direct modeling principle, the gas distribution function in UGKWP

is composed of discrete particle and wave instead of DVM approach in the UGKS.

In the coupled evolution of particle and wave, an analytical expression can be ob-

tained for the wave counterpart. At the same time, cell’s Knudsen number-based

weighting functions, i.e., exp(−∆t/τ) and (1 − exp(−∆t/τ)), are dynamically

adapted to take account of the contributions from particle and wave in different

regimes. As a result, the UGKWP becomes a particle method in the highly rar-

efied regime ∆t ≤ τ , and gets back to a NS solver, i.e., the gas-kinetic scheme,

in the continuum flow regime ∆t ≫ τ . A seamless smooth transition between

particle and hydrodynamic method is obtained in UGKWP. The UGKWP has
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the unified preserving (UP) property to the NS solution in the continuum limit

without restricting the cell size to be less than the particle mean free path.

The UGKWP has multiple efficiency preserving property for a multiscale flow

problem, such as the simulation of hypersonic flow passing through a flying ve-

hicle in near space flight with 5 to 6 orders of magnitude difference in the local

Knudsen number. The calculation for a 3D problem at high speed and different

Knudsen numbers can be conducted by UGKWP with a personal workstation.

In addition, the rotational mode of diatomic gas is built into the UGKWP with

the adoption of Rykov relaxation model. Numerical tests from 1D shock structure

to 3D hypersonic flow passing a sphere have been used to validate the capacity

of UGKWP in capturing the non-equilibrium phenomena of energy exchange

between transnational and rotational modes in different regimes. To further

improve the accuracy of the current UGKWP in the rarefied regime, the single

relaxation time of stochastic particle is modified physically according to particle

velocity, especially for these particles with extremely higher velocity. This direct

modification of particle collision time solves the early temperature rising problem

in shock structure calculation, which exists in solutions from almost all single

relaxation time kinetic model equations.

The development of UGKWP from a 2D to a 3D calculation needs great effort to

solve all problems related to the complex geometry, reconstruction, multidimen-

sional flux construction in its wave-particle decomposition, particle tracking, and

parallelization. This thesis solves all these problems successfully and develops a

3D code in practical engineering applications.
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5.2 Future Work

The future work will focus on the refinement, analysis, and extension of UGKWP

method. On the one hand, the current UGKWP code can be further optimized to

make it more efficient and comprehensive. It is expected that the dynamic load

balancing implementation can enhance the parallel efficiency in rarefied regime

considerably as in conventional DSMC implementation. Moreover, coalescing

of small weight particles can also save the memory substantially in the rarefied

regime. Besides, the improved sampling technique can be employed to moderate

the noise for low-speed or small temperature variance simulations. The devel-

opment of implicit UGKWP method is also attractive. Even in the continuum

regime, once a small cell size is used, the corresponding time step ∆t can become

very small and a large weighting function e−∆t/τ will still keep particles. The

UGKWP may be further developed by using local time for the flow evolution.

On the other hand, rigorous analysis of the UGKWP method under unified

preserving framework [38] would be an interesting topic. Investigation on the

modeling of modified relaxation time τ∗ can be further conducted. The emerging

of machine learning might offer us useful tool for the determination of relaxation

time τ∗ and sampling particles from the equilibrium state M . Practical engineer-

ing simulations often encounter high speed and high temperature flow, which

require further modeling of multiple species as well as other complex physical

processes, such as vibration, ionization, and chemical reactions.
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