1. Sums and Products

In math, very often we have some interesting numbers which we would like
to find their sum or product. Below we will look at afew methods for doing these
operations. (Here we will also consider integralswhich we can view as summing
uncountably many numbers.)

Pairing Method. Recalltofind S=1+2+4---4 100 wecansay S = 100+
9+---+lasoandhence2S=(1+100) + (2499 +--- +(100+ 1) =
100 x 101 = 10100 yielding S = 5050. This suggest that in handling numberswe
can try to pair themfirst and hope this can simplify the problem.
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Examples. (1) (2000 APMO) Find S= — 1 _forx = —.
ples (D ) 2 T3¢ % 1o
2 3, 43 x®
Solution. Note1 — 3x + 3x* = (1 — .Let f =—— . Th
ution. Note X 4+ 3X ( X)° 4+ X x) 1 071 % en
fxX) + f(1—x) =1 Sncel— X = Xj01_i » We have

101
2S=) (fO¢) + fxo)) =102 = S=51
i=0

c0s1° 4 c0s2° + - - - 4+ cosdd° .
(2) (2000 HKMO Math Camp) Express — + . s . in the
snle+sn2° + ..+ sn44°
form a + b4/C, where a, b and c are integers.

a+b a—
cos

Solution 1. Recall cosa + cosb = 2cos b and sina + sinb =
at+b

—-b
2sin cosa .Takinga=(45—n)*andb=n°forn=1,2,...,22, we

have

c0S1° 4+ €c0S2° + - - - 4 cos44° 2005—(cos—+cos—+ -+ cosi)
snl°+sn2°+---+sn44  25n% (cos® + cos® + ...+ cos?)

cos & J2+1
= - = =1++2
sn% J2-1

1

Solution 2. Since
cosn® + sinn°® = 4/2(cos45° cosn® + sin45° sinn°) = /2 cos(45 — n)°,

(cos1® 4 cos2° + - - -+ cosd4®) + (sinl° +sn2° + - - - +sin44°)
=+/2(cos44° + cos43° + - - - + cos1°).

1° 2° 44° 1
Therefore, cos + cos R coses _ =1++2
snl° 4sin2° +...4+sn44°> /21

/2 d
(3) (1980 Putnam Exam) Evaluate f &
0o 1+ (tanx)v?

Since

Solution. Letr = +/2 and | :f X _/ cos X dx
0 0

1+tan x cod X +sin' x
T T T
cos(E —t) =sint andsin(E —t) = cost, thechangeof variablex = 2 —twill

72 g§nft dt
idd!l = - = .
y /o sin"t + cod t

/2 cos” x +sin” x
0 cos X+ sin' x

Telescoping Method. A particularly simple type of sum everybody can do is of
the form

(aa—ap+@—a)+---+(ap1—a) =a —an.

This type of sum is caled a telescoping sum. Similarly, there are telescoping
products, where the factors are of the form a; /a; .1 and their product is a;/a,.
Some summation or product problems are of these forms. So in summing, we
should try to see if the terms can be put in the form a; — a.;. Here are some
examples.

Examples. (4) Smplifysinl1+sin24---4snn.
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cos(a — b) — cos(a+ b)

Solution 1. Recall snhasinb = 5

_ cos(a— 1) — cos(a + &
sna= S 2)_ ls( 2).80
Zsmz

. Settingb = 1, we get

snl+sn2-+---4snn
_ (cos3 —cos3) + (cos§ —cos3) + - - - + (cos(n — 3) — cos(n + 3))
B 2sini

cos3 — cosn + 1)
f— " 1 .
ZsmE

Solution 2. (Use complex arithmetic) Let z = cos1 + i sinl. By de Moivre's
formula, Z“ = (cos1+i sin1)X = cosk+i sink. Notesin1+sin2+---4+snn =
Im@z+22+---+2". Now

Z(Zn _ 1) Zl/Z(Zn _ 1) zn+1/2 _ 21/2
7—1 72—z 172 ) sn(1/2)
(cos(n+ 2) — cos3) +i(sin(n+ 3) —sini)
2ising
(sntn+ 3) —sin}) +i(cos3 — costn + )
2sin} '

z+724- 42" =

n cosi — cos(n + 2 n sin(n+ %) —sini
302 sink = 2 S(l 2).Also,§ cosk = ( _2)1 2,
k=1 25'”5 k=1 23|n§

nd —
n3 4

o 1 o
5) (1977 Putnam Exam) Evaluate . (Here = lim ayaz- - - a.
5) ( ) nl_[:2 1 ( nl:[zan oM &8s a-)

Solution. Note that

-1 m-DM*+n+D) O-D((M+D?-n+D+1
mM+1 M+DHM2—n+1 N+ —n+1) '

3

So for largek,

4.7

Knd—1 <1-7><2-13><3-21>m<(k—1)(k2+k+1)> _2AC+k+D)

nljzn3+1: 33 513/ \(k+ DK —k+1) 3k + D)

2
Taking limitask — oo, we get the answer is 37

100

1
(6) Show that 24/101 — 2 < Z — < 20.
= /N

Solution. (Note it may be difficult to find the exact sum. We have to bound the
terms from above and below.) To get telescoping effects, we use

1 1 1
Vn+1—dﬁ:m+ﬁ<2ﬁ<ﬁ+m:f—VH—l.

Summing from n = 1 to 100, then multiplying by 2, we get the inequalities.

Binomial Sums. For sums involving binomial coefficients, we will rely on the
binomial theorem and sometimes a bit of calculus to find the answers. Triv-

n n
iadly, from (1+x)" = Z (E)xk, we get 2" = Z (E) by setting x = 1 and
k=0 k=0

k
0= Z(—l)k@) by setting x = —1. These equations explain why the sum of
n=0

the n-th row of the Pascal triangleis 2" and the alternate sumis 0. Below we will
look at more examples.

n 2
Examples. (7) Simplify 3 (E) .
k=0



n
Solution. Since (E) = (n i k)’ the sum isthe&ameask;; (:) (n i k)' Note

this sum is the coefficient of x" in

(1+ (:)x+ (2)x2+---+x”><1+ (Dx+ (2)x2+---+X”)

2
=(1+x"1+x" =(1+X)2”=1+---+(nn)x”+---+x2“,

n 2
2 . - ;
Therefore, » (E) = (nn). (Remark: By looking at the coefficients of xJ on
k=0

both sides of_the identity (1 4+ x)™(1 + x)" = (1 4+ x)™", we will get the more
general identity .

2=

k=0 k j—k j

n
(8) (1962 Putnam Exam) Evaluatein closed form » kZ(E).
k=0

) n\ n! _nfn-1\ nn—-1)/n-2
Solut|on1.Forn2k22,(k)—m_i<k_l)_k(k_l)<k_2).

Zkz(”) —n+) kk—D+ k)(”)
= \K k=2 k
n n—2 n—1
:n+k2_2:(n(n—l)<k_2)+n(k_l))

=n4+nn=2"24+n@" " 1—1) =n(n+ 12" 2

The casesn = 0 and 1 are easily checked to be the same.

n
Solution 2. (Usecalculus) Differentiating bothsidesof (1+ x)" = Z (E) xK, we
k=0

n
getn(1+x)" 1= Z k(::) x¥~1. Multiplying both sides by x, then differentiating
k=0

5

n
both sides again, we get n(1+ x)" !+ n(n — Hx(1 + x)" 2 = Zkz (E) XK1,
k=0

n

n
Setting x = 1, we get Zk2<k
pry

) =n2"14nn— D22 =n(n+ 12" 2.

Fubini’s Principle. When we have m rows of n numbers, to find the sum of these
mn numbers, we can sum each row first then add up the row sums. Thiswill be
the same as summing each column first then add up the column sums. Thissimple
fact isknown as Fubini’sPrinciple. Thereisasimilar statement for the product of
the mn numbers. In short, we have

m n n m

>3 a=2 2 @ [1l]e-

m
&j-
i=1j=1 j=1i=1 j j=1i=1

Historically the original Fubini’s principle was about interchanging the order of
doubleintegrals, namely if | f | isintegrable on the domain, then

b pd d pb
/ / f(x,y) dxdy = / / f(x, y) dydx.
a C C a

Examples. (9) For an x n chesshoard with n odd, each squareiswrittena+1 or a
—1. Let p; bethe product of thenumbersin thei-th row and g; bethe product of the
numbersinthe j-thcolumn. Show that p;+ p2+-- -+ pn+01+02+- - - +0n # 0.

Solution. By Fubini’s principle, pi1pz2--- pn = G102 - - 0o Note each p; or g
is +1. Suppose there are s (—1)’s among pi1, P2.--+» Pn ad t (—1)’s among
01, 02, - - - » On- Then either s and t are both odd or both even. Now

prt Pt +phth+ Rt -+ =-Ss+—-9)—t+{n—-1t)
=2n—s—1t)#0

becausen — s —t isodd.

Note: If two integer variables are either both odd or both even, then we say they
are of the same parity.



(10) (1982 Putnam Exam) Evaluate f o) - A,
0

Solution.

u=m

Arctan(ux) dx

X X

u=1
/ / -I-(X )Zdudx
/ / 1+(x )dedu
" |
/ 2— nm.

The interchangeis valid since the integrand of the double integral is nonnegative
and continuous on the domain and the integral is finite.

/“ Arctan(zr X) — Arctanx /“ 1
0

(11) Let n be a positive integer and p be a prime. Find the highest power of p
dividing n!.

Solution. Writelx 2x ---xn. Fork=1,2,...,n, if the highest power of p
dividingkis j, thenwrite j 1’sin acolumnbelow thefactorkinlx 2 x--- x n.
(If pdoesnot dividek, then j = 0, sodo not writeany 1.) Thetotal number of 1's
below 1 x 2 x - - - x nisthe highest power of p dividingn!. Summing the column
sumsisdifficult, but summing the row sumsiseasy. Inthefirst row, thereisone 1
in every p consecutive integers, so the first row sumis[n/ p]. In the second row,
thereis one 1 in every p? consecutive integers, so the second row sumis[n/p?].
Keep going. Thei-th row sumis[n/p']. So thetotal number of 1'sis

[n/pl+[n/p7 +[n/p’] +---

Thisisthe highest power of p dividing n!.

(12) (1987 IMO) Let P, (k) be the number of permutationsof 1, 2, 3, ..., nwhich
n

have exactly k fixed points. Provethat Z kPn(k) = n!. (A fixed pointisanumber
k=0
that is not moved by the permutation.)

Solution. There are n! permutationsof 1,2, 3, ..., n. Cal them fy, fo, ..., fu.

Write each in a separate row. For each permutation, replace each fixed point of

f by 1 and replace all other numbers in the permutation by 0. Then the row sum
n

givesthe number of fixed pointsof f. Now Z kP, (k) isthe sum of the row sums,

grouped according to the P, (k) rows that ﬁa\?ethe same row sum k. By Fubini’s
principle, this is also the sum of the column sums. For the j-th column, the
number of 1'sisthe number of times j isafixed point among the n! permutations.
If j isfixed, then the number of ways of permuting the other n — 1 numbersis
P,?jll = (n — 1)!. So the column sum is (n — 1)! for each of the n columns.

n
Therefore, the sum of column sumsisn(n — 1)! = n!. ThisisZkPn(k).
k=0

Exercises

1 1 1 1 1

1. Find .
l+cotle + 1+ cots + 1+ cot9 o 1+ cot85° + 1+ cot89°

2. (1988 Singapore MO) Compute

1 1 1
+ 4.4 )
2/1+1v2 342+ 2J3 1004/99 + 994/100

3. For napositiveinteger and 0 < x < % prove that cot % —cotx > n.
4. (1990 Hungarian MO) For positive integer n, show that

l
+35|n ?4— -3 3n 4(3”sm§—smx>

[n/4]

n nw

5. For apositiveinteger n, show that =2 2)"2 cos —.
positiveinteg kEZO <4k) + W2 7

*6. Provethat tan® 1° + tar? 3° + tan?5° + - - - ++ tan? 89° = 4005. (Hint: Find a
polynomial of degree 45 having roots tan® 1°, tan® 3°, tan® 5°, ... . , tan® 89°.)
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*7. (1990 Austrian-Polish Math Competition) Let n > 1 be an integer and let
f1, fa, ..., fn bethen! permutationsof 1, 2, ..., n. (Each f; isabijective
function from {1, 2, ..., n} to itself.) For each permutation f;, let us define

n 1 n!
S(fi) =) " Ifi(k) — k. Find =l > s
k=1 Ti=1

*8. (1991 Canadian MO) Let n be afixed positive integer. Find the sum of all
positive integers with the following property: In base 2, it has exactly 2n
digitsconsisting of n 1'sand n 0's. (The leftmost digit cannot be 0.)

2. Inequalities (Part 1)
We often compare numbers or math expressions, such as in finding maxima

or minimaor in applying the sandwich theorem. So we need to know some useful
inequalities. Here we will look at some of these and see how they can be applied.

AM-GM-HM Inequality. For a;, a, ..., a, > 0,

AM =BT &Rt A oy aaa s HM = n .
n 1,141
ap az an

Either equality holdsif andonly ifay = a, = - - - = a,.

Examples. (1) By the AM-GM inequality, for x > 0, X + % > 2,/x- ; = 2with
equalilty if and only if x = 1.
(2) By the AM-HM inequality, if a1, az, ..., a, > 0, then

1 1

1
(al+a2+"'+an)(a—+a—2+"'+;)2”2-
1

(3) If a, b, ¢ > 0and abc = 1, find the minimum of (a + b 4 ¢c)(ab + bc 4+ ca).

Solution. By the AM-GM inequality,
b b+ b
atd+C. Yabc=1 and w > Y/@b)(bo)(ca) = 1.

So(a+ b+ c)@b+ bc+ ca) = 9with equaityif andonlyifa=b=c= 1
Therefore, the minimumis9.

o 1 1
(4) For positiveinteger n, show that (1 + =)" < (1+ )T
n n+1
. 1 . .
Solution. Letay =ay=---=a, =1+ o an11 = 1. BytheAM-GM inequality,

nl+H+1 1 - 1in
= = > = — ..
AM -] 14— =GM ,/(1+n) 1



1 1
Taking the (n + 1)-st power of both sides, we get (1 + n—+1)n+l > (1+ ﬁ)n‘

(5) (1964 IMO) Let a, b, c bethe sides of atriangle. Prove that

a’(b+c—a)+b*c+a—b)+c*(a+b—c) < 3abc.

Solution. Let x = a+g—c,y: b+C_a,z= HLz_b, thenx,y,z > 0

anda=1z+x,b=x+y,c=y+ z Theinequality to be proved becomes

(Z+X)22y + (X + ¥)?22 4 (y + 2%2x < 3(z 4+ X)(X + Y)Y + 2).

Thisisequivalent to X2y + y2z + z2x + xy? + yz2 4 zx? > 6xyz, whichistrue
because x> + y?z + z2x + xy? + yz2 + zx? > 65/x8y6z8 = 6xyz by the AM-GM
inequality.

Cauchy-Schwar z I nequality. For real numbersay, ay, - .., an, by, by, ..., by,
(ayby+ @z + - +agb)? < @ +a5+--- +ad o + b5 +--- 4+ b).
Equality holdsif and only if a;boj = ajb; foralli, j =1,...,n.

Examples. (6) Find the maximum and minimum of acosd 4+ bsind, where
0<0 < 2n.

Solution. By the Cauchy-Schwarz inequality,

(acosf +bsind)? < (a® + b?)(cos?d + sin?6) = a + b?.
So —+/a?2+h? < acosd + bsnd < «/a?+ b2 Equality holds if and only if
asingd = bcoso, i.e. tand = b/a. Therearetwosuch&’sin[0, 2rr) corresponding

to the left and right equalities. So the maximumis /a2 + b2 and the minimum s
—az+ b2

(7) (1978 USAMO) For real numbersa, b, ¢, d, esuchthata+b+c+d+e=8
and a® + b? + ¢? 4+ d? 4 €? = 16, find the maximum of e.
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Solution. By the Cauchy-Schwarz inequality,
(@+b+c+d)? < 1+ 12+ 1%+ 13(@% + b? + ¢® + d?).

So (8 — €)2 < 4(16 — €?). Expanding and simplifying, we get e(5e — 16) < O.
Thismeans 0 < e < 16/5. Examining the equality case of the Cauchy-Schwarz
inequality, we see that whena = b = ¢ = d = 6/5, e will attain the maximum
value of 16/5.

(8) (1995 IMOQ) If a, b, ¢ > 0and abc = 1, then prove that

1 n 1 n 1
a3(b+c)  b3c+a ca+b)

3
> .
-2

Solution. Substituting X =

1 1
=bc,y= b= ca, z= — = ab, theinequality be-
comes ¢

D

2 2 2

X n y n z
Z+y X+z Yy+X

X y z
Nowx+y+z= ——/2+y+ ——+/xX+2+ ——+/y+ Xx. By the
y Zry VYT xre NES Sadiaid

3
> =,
-2

Cauchy-Schwarz inequality, we get
X2 y2 2

z+y+x+z+y+x)(

x+y+22<( Z+Y+ X+ +(y+x).

=2(x+y+2)

Using the last inequality and the AM-GM inequality, we get

2 2 2
X n y n zZ x+y+z> 3,3/xyz:§‘
Z+y X+z y+Xx— 2 -2 2

Rearrangement (or Permutation) Inequality. If a; > a, > --- > a, and
by > by >--- > by, then
aiby+apby+- - -+anby > aiby, +-acby, +- - - +anby, > ayby+ahn_14- - -+anby,

12



whereby,, by,, ..., b, isapermutation of by, by, ..., by.

Example. (9) (1978 IMO) Let ¢y, Cy, .. ., Cy be distinct positive integers. Prove
that

U B I S
2 n2 — 2 n’

Solution. Letay, ay, . . ., a bethec;’sarrangedinincreasingorder. Sincethea;’s
are distinct positive integers, we havea; > 1,a, > 2,...,a, = n. Now, since

1 . .
pP<ap<---<agyandl> % > > pel by the rearrangement inequality, we
get

C C a; an 2 n
Gttt g at bk Sl S

(10) Redo example (8) using the rearrangement inequality.

Solution. (Due to Ho Wing Yip) We define X, y, z as in example (10). Without
loss of generality, we may assume x > y > z becausethe inequality is symmetric.

1
Thenxyz =1, x? > y?> > zZ2and > > . By therearrangement
Z+y X+zZ y+Xx
inequality,
X2 y2 Z2 X2 y2 ZZ
+ + > + + ,
z+y X+z y+Xx " y4+x z4+y x4z

2 2 2 2 2 2

X n y n z X n y n z
z+y x4z y+x x4z y+x  z+y
Adding these inequalitiesand dividing by 2, we get
X2 Z2 1 2 2 2 2 2 2
4 y 4 2_<y+x z+y+x+z>‘
z+y x4z y+x7 2V y+x z+y X+z

Applying the smpleinequality a4+ b? > (a- b)?/2to the numeratorsof theright
sides, then the AM-GM inequality, we get

2

x2 2 via 1,y+x  z+ X+z

T A Y )
z+y x4z y+x— 2% 2 2 2

_ x+y+z> 33/xyz::_3‘

2 - 2 2
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Chebysev'slnequality. If a; > a, > --- > a,andb; > by, > --- > by, then

(@ +a+---+apby+bp+---+by)
n
> ayby + aoby_1 + - - - +anby.

by + abp + - - - + apb, >

Either equality holdsif andonlyifa; =a, =---=a,orby =b, =--- = h,.
Examples. (11) (1974USAMO) For a, b, ¢ > 0, provethat a®b°c® > (abc)@+P+0/3,

Solution. By symmetry, we may assumea > b > c. Thenloga > logb > logc.
By Chebysev’'sinequality,

log(a®hc®) = aloga + blogb + clogc

> (a+b+ c)(Iogz+ logb +logc) _ Iog(abc)a‘g‘c.

The desired inequality follows by exponentiation.

A2)1f0< g < 1lfork=1,2,...,nandS=a;+a,+- - - + a,, then provethat

n
Yt its
l1-a n-—S

©

Solution. Without loss of generality, we may assumea; > ap > --- >
a a
ThenO<1l-a<l-ay<---<1—a,and —— 2 >

2

>
> > ... &n X
l-ay 1—a — 1-—a,

By Chebysev’sinequality,

11—

a
1—a

18 a n n—S a
fﬁk;l—akk;(l_a“): n k;l—ak'

The result follows.

S 1—-a)+

(L2 4o+ (1~ )
—an

14



In math as well as in statistics, we often need to take averages (or means)
of numbers. Other than AM, GM, HM, there are so-called power means and
symmetric means, which include AM and GM as special cases.

Power Mean Inequality. For a;, ap, ..., a, > 0Oands < t,

s s ... s\ /s t t ... t\ 1/t
MS=<al+a2+ +an) <Mt:<al+a2+ +an) ‘

n o n

Equality holdsif andonly ifay = ap = --- = a,.

a2 a2 .. 2
Remarks. Clearly, M; = AM and M_; = HM. Now M, = it 2+n e
is caled the root-mean-square (RMS) of the numbers. It appears in statis
tics and physics. Also, taking limits, it can be shown that M, is MAX =
max{as, az, ---, an}, MgisGM and M_,. isMIN = min{ay, ay, ..., a,}. Sowe
have

MAX > RMS> AM > GM > HM > MIN.

Maclaurin’s Symmetric Mean Inequality. For a;, a, ..., an > 0,
AM =S > §%>...> §/"=GM,

where § isthe average of &l possible productsof a;, ay, .. ., a, taken j at atime.
Any one of the equalitiesholdsif andonlyifa; =a, =--- = a,.

Remarks. To be clear on the meaning of S, take n = 4. In that case, we have

at+at+azt+ay Quap + agaz + yau + apaz + apay + azay
Sl: 4 5 SZZ 6 >

_ uas + a1y + a1azay + axazay
4

2 2 2
Examples. (13) Show that x5 + Y5+ 25 < x5 [ = + y5 [ Y~ 4 5 [Z for posi-
V vz Vax " " Y xy

tivex, y, z.

S and S = ajaaszaa.

15

Solution. Let a = /X, b = /Y, ¢ = 4/z, then the inequality becomes

410 4 b0 | G0 < al® +pid 4 C13‘
- abc
Now a®® + b®3 4 ¢t® = 3ME = 3MEM3, > 3MBME = (@° + b + c!%abc.

1
b

a® + b8+ B

1
14) If a, b, ¢ > 0, then prove that —
(14) ~ P a + ash3c3

1
+ ==
c
Solution. Theinequality is equivalent to

1

1
a4+ b8+ c® > a3 (= +
a b

1
+2) = (abc)?(bc + ca + ab).
By the power mean inequality and the symmetric mean inequality,

a®+ b+ c® = 3M§ > 3MP = 35} = 357}
> (SH%)63(SV?)2 = (abc)2(bc + ca -+ ab).

Multiplying by 3 on both sides, we are done.

A5 If ag,ap,...,an = 0and 1+ ay)(A+ap) - - - (1 + a,) = 2", then show that
aqay---ay <1

Solution. By the symmetric mean inequality,
2'=(N+a)@+a)---1+ay

=1+nsl+(”)sz+-..+( " )snl+sh
2 n—1

S02>1+S" Thenayap---a, = S, < L

16



10.

Exercises
Redo example (11).
Redo example (13).

Redo example (15).

2 2 2

For Xy, Xo, .. ., xn>OshowthaIX +X +- +—”>x1+x2+ -+ X
2 3

ForO < a, b, c < 1anda-+b+c = 2, showthat 8(1—a)(1—b)(1—c) < abc.

a® b
Ifa, b, c,d > 0andc? + d? = (a2 + b?)3, then show that — +E>1
Fora;,ap,...,an > 0anda; +ax+ - - -+ a, = 1, find the minimum of

1 1 1
@+ )P+ @+ )P+ + @+ )2
a1 a an

Ifa,b,c,d > 0and S= a?+ b? + c2 + d?, then show that

al+pd+cd ad+pd4+dd ad+cE+dd b3+c3+d3>
a+b+c at+b+d a+c+d b+c+d —

If X1, X0, ..., Xn > 0and X; + %o + - - - + X, = 1, then show that

n

Xk
Z«/l X« «/n— Z“/_

Let a, b, c bethesides of atriangle. Show that

a’b(a — b) + b?c(b — ¢) + c?a(c — a) > 0.

17

3. Number Theory
81 Divigbility.

Definitions. (i) If a, b, c areintegerssuch that a = bc and b # 0O, thenwe say b
dividesa and denotethis by bja. (For example, 2 divides 6, so we write 2/6.)

(i) A positiveinteger p > lisaprimenumber if 1 and p arethe only positive
integers dividing p. If a positive integer n > 1 is not prime, it is a composite
number.

There is a famous proof of the fact that there are infinitely many prime
numbers. It goes as follow. Suppose there are only finitely many prime numbers,
say they are p1, P2, ..., Pn. Thenthenumber M = pip;- - - pn+ lisgreater than
P1, P2, -- - Pn- SO M cannot be prime, hence thereis a prime number p; dividing
M. However, p; also divides M — 1. Hence p; will divideM — (M —1) =1, a
contradiction.

Fundamental Theorem of Arithmetic (or Prime Factorization Theorem).
Every positive integer n can be written as the product of prime powers n =
20:3%5%7% ... p* where the g s are nonnegative integers, in one and only one
way (except for reordering of the primes).

Examples. 90 = 21325 and 924 = 223'7'11%

Questions. Do positive rational numbers have prime factorizations? (Yes, if
exponents are allowed to be any integers.) Do positive real numbers have prime
factorizations (allowing rational exponents)? (No, = does not.)

Corollaries. (1) m = p1 p2 ... pX dividesn = pp2... p& if and only if
O<d<gfori=12---,k

(2) Thenumber n = 251 3% . pk hasexactly (e; + D(e; +1) - - - (& + 1) positive
divisors.

(3) A positiveinteger n is the m-th power of a positive integer b (i.e. n = b™) if
and only if inthe primefactorization of n = 2%13%25% ... pX, every g isamultiple
of m.

Examples. (1) Since 90 = 213?51, it has (1 + 1)(2 + 1)(1 + 1) = 12 positive
divisors. They are 2%:3%5%, whered; = 0,1, d, = 0,1, 2andd; = 0, 1.

18



(2) Suppose n isa positive integer such that 2n has 28 positive divisorsand 3n has
30 positive divisors. How many positive divisors does 6n have?

Solution. Writen = 2%3%...p* Then (e, + (& + 1 --- (g + 1) = 28
and (e -D(e;+2)--- (e +1) =30.Nowa = (eg+1)--- (g + 1) divides
28 and 30, so it must be 1 or 2. If a = 1, then (e; + 2)(e; + 1) = 28 and
(e1 + 1)(e; + 2) = 30, which have the unique solution e; = 5, e; = 3. It follows
6n has(e;+2)(e;+2)a = 35positivedivisors. If a = 2, then (e;+2)(e;+1) = 14
and (e; + 1)(e; + 2) = 15, which have no integer solutions by simple checking.

(3) (1985 IMO) Given a set M of 1985 distinct positive integers, none of which
has a prime divisor greater than 26. Prove that M contains at least one subset of
four distinct elementswhose product is the fourth power of an integer.

Solution. Let M = {n1, ny, ng, ..., Niggs}. Taking prime factorizations, suppose
n; = 2. 3%i5%i ... 23%i Since 23 isthe ninth prime number, thereare 2° = 512
possible parity (i.e. odd-even) patternsfor the numberse; 1, €. €3, ..., €. SO

among any 513 of them, therewill be two (say n;, n;) with the same pattern. Then
nin; = bﬁ- . Note bjj cannot have any prime divisor greater than 26.

Removethesepairsoneat atime. Since 1985 — 2 x 512 = 961 > 513, there
are at least 513 pairs. Consider the b;;’s for these pairs. There will be two (say
bij , bx) such that bij by = c2. Then ninjngn; = bizj b% =ch

Definitions. Let ag, a, - . ., a, beintegers, not all zeros.

(i) The greatest common divisor (or highest common factor) of a;, az, .. ., an
is the largest positive integer dividing all of them. We denote this number
by (a3, ap, ..., a,) or gcd(ay, ap, ..., an). If (&g, a, ...,a,) = 1, then we say
&, ap, ..., an arecoprimeor relatively prime. In particular, two coprime integers
have no common prime divisors!

(i) The least common multiple of a3, ay, .. ., &, isthe least positive integer
which isamultiple of each of them. We denote thisnumber by [a;, a,, ..., ay] or
lem(ayg, ap, ..., ap)-

Example. (4) (6.8) = 2,[6,8] = 24: (6.8,9) = 1,[6.8,9] = 72.
Theorem. If gy = 2%i3%i ... p%,i, then
(g, a,...,a,) = 2min{eLi}3min{eZ,i} . p;;nin{a(’i}
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‘ fexi}
i i max{eyi
[a1, a2, ..., an] = omax{eyi} gmax{ex,} | oy &)

For n = 2, (a;, ap)[a1, a] = aza,. (The last equation need not be true for more
than 2 numbers.)

Example. (5) 6 = 213!, 8 = 233°, s0 (6, 8) = 2130 = 2, [6, 8] = 2°3! = 24.

Prime factorization is difficult for large numbers. So to find ged's, we can
also use the following fact.

Euclidean Algorithm. If a, b are integers not both zeros, then (a,b) = (a —
bm, b) = (a, b — an) for any positive integersm, n. In particular,ifa > b > 0
anda = bm+r, then(a, b) = (r, b).

Examples. (6) (2445, 652) = (489, 652) = (489, 163) = 163.

(7) (IMO 1959) Provethat thefraction £+ isirreduciblefor every natural number
n.

Solution. 2In+4,14n+3)=(/n+1,14n+3)=(7/n+1,1) = 1.

Thefollowing are some useful facts about relatively prime integers.

(1) For nonnegativeintegersa, b not both zeros, (a, b) istheleast positiveinteger
of the form am + bn, where m, n are integers. In particular, if (a,b) = 1,
then there areintegersm, n such that am + bn = 1.

Reasons. Clearly (a, b) dividespositive numbersof theform am+-bn, hence
(a, b) < am+ bn. By symmetry, we may assume a > b. We will induct on
a.lfa=1thenb=0orland(a,b)=1=a-1+4b-0. Suppose this
istruefor all casesa < ag. By Euclidean algoritnm, (ag, b) = (r, b), where
a=bg+r,0=<r < b. Sinceb < ay, by theinductive hypothesis, there are
integers m, n such that (agp, b) = (r,b) = rm-+ bn = (ag — bgym+ bn =
apm + b(n — gm). Sothecasea = ag istrue.

(2) If njab and (a, n) = 1, then nib. (Thisis because ar + ns = 1 for some
integersr, s so that ni(ab)r 4+ n(sb) = b.) In particular, if p is prime and
plab, then pla or p|b. From this, we get that if (a, n) = 1 and (b, n) = 1,
then (ab, n) = 1.
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(3) If Nk = aband(a, b) = 1, theneach of a and b isthe k-th power of aninteger.
(Thisfollows from taking prime factorization of n and using the second part
of the last fact.)

82 Modulo Arithmetic.

Division Algorithm. Let b be a positive integer. For any integer a, there are
integersq,r suchthata =bg +r and0 < r < b. (r iscaledthe remainder of a
upon division by b. Remainders are aways nonnegative.)

Note that when 19 is divided by 5, the remainder is 4, but when —19 is
divided by 5, the remainder is 1 because —19 = 5(—4) + 1. When the integers
ee.,—6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6, 7, ... isdivided by 5, the respec-
tive remaindersform the periodic sequence

...,4,0,1,2,3,40,1,2,3,4,0,1, 2, ....

Definitions. (i) We say a is congruent to @’ modulo b and denote thisby a =
a'(modb) if and only if a and &’ have the same remainder upon division by b.

(ii) For a positive integer n, a complete set of residues modulo n is a set
of nintegersry, ro, ..., Iy such that every integer is congruent to exactly one of
r1,r2, ...,y modulo n. (For example, 0,1, 2, ..., n — 1 form a complete set of
residues modulo n for every positiveinteger n.)

Basic Properties. (i) a = a’(mod b) if and only if bja — a’. (Often thisisused as
the definition of the congruent relation.)

(i) If a=a'(mod b) and c = c'(mod b), thena+c=a’ + c'(modb),a—c =
a’ — c'(modb), ac = a'c/(mod b), a" = a™(mod b) and P(a) = P(a")(mod b)
for any polynomia P(x) with integer coefficients.

Example. (8) Find the remainder of 19782 upon division by 5% = 125.
Solution. 1978%° = (2000 — 22)° = (—22)%° = 48410 = (-16)1° = 256° =
6° = 253° = 32(—7) = 26(mod 125).

Other than finding remainders, modulo arithmetic is aso useful in many
situations. For example, (mod 2) is good for parity check. The fact that a number
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is divisible by 3 if and only if the sum of digitsis divisible by 3 can be easily
explained by

a,10" +ap 110" 1+ .-+ 10+ ag=an + a1+ - - - + & + a(mod 3).

In working with squares, (mod 4) is useful in doing parity check since (2n)? =
4n? = 0(mod 4) and (2n + 1)2 = 4n? + 4n + 1 = 1(mod 4). Similarly for cubes,
we have k® = —1, 0 or 1(mod 9) accordingto k = —1, 0, 1(mod 3) respectively.
For fourth powers, k* = 0or 1 (mod 16) according to k iseven or odd respectively.
Also, asin the reasoning above for (mod 3), one can show that every nonnegative
integer in base 10 is congruent to the sum of itsdigits (mod 9). To determine the
units digits, we use (mod 10).

Thefollowing facts are very useful in dealing with some problems.

Further Properties. (iii) (Cancellation Property) If am = am’(modb) and
(a, b) = 1, thenbja(m — m’), so bjm — n7, i.e. m = m’(mod b).

(iv) (Existence of Multiplicative Inverse) If (a, b) = 1, then there exists a unique
m(mod b) such that am = 1(mod b). We may denote this m by a . (Reasons.
Since (a, b) = 1, there exist integersm, n such that 1 = (a,b) = am+ bn =
am(mod b). If am’ = 1(mod b), then m = m’(mod b) by the cancellation prop-
erty.)

(v) For a positive integer c, if (a, b) = 1, then we definea ¢ = (a~1)¢(mod b).
Since a®(a )¢ = 1(mod b), so we also have a ™ = (a® ~*(mod b). From this,
we can check that a’™ S = a"a%(mod b) and (a")® = a"S(mod b) for all integers
r,s.

(vi) For nonnegative integers a, b not both zeros, if r2 = 1(mods) and rP
1(mod s), then there are integersm, n isuch that r &P = pam+bn — (paymgybyn
1(mod s).

Fermat'sLittle Theorem. If pisprimeand (a, p) = 1, thenaP~! = 1(mod p).
(Thismeansthat aP~? = a* (mod p) becausea(a?) = 1(mod p).)

Euler’s Theorem. If (a,n) = 1, then a®™ = 1(mod n), where the Euler ¢-
function ¢ (n) isthe number of positive integerslessthan or equal to n, which are
relatively primeto n. (For aprime p, ¢(p) = p — 1 and hence Euler's theorem
generalizes Fermat’slittle theorem.)
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To understand the reasons behind these theorems, we will define areduced set
of residues modulo n to be a set of ¢(n) integersri, ra, ..., rem such that every
integer relatively primeto n is congruent to exactly oneof rq, ro, .. . , g modulo
n. To prove Euler's theorem, we note that if rq, ra, ..., rg is areduced set of
residuesmodulon and (a, n) = 1, thenary, ar, ..., arg arerelatively primeto
n and they also form areduced set of residues modulo n. (Thisisbecauser; =r;
if and only if ar; = ar; (mod n) by the propertiesabove.) So eachar; iscongruent
to auniquer; modulo n and hence

a®®riry - e = (@rp(@ry) - - - @rpamy) =rifz2 - - e (mod n).

Since (rirz -+« femy» N) = 1, applying the cancellation property, we get a?® = 1
(mod n).

Wilson’s Theorem. If p isaprime number, then (p — 1)! = —1 (mod p). (The
converseisasotrue, if n > 4iscomposite, then (n — 1)! = 0 (mod n).)

Reasons. Thecase p = 2isclear. Let p > 2beprimeand 1 < a < p, then
(a, p) = 1limpliesa, 2a, ..., a(p — 1) form areduced set of residues modulo p
and hencethereisauniqueb suchthat 1 < b < pandab = 1 (mod p). We have
a=bifandonlyif pdividesa? — 1= (a— 1)(a+ 1), thatisa=1or p— 1.
Hence, for the p — 3integers 2,3, ..., p— 2, wecanform (p — 3)/2 pairsa, b
withab = 1 (mod p). Then(p— 1! = 1. 1%*3/2(p — 1) = —1 (mod p).

For the converse of Wilson’stheorem, if n > 4 is composite, then let p bea
primedividing n and supoose n # p?. Then p < nandn/p < nsothat p # n/p
andn = p(n/p) divides(n — D!. If n=p?, thenp#£A2and p < 2p < p>=n
S0 againn divides2p? = p(2p), which divides (n — 1)!.

Examples. (9) ¢(1) = 1. If pisprime then 1,2, 3,..., p — 1 are reaively
primeto p and s0 ¢(p) = p — 1. (Again, this means Fermat’s little theorem
is a specia case of Euler's theorem). For k > 1, p prime, since the numbers
P, 2p, 3p, ..., pX arethe only numberslessthan pX not relatively primeto pK, so

$(p) = p*— pt = p‘a- .

(10) Let us find the units digit of 77'. Note ¢(10) = 4, since only 1,3,7,9 are less
than or equal to 10 and relatively prime to 10. Since (7, 10) = 1, so 7949 =
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74 = 1(mod 10) by Euler’'s theorem. Now 7’ = (—1)’ = 3(mod 4) and so
77 = 7413 — (7978 = 1773 = 343 = 3(mod 10). So the units digit of 77 is 3.

Chinese Remainder Theorem. Let my, my, ..., my be positiveintegers such that
(m;, m;) = 1 for every pair i # j. Then the equations X = bi(mod my), X =
bo(mod my), ..., x = by(mod my) have a common solution. In fact, every two
solutions are congruent (mod mym; - --my) and we say the solution is unique
(mod mimy - - - my).

Reasons. One solution x can be found as follow: let M;j = ™= then

x = M{™by + M ™b, 4 - - + MZ ™y

is a solution since m;[M; for i # j, (Mi,m) = 1imply x = M#™h =

bi(modm;) fori =1, 2, ..., k by Euler'stheorem. Next, to show the solutionis
unique (mod mym; - - - my), let X’ = bj(mod m;) also. Then x — x’ = 0(mod m;)
fori =1,2,...,k i.e.x—x"isacommonmultipleof them;’s. Since(m;, m;) =1

fori # j, sotheirlcmmym,- - - mg|x — X’. Then x = x’(mod mym; - - - mMy).)

Computation Formulas. If (a,b) = 1, then ¢(ab) = d(@¢(). If n =
prips---prcande > 1fori =1,2,...,k, then

1 1 1
oM =nl-—A-—)---1—-—).
P1 P2 Pk

Reasons. For the first statement, observe that if 1 < x < aband (x,ab) = 1,
then (x, a) = 1 and (x, b) = 1. So theremaindersr, s of x upon divisonsby a, b
are relatively primeto a, b, respectively by the Euclidean algorithm. Conversely,
ifl<r<a(@r)=1landl<s<b, (b s)y=1thenx =r(moda) andx =
s(mod b) have aunique solution lessthan or equal to ab by the Chinese remainder
theorem. Thus, thepairingx <> (r, s) isaone-to-one correspondence. The second
statement follows from the first statement and the fact ¢(p{) = pi(1— 2).

Examples. (11) $(100) = ¢(225%) = 100(1 — $)(1 — 1) = 40.

(12) Tosolvethesystem x = 3(mod 7), x = 2(mod 5), we may usetheformulain
the paragraph below the Chinese remainder theorem to get x = 5973 4 7902 =
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563 + 742 = 17(mod 35). (However, in general the formula may involve large
numbers.) Alternatively, we can solve asfollow: x = 3(mod7) & x =7n+ 3,

X=2(mod5) & 7n+ 3 =2(mod5) & 7n = —1 = 4(mod 5) &

n=3(7n) = 2(mod 5) <& n =5k + 2.
Then x = 7(5k + 2) 4+ 3 = 35k 4 17 (or x = 17(mod 35).)

(13) (IMO 1989) Prove that for each positive integer n there exist n consecutive
positive integers, none of which isan integral power of a prime number.

Solution. Let p1, p2s ---» Pan_1. P2n be 2n distinct prime numbers. Now by the
Chinese remainder theorem,

= —1(mod p1p2), = —2(mod p3ps), .-, = —n(mod pan_1P2n)

have a common solution. Then each of the numbersx + 1, x4+ 2,...,x+nis
divisible by two different prime numbers. Hence each cannot be a prime power.

(14) If g isaprime factor of a? 4 b? and g = 3(mod 4), then gla and q|b. (This
fact is sometimes useful, for examplein exercises 11 and 22.)

Solution. Suppose g does not divide a, say. Then (g, a) = 1. Letc = a%2,
then ac = a9 = 1(mod q) by Fermat's little theorem. Now qla® + b? implies
b?> = —a?(mod @), so (bc)> = —1(mod g). Then g does not divide bc and
(bc)9t = (=12 = _1(mod ), contradicting Fermat’s little theorem. So
gla and similarly q/b.

(15) (1978 IMO) Let m and n be natural numberswith1 < m < n. Intheir decimal

representations, the last three digits of 1978™ are equal, respectively, to the last

threedigits of 1978". Find m and n such that m -+ n hasitsleast value.

Solution. Sincethelast threedigitsare equal, so 1978" = 1978™(mod 1000), i.e.
1000 = 235%1978" — 1978™ = 1978™M(1978" ™ — 1).
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So, 22/1978™ (because 1978" ™ — 1 isodd) and theleast mis3. Letd = n —m.
The problem now isto look for the least positive integer d such that 5%/1978% — 1
(i.e. 1978 = 1(mod 5°).) Since¢ (5%) = 100, s01978'° = 1(mod 5°) by Euler’s
theorem. Thusthe least such d isat most 100.

Suppose the least d < 100. Let 100 = dg 4+ r with O < r < d, then
1978" = (1978%)91978" = 19781 = 1(mod 5°). Since d isto be the least such
exponent,r must be0. Thend|100. Also, 5/19789—1,s01 = 1978 = 3%(mod 5).
Theonly such d’saremultiplesof 4. Sod = 4 or 20. However, example (8) shows
that 1978%° = 1(mod 5%). (This also shows that 1978* £ 1(mod 5°) because
1978* = 1(mod 5% implies 1978%° = (1978%° = 1(mod 5°%).) So d > 100.
Thereforethe least d = 100 and theleast m+n = d + 2m = 106 whenm = 3
andn=d+ m = 103.

Exercises
1. For each of the following statements, determine if each is true or false. If
true, give an explanation. If false, provide a counterexample.
(@) If pisaprimenumber and p|n¥, then pK|nk.
(b) If (ab,c) =1, then(a,c)=1and (b,c) = 1.
(c) If a®2 = b?(mod ¢?), then a = b(mod ¢).
2. Asinthelast exercise, determineif each of the following statement istrue or
false. Provide reason or counterexample.

(@) If pisanodd prime, then¢(p? — 1) = ¢(p — D (p + 1). How about
p(P*—DH=¢(p-2¢(p+2?

(b) If n > 1, then show that the sequence n, ¢(N), ¢(H(N)), ¢ (¢(P(N))),
d(P(Pp(P(n)))), ... must beall 1'safter the n-th term.

3. If pisaprime number, show that p divides the binomial coefficients C} =

ﬁln)!fornzl,z,...,p—l.

4. Find all intergers x such that x = 1(mod 2),x = 2(mod3) and x =
3(mod 5).
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5. Computethe last 2 digitsof 77".(Hint: Consider (mod 4) and (mod 25).)
6. (1972 USAMO) Provethat for any positiveintegersa, b, c,

[a.b.c]>  (a,b,0)?
[a, b][b, c][c, a] " (a,b)b,0)(c a)’

7. Show that the greatest power of a prime number p dividingn! is
>\, N n n n
—l=[=1+[=s]1+[=]1+--
kizl[lok] [p] [pz] [p3]

where [x] isthe greatest integer less than or equal to x.

8 (19721MO 1972) Let m and n be arbitrary non-negativeintegers. Prove that
2m)l(2n)!
minl(m -+ n)!
isaninteger. (Hint: One solution uses the last exercise. Another solutionis
to get arecurrencerelation.)

9. Do there exist 21 consecutive positive integers each of which is divisible by
one or moreprimes p fromtheinterva 2 < p < 13?

10. Show that there areinfinitely many prime numbersof theform 4n — 1. (Hint:
Modify the proof that there are infinitely many prime numbers.)

11. Show that there are infinitely many prime numbersof theform 4n+ 1. (Hint:
Use example 14.)

Remarks. There is a famous theorem called Dirichlet’s Theorem on Prime
Progression, which states that for every pair of relatively prime positive
integers a, b, the arithmetic progression a, a + b, a+ 2b,a + 3b, ... must
containinfinitely many prime numbers.

Another famous theorem known as Chebysev’s theorem asserts that for
every X > 1, there is always a prime number p between x and 2x. Thisis
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also called Bertrand's Postulate because it was experimentally verified by
Bertrand for x from 1 to 1, 000, 000 before Chebysev proved it.

83 Divisibility Problems

Examples. (16) (1998 IMO) Determine all pairs (a, b) of positive integers such
that ab? + b + 7 dividesa®b + a + b.

Solution. Considering the expressions as polynomials of a and treating b as
constant, it is natural to begin asfollow. If ab? 4+ b + 7 dividesa®b + a + b, then
ab? + b + 7 divides

a(@’®+b+7 —b@b+a+b)=7a—b%

If 7a — b? = 0, then 7 dividesb and so b = 7k, a = 7k? for some positive
integer k. It iseasy to check these pairs (a, b) = (7k?, 7k) satisfy the condition.

If 7a—b? < 0, thenab®+b+7 < |7Ta—b?| = —7a-+b?, but thiscontradicts
—7a+b2<b?<ab?+b+7.

If 7a—b? > 0, thenab®? + b+ 7 <7a—b% If b > 3, thenab®> + b+ 7 >
9a > 7a > 7a— b?, acontradiction. Sob canonly belor2. Ifb =1, thena+8
divides7a— 1= 7(a+8) — 57. Soa+ 8divides57, whichimpliesa = 11 or 49.
If b= 2, then4a + 9divides7a — 4. Since 7a — 4 < 2(4a + 9) = 8a + 18, we
get 7a — 4 = 4a 4 9, which has no integer solution. Finaly, (a, b) = (11, 1) and
(49, 1) are easily checked to be solutions.

(17) (1988 IMO) Let a and b be positiveintegers such that ab + 1 dividesa? + b2.
2 2

a‘+b
Show that T
Solution. Letk = (a® + b?)/(ab + 1). Assume there exists a case k is an integer,
but not a perfect square. Among all such cases, consider the case when max{a, b}
isleast possible. Notea = bimpliesO < k = 2a?/(a?+ 1) < 2sothatk = 1.
Hence, by symmetry, we may assume a > b. Now x? + b? —k(xb +1) = 0
has a as aroot. The other root is the integer ¢ = kb — a = (b? — k)/a. Now
cb4+1=(c®+b»)/k>0andc = (b® —k)/a # 0imply c isapositive integer.

isthe square of an integer.
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Also, c = (b2 — k)/a < (@2 —k)/a < a. Now k = (c2+ b?)/(cb+ 1) isa
nonsquare integer and max{b, c} < a = max{a, b} contradict max{a, b} is least
possible. Therefore, al such k’s are perfect squares.

Remarks. Considering to the roots of a quadratic expression is a useful trick in
some number theory problems!

a.2

(18) (2003IMO) Determineall pairsof positiveintegers(a, b) suchthat al
isapositiveinteger.

Solution. Let k = a?/(2ab? — b® + 1) be apositive integer. Then a? — 2kb%a +
kb® — k = 0. (Note it is possible to consider roots. However, the following is a
variation that is also useful.) Multiplying by 4 and completing squares, we get
(2a — 2kb?)? = (2kb? — b)? + (4k — b?). Let M = 2a — 2kb? and N = 2kb? — b,
then M2 = N2 + (4k — b?).

If 4k —b? = 0, thenbisevenand M = £N. If M = —N, then we get
b = 2a.lf M = N, then 2a = 4kb? — b = b* — b. Thus, we get (a, b) = (b/2, b)
or ((b* —b)/2, b) with b an eveninteger. We can easily check these are solutions.

If 4k — b? > 0, thensinceN = 2kb> —b=b(2kb — 1) > 12— 1) =1, 0
M2 > (N + 1)2. We have

b2 —b3+1

Ak —b2=MZ2—-N2>(N+1D%2—N2=2N+1=4kb?—2b+1,

which implies 4k(b? — 1) + (b — 1)? < 0. Since the left side is also nonegative,
thisforcesb = 1andk = a?/(2a — 1+ 1) = a/2. Then (a, b) = (2k, 1), which
can be checked to be a solution for every positiveinteger k.

If 4k — b? < 0, then M2 < (N — 1)2. So
Ak—bP=M?—-N?<(N—12?—-N?=-2N+1=—-4kb?>+2b+1,

which implies0 < (1 — 4k)b? + 2b + (1 — 4k). However, the right side equals
1 ., 8kZk—-1 -
(1— 4 (b + - 4|() D < 0, acontradiction.

(19) (1972 Putnam Exam) Show that if n is an integer greater than 1, then n does
not divide2" — 1.
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Solution. Assume n 