
1. Sums and Products

In math, very often we have some interesting numbers which we would like
to find their sum or product. Below we will look at a few methods for doing these
operations. (Here we will also consider integrals which we can view as summing
uncountably many numbers.)

Pairing Method. Recall to find S = 1 + 2 + · · · + 100 we can say S = 100 +
99 + · · · + 1 also and hence 2S = (1 + 100) + (2 + 99) + · · · + (100 + 1) =
100× 101 = 10100 yielding S = 5050. This suggest that in handling numbers we
can try to pair them first and hope this can simplify the problem.

Examples. (1) (2000 APMO) Find S =
101∑
i=0

x3i
1− 3xi + 3x2i

for xi = i

101
.

Solution. Note 1− 3x + 3x2 = (1− x)3 + x3. Let f (x) = x3

(1− x)3 + x3 . Then
f (x) + f (1− x) = 1. Since 1− xi = x101−i , we have

2S =
101∑
i=0

(
f (xi ) + f (x101−i )

) = 102 �⇒ S = 51.

(2) (2000 HKMO Math Camp) Express
cos 1◦ + cos 2◦ + · · · + cos 44◦
sin 1◦ + sin 2◦ + · · · + sin 44◦ in the

form a + b√c, where a, b and c are integers.

Solution 1. Recall cos a + cos b = 2 cos a + b
2
cos
a − b
2
and sin a + sin b =

2 sin
a + b
2
cos
a − b
2

. Taking a = (45− n)◦ and b = n◦ for n = 1, 2, . . . , 22, we

have

cos 1◦ + cos 2◦ + · · · + cos 44◦
sin 1◦ + sin 2◦ + · · · + sin 44◦ = 2 cos

45◦
2

(
cos 43

◦
2 + cos 41◦2 + · · · + cos 1◦2

)
2 sin 45

◦
2

(
cos 43

◦
2 + cos 41◦2 + · · · + cos 1◦2

)
= cos

45◦
2

sin 45
◦
2

=
√√
2+ 1√
2− 1

= 1+
√
2.

1

Solution 2. Since

cos n◦ + sin n◦ =
√
2(cos 45◦ cos n◦ + sin 45◦ sin n◦) =

√
2 cos(45− n)◦,

(cos 1◦ + cos 2◦ + · · · + cos 44◦) + (sin 1◦ + sin 2◦ + · · · + sin 44◦)
=

√
2(cos 44◦ + cos 43◦ + · · · + cos 1◦).

Therefore,
cos 1◦ + cos 2◦ + · · · + cos 44◦
sin 1◦ + sin 2◦ + · · · + sin 44◦ = 1√

2− 1
= 1+

√
2.

(3) (1980 Putnam Exam) Evaluate
∫ π/2

0

dx

1+ (tan x)
√
2
.

Solution. Let r =
√
2 and I =

∫ π/2

0

dx

1+ tanr x =
∫ π/2

0

cosr x dx

cosr x + sinr x . Since

cos(
π

2
− t) = sin t and sin(π

2
− t) = cos t, the change of variable x = π

2
− t will

yield I =
∫ π/2

0

sinr t dt

sinr t + cosr t . So

2I =
∫ π/2

0

cosr x + sinr x
cosr x + sinr x dx =

∫ π/2

0
dx = π

2
�⇒ I = π

4
.

Telescoping Method. A particularly simple type of sum everybody can do is of
the form

(a1 − a2) + (a2 − a3) + · · · + (an−1 − an) = a1 − an.
This type of sum is called a telescoping sum. Similarly, there are telescoping
products, where the factors are of the form ai/ai+1 and their product is a1/an.
Some summation or product problems are of these forms. So in summing, we
should try to see if the terms can be put in the form ai − ai+1. Here are some
examples.

Examples. (4) Simplify sin 1+ sin 2+ · · · + sin n.
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Solution 1. Recall sin a sin b = cos(a − b) − cos(a + b)
2

. Setting b = 1
2 , we get

sin a = cos(a − 1
2 ) − cos(a + 1

2 )

2 sin 12
. So

sin 1+ sin 2+ · · · + sin n

= (cos 12 − cos 32 ) + (cos 32 − cos 52 ) + · · · + (cos(n − 1
2 ) − cos(n + 1

2 ))

2 sin 12

=cos
1
2 − cos(n + 1

2 )

2 sin 12
.

Solution 2. (Use complex arithmetic) Let z = cos 1 + i sin 1. By de Moivre’s
formula, zk = (cos 1+ i sin 1)k = cos k+ i sin k.Note sin 1+ sin 2+· · ·+ sin n =
Im (z + z2 + · · · + zn). Now

z + z2 + · · · + zn = z(z
n − 1)
z − 1 = z

1/2(zn − 1)
z1/2 − z−1/2 = z

n+1/2 − z1/2
2i sin(1/2)

=
(
cos(n + 1

2 ) − cos 12
) + i(sin(n + 1

2 ) − sin 12
)

2i sin 12

=
(
sin(n + 1

2 ) − sin 12
) + i(cos 12 − cos(n + 1

2 )
)

2 sin 12
.

So
n∑
k=1
sin k = cos

1
2 − cos(n + 1

2 )

2 sin 12
. Also,

n∑
k=1
cos k = sin(n + 1

2 ) − sin 12
2 sin 12

.

(5) (1977 Putnam Exam) Evaluate
∞∏
n=2

n3 − 1
n3 + 1 . (Here

∞∏
n=2
an = lim

k→∞
a2a3 · · · ak .)

Solution. Note that

n3 − 1
n3 + 1 = (n − 1)(n2 + n + 1)

(n + 1)(n2 − n + 1) = (n − 1)((n + 1)2 − (n + 1) + 1)
(n + 1)(n2 − n + 1) .

3

So for large k,

k∏
n=2

n3 − 1
n3 + 1 =

(1 · 7
3 · 3

)(2 · 13
4 · 7

)(3 · 21
5 · 13

)
· · ·

( (k − 1)(k2 + k + 1)
(k + 1)(k2 − k + 1)

)
= 2(k

2 + k + 1)
3k(k + 1) .

Taking limit as k → ∞, we get the answer is
2

3
.

(6) Show that 2
√
101− 2 <

100∑
n=1

1√
n

< 20.

Solution. (Note it may be difficult to find the exact sum. We have to bound the
terms from above and below.) To get telescoping effects, we use

√
n + 1− √

n = 1√
n + 1+ √

n
<
1

2
√
n

<
1√

n + √
n − 1 = √

n −
√
n − 1.

Summing from n = 1 to 100, then multiplying by 2, we get the inequalities.

Binomial Sums. For sums involving binomial coefficients, we will rely on the
binomial theorem and sometimes a bit of calculus to find the answers. Triv-

ially, from (1+ x)n =
n∑
k=0

(
n

k

)
xk, we get 2n =

n∑
k=0

(
n

k

)
by setting x = 1 and

0 =
k∑
n=0

(−1)k
(
n

k

)
by setting x = −1. These equations explain why the sum of

the n-th row of the Pascal triangle is 2n and the alternate sum is 0. Below we will
look at more examples.

Examples. (7) Simplify
n∑
k=0

(
n

k

)2
.
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Solution. Since
(
n

k

)
=

(
n

n − k

)
, the sum is the same as

n∑
k=0

(
n

k

)(
n

n − k

)
. Note

this sum is the coefficient of xn in(
1+

(
n

1

)
x +

(
n

2

)
x2 + · · · + xn

)(
1+

(
n

1

)
x +

(
n

2

)
x2 + · · · + xn

)
=(1+ x)n(1+ x)n = (1+ x)2n = 1+ · · · +

(
2n

n

)
xn + · · · + x2n .

Therefore,
n∑
k=0

(
n

k

)2
=

(
2n

n

)
. (Remark: By looking at the coefficients of x j on

both sides of the identity (1 + x)m(1 + x)n = (1 + x)m+n, we will get the more
general identity

j∑
k=0

(
m

k

)(
n

j − k

)
=

(
m + n
j

)
.)

(8) (1962 Putnam Exam) Evaluate in closed form
n∑
k=0
k2

(
n

k

)
.

Solution1. Forn ≥ k ≥ 2,
(
n

k

)
= n!

k!(n − k)! = n
k

(
n − 1
k − 1

)
= n(n − 1)
k(k − 1)

(
n − 2
k − 2

)
.

So
n∑
k=0
k2

(
n

k

)
= n +

n∑
k=2

(k(k − 1) + k)
(
n

k

)

= n +
n∑
k=2

(
n(n − 1)

(
n − 2
k − 2

)
+ n

(
n − 1
k − 1

)
)

= n + n(n − 1)2n−2 + n(2n−1 − 1) = n(n + 1)2n−2.
The cases n = 0 and 1 are easily checked to be the same.

Solution2. (Use calculus)Differentiating both sides of (1+ x)n =
n∑
k=0

(
n

k

)
xk,we

get n(1+x)n−1 =
n∑
k=0
k

(
n

k

)
xk−1.Multiplying both sides by x, then differentiating

5

both sides again, we get n(1+ x)n−1 + n(n − 1)x(1+ x)n−2 =
n∑
k=0
k2

(
n

k

)
xk−1.

Setting x = 1, we get
n∑
k=0
k2

(
n

k

)
= n2n−1 + n(n − 1)2n−2 = n(n + 1)2n−2.

Fubini’s Principle. When we have m rows of n numbers, to find the sum of these
mn numbers, we can sum each row first then add up the row sums. This will be
the same as summing each column first then add up the column sums. This simple
fact is known as Fubini’s Principle. There is a similar statement for the product of
the mn numbers. In short, we have

m∑
i=1

n∑
j=1
ai j =

n∑
j=1

m∑
i=1
ai j and

m∏
i=1

n∏
j=1
ai j =

n∏
j=1

m∏
i=1
ai j .

Historically the original Fubini’s principle was about interchanging the order of
double integrals, namely if | f | is integrable on the domain, then∫ b

a

∫ d

c
f (x, y) dxdy =

∫ d

c

∫ b

a
f (x, y) dydx .

Examples. (9) For a n× n chessboard with n odd, each square is written a+1 or a
−1. Let pi be the product of the numbers in the i-th row and q j be the product of the
numbers in the j-th column. Show that p1+ p2+· · ·+ pn+q1+q2+· · ·+qn �= 0.

Solution. By Fubini’s principle, p1 p2 · · · pn = q1q2 · · · qn . Note each pi or qj
is ±1. Suppose there are s (−1)’s among p1, p2, · · · , pn and t (−1)’s among
q1, q2, · · · , qn . Then either s and t are both odd or both even. Now

p1 + p2 + · · · + pn + q1 + q2 + · · · + qn = −s + (n − s) − t + (n − t)
= 2(n − s − t) �= 0

because n − s − t is odd.
Note: If two integer variables are either both odd or both even, then we say they
are of the same parity.
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(10) (1982 Putnam Exam) Evaluate
∫ ∞

0

Arctan(πx) − Arctan x
x

dx .

Solution. ∫ ∞

0

Arctan(πx) − Arctan x
x

dx =
∫ ∞

0

1

x
Arctan(ux)

∣∣∣u=π

u=1
dx

=
∫ ∞

0

∫ π

1

1

1+ (xu)2
dudx

=
∫ π

1

∫ ∞

0

1

1+ (xu)2
dxdu

=
∫ π

1

π

2u
du = π

2
lnπ.

The interchange is valid since the integrand of the double integral is nonnegative
and continuous on the domain and the integral is finite.

(11) Let n be a positive integer and p be a prime. Find the highest power of p
dividing n!.

Solution. Write 1 × 2 × · · · × n. For k = 1, 2, . . . , n, if the highest power of p
dividing k is j, then write j 1’s in a column below the factor k in 1× 2× · · · × n.
(If p does not divide k, then j = 0, so do not write any 1.) The total number of 1’s
below 1× 2× · · · × n is the highest power of p dividing n!. Summing the column
sums is difficult, but summing the row sums is easy. In the first row, there is one 1
in every p consecutive integers, so the first row sum is [n/p]. In the second row,
there is one 1 in every p2 consecutive integers, so the second row sum is [n/p2].
Keep going. The i-th row sum is [n/pi ]. So the total number of 1’s is

[n/p]+ [n/p2]+ [n/p3]+ · · · .

This is the highest power of p dividing n!.

(12) (1987 IMO) Let Pn(k) be the number of permutations of 1, 2, 3, . . . , n which

have exactly k fixed points. Prove that
n∑
k=0
kPn(k) = n!. (A fixed point is a number

that is not moved by the permutation.)

7

Solution. There are n! permutations of 1, 2, 3, . . . , n. Call them f1, f2, . . . , fn!.
Write each in a separate row. For each permutation, replace each fixed point of
f by 1 and replace all other numbers in the permutation by 0. Then the row sum

gives the number of fixed points of f. Now
n∑
k=0
kPn(k) is the sum of the row sums,

grouped according to the Pn(k) rows that have the same row sum k. By Fubini’s
principle, this is also the sum of the column sums. For the j-th column, the
number of 1’s is the number of times j is a fixed point among the n! permutations.
If j is fixed, then the number of ways of permuting the other n − 1 numbers is
Pn−1n−1 = (n − 1)!. So the column sum is (n − 1)! for each of the n columns.
Therefore, the sum of column sums is n(n − 1)! = n!. This is

n∑
k=0
kPn(k).

Exercises

1. Find
1

1+ cot 1◦ + 1

1+ cot 5◦ + 1

1+ cot 9◦ + · · · + 1

1+ cot 85◦ + 1

1+ cot 89◦ .

2. (1988 Singapore MO) Compute

1

2
√
1+ 1

√
2

+ 1

3
√
2+ 2

√
3

+ · · · + 1

100
√
99+ 99

√
100

.

3. For n a positive integer and 0 < x ≤ π

2
, prove that cot

x

2n
− cot x ≥ n.

4. (1990 Hungarian MO) For positive integer n, show that

sin3
x

3
+ 3 sin3 x

32
+ · · · + 3n−1 sin3 x

3n
= 1
4

(
3n sin

x

3n
− sin x

)
.

5. For a positive integer n, show that
[n/4]∑
k=0

(
n

4k

)
= 2n−2 + (

√
2)n−2 cos

nπ

4
.

*6. Prove that tan2 1◦ + tan2 3◦ + tan2 5◦ + · · · + tan2 89◦ = 4005. (Hint: Find a
polynomial of degree 45 having roots tan2 1◦, tan2 3◦, tan2 5◦, . . . , tan2 89◦.)
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*7. (1990 Austrian-Polish Math Competition) Let n > 1 be an integer and let
f1, f2, . . . , fn! be the n! permutations of 1, 2, . . . , n. (Each fi is a bijective
function from {1, 2, . . . , n} to itself.) For each permutation fi , let us define

S( fi ) =
n∑
k=1

| fi (k) − k|. Find 1
n!

n!∑
i=1
S( fi ).

*8. (1991 Canadian MO) Let n be a fixed positive integer. Find the sum of all
positive integers with the following property: In base 2, it has exactly 2n
digits consisting of n 1’s and n 0’s. (The leftmost digit cannot be 0.)

9

2. Inequalities (Part I)

We often compare numbers or math expressions, such as in finding maxima
or minima or in applying the sandwich theorem. So we need to know some useful
inequalities. Here we will look at some of these and see how they can be applied.

AM-GM-HM Inequality. For a1, a2, . . . , an > 0,

AM = a1 + a2 + · · · + an
n

≥ GM = n
√
a1a2 · · · an ≥ HM = n

1
a1 + 1

a2 + · · · + 1
an

.

Either equality holds if and only if a1 = a2 = · · · = an.

Examples. (1) By the AM-GM inequality, for x > 0, x + 1
x

≥ 2
√
x · 1
x

= 2 with
equalilty if and only if x = 1.

(2) By the AM-HM inequality, if a1, a2, . . . , an > 0, then

(a1 + a2 + · · · + an)
( 1
a1

+ 1
a2

+ · · · + 1

an

) ≥ n2.

(3) If a, b, c > 0 and abc = 1, find the minimum of (a + b + c)(ab + bc + ca).

Solution. By the AM-GM inequality,

a + b + c
3

≥ 3√abc = 1 and
ab + bc + ca

3
≥ 3

√
(ab)(bc)(ca) = 1.

So (a + b + c)(ab + bc + ca) ≥ 9 with equality if and only if a = b = c = 1.
Therefore, the minimum is 9.

(4) For positive integer n, show that
(
1+ 1
n

)n ≤ (
1+ 1

n + 1
)n+1

.

Solution. Let a1 = a2 = · · · = an = 1+ 1
n
, an+1 = 1.By theAM-GM inequality,

AM = n(1+ 1
n ) + 1

n + 1 = 1+ 1

n + 1 ≥ GM = n+1

√(
1+ 1
n

)n · 1.
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Taking the (n + 1)-st power of both sides, we get (1+ 1

n + 1
)n+1 ≥ (

1+ 1
n

)n
.

(5) (1964 IMO) Let a, b, c be the sides of a triangle. Prove that

a2(b + c − a) + b2(c + a − b) + c2(a + b − c) ≤ 3abc.

Solution. Let x = a + b − c
2

, y = b + c − a
2

, z = c + a − b
2

, then x, y, z > 0

and a = z + x, b = x + y, c = y + z. The inequality to be proved becomes

(z + x)22y + (x + y)22z + (y + z)22x ≤ 3(z + x)(x + y)(y + z).

This is equivalent to x2y + y2z + z2x + xy2 + yz2 + zx2 ≥ 6xyz, which is true
because x2 + y2z + z2x + xy2+ yz2+ zx2 ≥ 6 6

√
x6y6z6 = 6xyz by the AM-GM

inequality.

Cauchy-Schwarz Inequality. For real numbers a1, a2, . . . , an, b1, b2, . . . , bn,

(a1b1 + a2b2 + · · · + anbn)2 ≤ (a21 + a22 + · · · + a2n)(b21 + b22 + · · · + b2n).

Equality holds if and only if aibj = ajbi for all i, j = 1, . . . , n.

Examples. (6) Find the maximum and minimum of a cos θ + b sin θ, where
0 ≤ θ < 2π.

Solution. By the Cauchy-Schwarz inequality,

(a cos θ + b sin θ)2 ≤ (a2 + b2)(cos2 θ + sin2 θ) = a2 + b2.

So −
√
a2 + b2 ≤ a cos θ + b sin θ ≤

√
a2 + b2. Equality holds if and only if

a sin θ = b cos θ, i.e. tan θ = b/a.There are two such θ ’s in [0, 2π) corresponding
to the left and right equalities. So the maximum is

√
a2 + b2 and the minimum is

−
√
a2 + b2.

(7) (1978 USAMO) For real numbers a, b, c, d, e such that a+ b+ c+ d + e = 8
and a2 + b2 + c2 + d2 + e2 = 16, find the maximum of e.

11

Solution. By the Cauchy-Schwarz inequality,

(a + b + c + d)2 ≤ (12 + 12 + 12 + 12)(a2 + b2 + c2 + d2).

So (8 − e)2 ≤ 4(16 − e2). Expanding and simplifying, we get e(5e − 16) ≤ 0.
This means 0 ≤ e ≤ 16/5. Examining the equality case of the Cauchy-Schwarz
inequality, we see that when a = b = c = d = 6/5, e will attain the maximum
value of 16/5.

(8) (1995 IMO) If a, b, c > 0 and abc = 1, then prove that

1

a3(b + c) + 1

b3(c + a) + 1

c3(a + b) ≥ 3
2
.

Solution. Substituting x = 1
a

= bc, y = 1
b

= ca, z = 1
c

= ab, the inequality be-
comes

x2

z + y + y2

x + z + z2

y + x ≥ 3
2
.

Now x + y + z = x√
z + y

√
z + y + y√

x + z
√
x + z + z√

y + x
√
y + x . By the

Cauchy-Schwarz inequality, we get

(x + y + z)2 ≤ ( x2
z + y + y2

x + z + z2

y + x
) (

(z + y) + (x + z) + (y + x))︸ ︷︷ ︸
=2(x+y+z)

.

Using the last inequality and the AM-GM inequality, we get

x2

z + y + y2

x + z + z2

y + x ≥ x + y + z
2

≥ 3
3
√
xyz

2
= 3
2
.

Rearrangement (or Permutation) Inequality. If a1 ≥ a2 ≥ · · · ≥ an and
b1 ≥ b2 ≥ · · · ≥ bn, then

a1b1+a2b2+· · ·+anbn ≥ a1br1+a2br2+· · ·+anbrn ≥ a1bn+a2bn−1+· · ·+anb1,
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where br1, br2, . . . , brn is a permutation of b1, b2, . . . , bn .

Example. (9) (1978 IMO) Let c1, c2, . . . , cn be distinct positive integers. Prove
that

c1 + c2
22

+ · · · + cn
n2

≥ 1+ 1
2

+ · · · + 1
n
.

Solution. Let a1, a2, . . . , an be the ci ’s arranged in increasing order. Since the ai ’s
are distinct positive integers, we have a1 ≥ 1, a2 ≥ 2, . . . , an ≥ n. Now, since
a1 < a2 < · · · < an and 1 >

1

22
> · · · >

1

n2
, by the rearrangement inequality, we

get

c1 + c2
22

+ · · · + cn
n2

≥ a1 + a2
22

+ · · · + an
n2

≥ 1+ 2
22

+ · · · + n
n2

.

(10) Redo example (8) using the rearrangement inequality.

Solution. (Due to Ho Wing Yip) We define x, y, z as in example (10). Without
loss of generality, we may assume x ≥ y ≥ z because the inequality is symmetric.
Then xyz = 1, x2 ≥ y2 ≥ z2 and 1

z + y ≥ 1

x + z ≥ 1

y + x . By the rearrangement
inequality,

x2

z + y + y2

x + z + z2

y + x ≥ x2

y + x + y2

z + y + z2

x + z ,

x2

z + y + y2

x + z + z2

y + x ≥ x2

x + z + y2

y + x + z2

z + y .

Adding these inequalities and dividing by 2, we get

x2

z + y + y2

x + z + z2

y + x ≥ 1
2

( y2 + x2
y + x + z

2 + y2
z + y + x

2 + z2
x + z

)
.

Applying the simple inequality a2+b2 ≥ (a+b)2/2 to the numerators of the right
sides, then the AM-GM inequality, we get

x2

z + y + y2

x + z + z2

y + x ≥ 1
2

( y + x
2

+ z + y
2

+ x + z
2

)
= x + y + z

2
≥ 3

3
√
xyz

2
= 3
2
.
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Chebysev’s Inequality. If a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn, then

a1b1 + a2b2 + · · · + anbn ≥ (a1 + a2 + · · · + an)(b1 + b2 + · · · + bn)
n

≥ a1bn + a2bn−1 + · · · + anb1.

Either equality holds if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn .

Examples. (11) (1974USAMO)Fora, b, c > 0, prove thataabbcc ≥ (abc)(a+b+c)/3.

Solution. By symmetry, we may assume a ≥ b ≥ c. Then log a ≥ log b ≥ log c.
By Chebysev’s inequality,

log(aabbcc) = a log a + b log b + c log c

≥ (a + b + c)(log a + log b + log c)
3

= log(abc) a+b+c3 .

The desired inequality follows by exponentiation.

(12) If 0 ≤ ak < 1 for k = 1, 2, . . . , n and S = a1+ a2+· · ·+ an, then prove that
n∑
k=1

ak
1− ak

≥ nS

n − S .

Solution. Without loss of generality, we may assume a1 ≥ a2 ≥ · · · ≥ an ≥ 0.
Then 0 < 1− a1 ≤ 1− a2 ≤ · · · ≤ 1− an and

a1
1− a1

≥ a2
1− a2

≥ · · · ≥ an
1− an

.

By Chebysev’s inequality,

S = a1
1− a1

(1− a1) + a2
1− a2

(1− a2) + · · · + an
1− an

(1− an)

≤ 1
n

n∑
k=1

ak
1− ak

n∑
k=1

(1− ak) = n − S
n

n∑
k=1

ak
1− ak

.

The result follows.
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In math as well as in statistics, we often need to take averages (or means)
of numbers. Other than AM, GM, HM, there are so-called power means and
symmetric means, which include AM and GM as special cases.

Power Mean Inequality. For a1, a2, . . . , an > 0 and s < t,

Ms =
(
as1 + as2 + · · · + asn

n

)1/s
≤ Mt =

(
at1 + at2 + · · · + atn

n

)1/t
.

Equality holds if and only if a1 = a2 = · · · = an.

Remarks. Clearly, M1 = AM and M−1 = HM.Now M2 =
√
a21 + a22 + · · · + a2n

n
is called the root-mean-square (RMS) of the numbers. It appears in statis-
tics and physics. Also, taking limits, it can be shown that M+∞ is MAX =
max{a1, a2, . . . , an}, M0 is GM and M−∞ is MI N = min{a1, a2, . . . , an}. So we
have

MAX ≥ RMS ≥ AM ≥ GM ≥ HM ≥ MI N .

Maclaurin’s Symmetric Mean Inequality. For a1, a2, . . . , an > 0,

AM = S1 ≥ S1/22 ≥ · · · ≥ S1/nn = GM,

where Sj is the average of all possible products of a1, a2, . . . , an taken j at a time.
Any one of the equalities holds if and only if a1 = a2 = · · · = an.

Remarks. To be clear on the meaning of Sj , take n = 4. In that case, we have

S1 = a1 + a2 + a3 + a4
4

, S2 = a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4
6

,

S3 = a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4
4

and S4 = a1a2a3a4.

Examples. (13) Show that x5 + y5 + z5 ≤ x5
√
x2

yz
+ y5

√
y2

zx
+ z5

√
z2

xy
for posi-

tive x, y, z.

15

Solution. Let a = √
x, b = √

y, c = √
z, then the inequality becomes

a10 + b10 + c10 ≤ a
13 + b13 + c13
abc

.

Now a13 + b13 + c13 = 3M1313 = 3M1013M313 ≥ 3M1010M30 = (a10 + b10 + c10)abc.

(14) If a, b, c > 0, then prove that
1

a
+ 1
b

+ 1
c

≤ a
8 + b8 + c8
a3b3c3

.

Solution. The inequality is equivalent to

a8 + b8 + c8 ≥ a3b3c3(1
a

+ 1
b

+ 1
c
) = (abc)2(bc + ca + ab).

By the power mean inequality and the symmetric mean inequality,

a8 + b8 + c8 = 3M88 ≥ 3M81 = 3S81 = 3S61 S21
≥ (S1/33 )63(S1/22 )2 = (abc)2(bc + ca + ab).

Multiplying by 3 on both sides, we are done.

(15) If a1, a2, . . . , an ≥ 0 and (1+ a1)(1+ a2) · · · (1+ an) = 2n, then show that
a1a2 · · · an ≤ 1.

Solution. By the symmetric mean inequality,

2n = (1+ a1)(1+ a2) · · · (1+ an)

= 1+ nS1 +
(
n

2

)
S2 + · · · +

(
n

n − 1

)
Sn−1 + Sn

≥ 1+ nS1/nn +
(
n

2

)
S2/nn + · · · +

(
n

n − 1

)
S(n−1)/n
n + Sn = (1+ S1/nn )n.

So 2 ≥ 1+ S1/nn . Then a1a2 · · · an = Sn ≤ 1.

16



Exercises

1. Redo example (11).

2. Redo example (13).

3. Redo example (15).

4. For x1, x2, . . . , xn > 0, show that
x21
x2

+ x
2
2
x3

+ · · · + x
2
n
x1

≥ x1 + x2 + · · · + xn.

5. For 0 < a, b, c < 1 and a+b+c = 2, show that 8(1−a)(1−b)(1−c) ≤ abc.

6. If a, b, c, d > 0 and c2 + d2 = (a2 + b2)3, then show that a
3

c
+ b

3

d
≥ 1.

7. For a1, a2, . . . , an > 0 and a1 + a2 + · · · + an = 1, find the minimum of

(a1 + 1
a1

)2 + (a2 + 1
a2

)2 + · · · + (an + 1

an
)2.

8. If a, b, c, d > 0 and S = a2 + b2 + c2 + d2, then show that

a3 + b3 + c3
a + b + c + a

3 + b3 + d3
a + b + d + a

3 + c3 + d3
a + c + d + b

3 + c3 + d3
b + c + d ≥ S.

9. If x1, x2, . . . , xn > 0 and x1 + x2 + · · · + xn = 1, then show that
n∑
k=1

xk√
1− xk

≥ 1√
n − 1

n∑
k=1

√
xk .

10. Let a, b, c be the sides of a triangle. Show that

a2b(a − b) + b2c(b − c) + c2a(c− a) ≥ 0.

17

3. Inequalities (Part II)

For inequalities involving functions, convexity is very important.

Definitions. A function f is convex on an interval I if

f
( x1 + x2
2

) ≤ f (x1) + f (x2)
2

for every x1, x2 ∈ I.

Also, f is strictly convex on I if f is convex on I and equality holds only when
x1 = x2 above.
A function f is concave on an interval I if the function − f is convex on I.

(In that case, f
( x1 + x2
2

) ≥ f (x1) + f (x2)
2

for every x1, x2 ∈ I.) Similiarly, f is
strictly convex on I if − f is strictly convex on I.

Second Derivative Test. Let a < b and I be an interval containing (a, b). Let
f be continuous on I and twice differentiable on (a, b). If f ′′(x) ≥ 0 on (a, b),
then f is convex on I. If f ′′(x) > 0 on (a, b), then f is strictly convex on I. The
statements for concave and strictly concave functions are similar by reversing the
inequality signs.

For functions defined on intervals containing endpoints, continuity at the
endpoints and nonnegative second derivatives inside the interval are sufficient for
the functions to be convex on the intervals. Similar statements for strictly convex
functions on such intervals are true.

Using the second derivative test, we can check that the following are examples
of strictly convex functions on intervals:

x p on [0, ∞) for p > 1, x p on (0, ∞) for p < 0,

ax on (−∞, ∞) for a > 1, tan x on [0,
π

2
).

The following are examples of strictly concave functions on intervals:

x p on [0, ∞) for 0 < p < 1, loga x on (0, ∞) for a > 1,

cos x on [−π/2, π/2], sin x on [0, π ].

18



The most important inequality concerning these functions is the following.

Jensen’s Inequality. If f is convex on I and x1, x2, . . . , xn ∈ I, then

f
( x1 + x2 + · · · + xn

n

) ≤ f (x1) + f (x2) + · · · + f (xn)
n

.

For strictly convex functions, equality holds if and only if x1 = x2 = · · · = xn.

GeneralizedJensen’s Inequality. If f is convex and continuous on I, x1, . . . , xn ∈
I and 0 < t1, t2, . . . , tn < 1 with t1 + t2 + · · · + tn = 1, then

f (t1x1 + t2x2 + · · · + tnxn) ≤ t1 f (x1) + t2 f (x2) + · · · + tn f (xn)

(with the same equality condition for strictly convex functions). For concave
functions, all inequality signs reverse.

Examples. (1) For a triangle ABC, show that sin A + sin B + sinC ≤ 3
√
3

2
and

determine when equality holds.

Solution. Since f (x) = sin x is strictly concave on [0, π ], so

sin A + sin B + sinC = f (A) + f (B) + f (C)

≤ 3 f ( A + B + C
3

) = 3 sin( A + B + C
3

) = 3
√
3

2
.

Equality holds if and only if A = B = C = π/3, i.e. �ABC is equilateral.

(2) If a, b, c > 0 and a + b + c = 1, then find the minimum of

(a + 1
a
)10 + (b + 1

b
)10 + (c+ 1

c
)10.

Solution. Note 0 < a, b, c < 1. Let f (x) = (x + 1
x
)10 on I = (0, 1), then f is

strictly convex on I because

f ′′(x) = 90(x + 1
x
)8(1− 1

x2
)2 + 10(x + 1

x
)9(
2

x3
) > 0 for x ∈ I.
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By Jensen’s inequality,

1010

39
= 3 f (1

3
) = 3 f (a + b + c

3

)
≤ f (a) + f (b) + f (c) = (a + 1

a
)10 + (b + 1

b
)10 + (c+ 1

c
)10.

Therefore, the minimum is
1010

39
, attained when a = b = c = 1

3
.

(3) Prove the AM-GM inequality.

Solution. If a1, a2, . . . , an > 0, then since f (x) = log x is strictly concave on
(0, ∞), by Jensen’s inequality,

log
(a1 + a2 + · · · + an

n

) ≥ log a1 + log a2 + · · · + log an
n

= log( n√a1a2 · · · an).

Exponentiating both sides, we get the AM-GM inequality.

Remarks. If we use the generalized Jensen’s inequality instead, we can get
the weighted AM-GM inequality, which states that if a1, · · · , an > 0 and 0 <

t1, · · · , tn < 1 satisfying t1+ · · ·+ tn = 1, then t1a1+ · · ·+ tnan ≥ at11 · · · atnn with
equality if and only if a1 = · · · = an .

(4) Prove Hölder’s inequality, which states that if p, q > 1,
1

p
+ 1
q

= 1 and
a1, . . . , an, b1, . . . , bn are real numbers, then∣∣∣∣∣

n∑
i=1
aibi

∣∣∣∣∣ ≤ ( n∑
i+1

|ai |p
)1/p( n∑

i=1
|bi |q

)1/q
.

(Note the case p = q = 2 is the Cauchy-Schwarz inequality.)

Solution. Let A =
n∑
i=1

|ai |p and B =
n∑
i=1

|bi |q . If A or B is 0, then either all ai ’s
or all bi ’s are 0, which will make both sides of the inequality 0. So we need only
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consider the case A �= 0 and B �= 0. Let t1 = 1
p
and t2 = 1

q
, then 0 < t1, t2 < 1

and t1 + t2 = 1. Let xi = |ai |p
A
and yi =

|bi |q
B

, then
n∑
i=1
xi = 1 and

n∑
i=1
yi = 1.

Since f (x) = ex is strictly convex on (−∞, ∞), by the generalized Jensen’s
inequality,

x1/pi y
1/q
i = f (t1 ln xi + t2 ln yi) ≤ t1 f (ln xi ) + t2 f (ln yi ) = xi

p
+ yi
q

.

Adding these for i = 1, . . . , n, we get

n∑
i=1

|ai ||bi |
A1/pB1/q

=
n∑
i=1
x1/pi y

1/q
i ≤ 1

p

n∑
i=1
xi +

1

q

n∑
i=1
yi = 1.

Therefore,

∣∣∣∣∣
n∑
i=1
aibi

∣∣∣∣∣ ≤
n∑
i=1

|ai ||bi | ≤ A1/pB1/q = ( n∑
i=1

|ai |p
)1/p( n∑

i=1
|bi |q

)1/q
.

Next we will introduce a generalization of Jensen’s inequality.

Definition. If x1, x2, . . . , xn and y1, y2, . . . , yn satisfy the conditions

x1 ≥ x2 ≥ · · · ≥ xn, y1 ≥ y2 ≥ · · · ≥ yn,

x1 ≥ y1, x1 + x2 ≥ y1 + y2, . . . , x1 + · · · + xn−1 ≥ y1 + · · · + yn−1
and

x1 + · · · + xn = y1 + · · · + yn,
then we say (x1, x2, . . . , xn) majorizes (y1, y2, . . . , yn) and write

(x1, x2, . . . , xn) � (y1, y2, . . . , yn).

Majorization Inequality. If the function f is convex on the interval I = [a, b]
and (x1, x2, . . . , xn) � (y1, y2, . . . , yn) for xi , yi ∈ I, then

f (x1) + f (x2) + · · · + f (xn) ≥ f (y1) + f (y2) + · · · + f (yn).
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For strictly convex functions, equality holds if and only if xi = yi for i =
1, 2, . . . , n. The statements for concave functions can be obtained by reversing
inequality signs.

Examples. (5) For an acute triangle ABC, show that

1 ≤ cos A + cos B + cosC ≤ 3
2

and determine when equality holds.

Solution. Without loss of generality, assume A ≥ B ≥ C. Then A ≥ π/3 and
C ≤ π/3. Since

π

2
≥ A ≥ π

3
, π ≥ A + B(= π − C) ≥ 2π

3
,

we have (π/2, π/2, 0) � (A, B,C) � (π/3, π/3, π/3). Since f (x) = cos x is
strictly concave on I = [0, π/2], by the majorization inequality,

1 = f (π
2

) + f (π
2

) + f (0)
≤ f (A) + f (B) + f (C) = cos A + cos B + cosC

≤ f (π
3

) + f (π
3

) + f (π
3

) = 3
2
.

For the first inequality, equality cannot hold (as two of the angles cannot both be
right angles). For the second inequality, equality holds if and only if the triangle
is equilateral.

(6) If x1 ≥ x2 ≥ · · · ≥ xn, then (x1, x2, . . . , xn) � (x, x, . . . , x), where x is the
arithmetic mean of x1, x2, . . . , xn. (Applying this to the majorization inequality,
we get Jensen’s inequality.)

Solution. For k = 1, 2, . . . , n − 1, we have to show x1 + · · · + xk ≥ kx . Since

(n − k)(x1 + · · · + xk) ≥ (n − k)kxk ≥ k(n − k)xk+1 ≥ k(xk+1 + · · · xn),
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so (n−k)(x1+· · ·+xk) ≥ k(xk+1+· · ·+xn).Adding k(x1+· · ·+xk) to both sides,
we get n(x1+· · ·+ xk) ≥ k(x1+· · ·+ xn) = knx . Therefore, x1+· · ·+ xk ≥ kx .

(7) Find the maximum of a12+b12+c12 if−1 ≤ a, b, c ≤ 1 and a + b + c = −1
2
.

Solution. Note the continuous function f (x) = x 12 is convex on [−1, 1] because
f ′′(x) = 132x10 ≥ 0 on (−1, 1). If 1 ≥ a ≥ b ≥ c ≥ −1 and a + b + c = −1

2
,

then we claim that (1, −1
2
, −1) � (a, b, c). This is because

1 ≥ a and
1

2
= 1− 1

2
≥ −c − 1

2
= a + b.

So by the majorization inequality,

a12 + b12 + c12 = f (a) + f (a) + f (c) ≤ f (1) + f (−1
2
) + f (−1) = 2+ 1

212
.

The maximum value 2+ 1

212
is attained when a = 1, b = −1

2
and c = −1.

In some problems, the functions we need to consider may not be convex or
concave on the entire intervals! Here is an example.

(8) (1999 IMO) Let n be a fixed integer, with n ≥ 2.
(a) Determine the least constant C such that the inequality∑

1≤i< j≤n
xi x j (x

2
i + x2j ) ≤ C(

∑
1≤i≤n

xi )
4

holds for all real numbers x1, x2, . . . , xn ≥ 0.
(b) For this constant C, determine when equality holds.

Solution. Consider the case n = 2 first. Let x1 = m + h and x2 = m − h,
(i.e. m = (x1 + x2)/2 and h = (x1 − x2)/2), then

x1x2(x
2
1 + x22) = 2(m4 − h4) ≤ 2m4 = 1

8
(x1 + x2)4
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with equality if and only if h = 0, i.e. x1 = x2.

For the case n > 2, let ai = xi/(x1 + · · · + xn) for i = 1, . . . , n, then
a1 + · · · + an = 1. So ai ∈ [0, 1]. In terms of ai ’s, the inequality to be proved
becomes ∑

1≤i< j≤n
aiaj (a

2
i + a2j ) ≤ C.

The left side can be expanded and regrouped to give

n∑
i=1
a3i (a1 + · · · + ai−1 + ai+1 + · · · + an) =

n∑
i=1
a3i (1− ai ).

Unfortunately, f (x) = x3(1− x) = x3 − x4 is strictly convex only on [0, 1
2
] as

f ′′(x) = 6x − 12x2 = 6x(1− 2x) > 0 on (0,
1

2
).

Since the inequality is symmetric in the ai ’s, we may assume a1 ≥ a2 ≥ · · · ≥ an.

If a1 ≤ 1
2
, then since (

1

2
,
1

2
, 0, . . . , 0) � (a1, a2, . . . , an), by themajorization

inequality,

f (a1) + f (a2) + · · · + f (an) ≤ f (1
2
) + f (1

2
) + f (0) + · · · + f (0) = 1

8
.

If a1 >
1

2
, then 1− a1, a2, . . . , an ∈ [0, 1

2
).Since (1−a1, 0, . . . , 0) � (a2, . . . , an),

by the majorization inequality and case n = 2, we have

f (a1) + f (a2) + · · · + f (an) ≤ f (a1) + f (1− a1) + f (0) + · · · + f (0)

= f (a1) + f (1− a1) ≤ 1
8
.

Equality holds if and only if two of the variables are equal and the other n − 2
variables all equal 0.
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Exercises 

I. Use the definition of convex function to give a proof of Jensen's inequality 
for the case n = 4. Then use the case n = 4 to prove the case n = 3. 

2. Use Jensen's inequality to prove aabbcc ::: (abc)(a+b+c )/3 for all a, b. e > O. 

3. Letxl ..... xn E [0, ljandal, ... ,all > Obesuchthatal +···+an = l. 
Prove that 

I:n (li 
-- < --::----;;-

;=1 1 +Xi - I +X~I .. ·x~n 

and detennine when equality holds. 

4. Use Holder's inequality to prove that if a, b, e, d > 0 and e2+d2 = (a 2+b2 )3, 

a3 b3 
then - + - > I. 

e d-

*5. Let P be a point inside triangle ABC such that L.P AB = L.P BC = 
L.PC A = a. Show that a :::0 30°. (Hint: Apply sine law to three triangles.) 

6. Suppose acute triangle A BC has two angles less than or equal to 60°. Show 
that 

.A.B.C .n.n.n 
sm - sm - sm - > sm - sm - sm -. 

2 2 2 - 4 6 12 

7. Redo example (8) using AM-GM inequality. 

8. Let x, y, z > 1, xyz = 4096 and max(x, y, z) :::0 32. Find the maximum and 
minimum of x + y + z. 

9. Prove that if a, b ::: 0, then 

~a+ va+ ;jb+ l/b:::o ;ja+ l/b+ ~b+ va. 

10. (1998 Balkan Math Olympiad, case n = 5) Let 0 :::0 al :::0 a2 :::0 a3 :::0 a4 :::0 as· 
Prove that 

val - va:;. + lfG3 - .va4 + ifli5 :::0 Va, - a2 + a3 - a4 + as· 
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Inequalities (Part III) 

§1. Tangent Line Method 

Below we will give some examples, where finding the equation of a 
tangent line is the critical step to solving the problems. 

Example 1. Let a,b,c,d>O and a+b+c+d= 1. Prove that 

6(a3+b3+c3+cf) ~ (a2+b2+c2+d2) + liS. 

Solution. We have 0 < a,b,c,d < 1. Letj(x) = 6x3-i. Then we have to prove 
j(a)+j(b)+j(c)+j(d) ~ 1/S (Thoughts: Since there is equality when a = b = c = d = 
114, we consider the graph of j(x) and its tangent line at x = 114. By a simple 
sketch, it seems the tangent line is below the graph of j(x) on the interval (0,1). 
By calculus, the equation of the tangent line atx == 114 isy = (5x-l)/S.) 

We claim that for 0 < x < 1,j(x) = 6x3_x2 ~ (5x-I)/S. This is equivalent to 
4Sx3-SX2-Sx+ 1 ~ O. (Thought: Since the graphs intersect at x = 114, we expect 
4x-1 is a factor.) Indeed, 4Sx3-Sx2-5x+l = (4x-li(3x+l) ~ 0 for 0 < x < 1. So 
the claim is true. 

Therefore, 

j(a)+j(b)+j(c)+j(d) ~5(a+b+c+d)/S-4/S = liS. 

Example 2. (2003 USA Math Olympiad) Let a,b,c > O. Prove that 

(2a+b+cf (2b+c+a)2 (2c+a+W S 
--'-::---~+ + < . 
2a2 +(b+C)2 2b2 +(c+a)2 2c2 +(a+W 

Solution. Setting a' = aI(a+b+c), b' = b/(a+b+c), c' = cI(a+b+c) if necessary, we 
may assume 0 < a,b,c < 1 and a+b+c = 1. Then the first term on the left side of 
the inequality is equal to 

(a+I)2 a 2+2a+l 
I(a) = 2a2+(l-a)2 3az -2a+t" 

2.s:-( 

(Note: When a = b = c = 1/3, there is equality. A simple sketch of j(x) on [0,1] 
shows the curve is below the tangent line at x = 113, which has the equation 

12x + 4 a2 + 2a+ 1 12a+4 
y = -3-·) So we claim that 3a2 -2a+ 1 ~-3-for 0 < a < 1. 

Multiplying out, we see this is equivalent to 36a3 -15a2 -2a+l~ 0 for 0 < a 
< 1. (Note: Since the curve and the line intersect at a = 113, we expect 3a-1 is a 
factor.) Indeed, 36a3 -ISa2 -2a+ 1 = (3a-1 i( 4a+ 1) ~ 0 for 0 < a < 1. Finally 
adding the similar inequalities for b and c, we get the desired inequality. 

Example 3. (1997 Japanese Math Olympiad) Let a,b,c > O. Prove that 

(b+c-a)2 (c+a-b)2 (a+b-c)2 3 ---'---;:---'-;;- + + > -
(b+C)2 +a2 (c+a)2 +b2 (a+b)2 +c2 - S· 

Solution. (Due to Titu Andreescu and Gabriel Dospinescu) As in the last 
example, we may assume 0 < a,b,c < 1 and a+b+c = 1. Then the first term on the 

(1-2a)2 2- 2 
left become (1- a)2 + a2 1 + (1- 2a)2 . 

Let Xl =1-2a, X2 =1-2b, X3 =1-2c, then Xl +X2 +X3 =1, but -1 <Xl> X2, X3 < 1. 
In terms of Xl> X2, X3, the desired inequality is 

1 1 1 27 
--+--+--<-
1 + x2 1 + x 2 1 + x 2 - 10 . 1 2 3 

(Note: As in the last example, we consider the equation of the tangent line to j(x) 
= 11(1 +x2) at x = 113, which is y = 27(-x+2)/SO.) 

So we claim thatj(x) ~ 27(-x+2)/50 for -1 < x < 1. This is equivalent to 
(3x-l i( 4-3x) ~ O. Hence the claim is true for -I < x < I. Thenj(xl)+j(X2)+j(X3) ~ 
27/10 and the desired inequality follows. 

Exercise. (200S CWMO) Let a,b,c be real numbers with a+b+c = 3. Prove that 

1 1 1 1 
~~----+ + <-
5a 2 -4a+11 5b2 -4b+11 5c2-4c+11 4 



§2. Schur's Inequality 

Sometimes in proving an inequality, we do not see any easy way. It will be 
good to know some brute force methods in such situation. Below we will 
introduce a simple inequality that turns out to be useful in proving inequalities by 
brute force. 

Schur's Inequality. For any x, y, z:::: 0 and real r, 

x'(x-y)(x-z) + y'(y-x)(y-z) + z'(z-x)(z-y):::: o. 
Equality holds if and only if x = y = z or two of x, y, z are equal and the third is O. 

Proof. Observe that the inequality is symmetric in x, y, z. So without loss of 
generality, we may assume x :::: y:::: z. Then a = x-y :::: 0 and b = y-z :::: O. Now the 
left hand side of the inequality can be written as 

x'a(a+b) - y'ab + z'b(a+b) = x'a2 + (x'-y'+z')ab + z'b2. 

If r :::: 0, then x':::: yr. If r < 0, then z' :::: y' .. So x' -y' +zr:::: 0 and Schur's inequality 
follows. Now a> 0 implies x> y :::: 0 and xr a2> O. So, equality holds in Schur's 
inequality if and only if a = 0 and zrb2 = 0, that is x = y and either y = z or z = o. 

In using the Schur's inequality, we often expand out expressions. So to 
simplifY writing, we introduce the symmetric sum notation :Lj(x,y,z) to denote 

".. 

j(x,y,z)+ j(x,z,y)+ .f(y,z,x)+ fiy,x,z)+ j(z,x,y)+ j(z,y,x). 

For example, :LX3 = 2x3 +2/+2z3, :Lx2y=x2y+x2z+y2z+/x+ix+ly and:Lxyz = 
"..".. ".. 

6xyz. Similarly, for a function of n variables, the symmetric sum is the sum of all 
n! terms, where we take all possible permutations of the n variables. 

After expanding the r = 1 case of Schur's inequality, we get 

x3+/+z3-{x2y+x2z+1x+/z+z2x+iy)+3xyz:::: O. 

In symmetric sum notation, it is L (x3 - 2X2 Y + xyz) ~ o. 
sym 

By expanding both sides and rearranging terms, ,each of the following 
inequalities is equivalent to the r = 1 case of Schur's inequality. These are 
common disguises. 

a) x3+/+z3+3xyz:::: xy(x+y)+yz(y+z)+zx(z+x), 

b) xyz:::: (x+y-z)(y+z-x)(z+x-y), 

c) 4(x+y+z)(xy+yz+zx)::; (x+y+z)3+9xyz. 

Example 1. (2000IMO) Let a, b, c> 0 and abc = 1. Prove that 
1 1. 1 

(a - 1 + -)( b - 1 + -)( c - 1 + -) :::; 1. 
b c a 

Solution. Let x = a, y = 1, z = lib = ac. Then a = x/y, b = y/z and c = z/x. 
Substituting these into ~he desired inequality, we get 

(x- y+z) (y-z+x) (z-x+ y) ~1, 

Y z x 

which is disguise b) of the r = 1 case of Schur's inequality. 

Example 2. (1984 IMO) Prove that 

o ::;yz+zx+xy-2xyz::; 7/27, 

where x, y, z are nonnegative real numbers such that x+y+z = 1. 

Solution. In Schur's inequality, all terms are of the same degree. So we first 
change the desired inequality to one where all terms ar~ of the same degree. 
Since x+y+z = 1, the desired inequality is the same as 

7(x+ y+Z)3 o ~ (x + y + z)(yz + zx + xy) - 2xyz < --'--..:.......~:..-. 
27 

Expanding the middle expression, we get xyz + ~::x2y, which is nonnegative 
".. 

and the left inequality is proved. Expanding the rightmost expression and 
subtracting the middle expression, we get 

2S-4-



7" 3 12 2 5 - L,,(x --x y+-xyz). 
54 sym 7 7 

(1) 

By Schur's inequality, we have 

L(x3 -2x2y+xyz) ~ o. (2) 
sym 

3 12 2 5 3 2 2 2 
Note (x -7x Y+7"XYz)-(x -2x y+xyz) = 7" (x y-xyz). By the AM-OM 

inequality, we have Lx2y ~ 6(X6y6Z6)1/6 = LXYz, which is the same as 
sym sym 

~)X2y-xyZ)~O. (3) 
sym 

Multiplying (3) by 217 and adding it to (2), we see the symmetric sum in (1) is 
nonnegative. This yields the inequality on the right. 

Example 3. (2004 APMO) Prove that 

(a2 +2)(b2 +2)(c2 +2) "?9(ab+bc+ca) 

for any positive real numbers a,b,c. 

Solution. Expanding and expressing in symmetric sum notation, the desired 
inequality is(abci+ 2: (a2b2+2a2)+8 ~~ 2: abo 

".. 2".. 

Since a2+b?:'2ab, we get 2: a2 ~2: abo Also, from a2b2 + 1 ~ 2ab, we get 
".. ".. 

2: a2b2+ 6 ~ 22: abo Using these, the problem is reduced to showing 
".. sym 

(abci + 2 ~2: (ab _la2). 
sym 2 

To prove this, we apply the AM-OM inequality twice and disguise c) of the r = 1 
case of Schur's inequality as follow: 

(abci+2 ~ 3(abci/3~ 9abc/(a+b+c) 
~ 4(ab+bc+ca)- (a+b+ci 
= 2(ab+bc+ca)-(a2+b2+c2) =2: (ab _la2) • 

..". 2 

Example 4. (2000 USA Team Selection Test) Prove that for any positive real 
numbers a, b, c, the following inequality holds 

a + ~ + c _ Vabc ~ max{6Ia -Jb)2 ,(Jb -.Jc)2 ,(.Jc -..Ja)2}. 

Solution. From the last part of the solution of example 3, we get 

3(xyzi/3~ 2(xy+yz+zx) - (x2+/+i) 

for any x,y,z > O. (Note: this used Schur's inequality.) Let x = ..r;;, y = .Jb 
and z = Fc . Arranging terms, we get 

a + b + c - 3Vabc ~ 2(a+b+c-M -$c -~) 
= (.,fa - Jb)2 + (Jb - .Jc)2 + (.Jc - .,fa)2 

~ 3max{(.ra -Jb)2 ,(.Jb _~)2,(~ _.ra)2}. 

Dividing by 3, we get the desired inequality. 

Example 5. (2003 USA Team Selection Test) Let a,b,c be real numbers in the 
interval (0, 11:12). Prove that 

sinasin(a-b)sin(a-c) sinbsin(b -c)sin(b - a) sincsin(c-a)sin(c-b) 0 
__ ~_-'------O._--'-+ + ~ . 

sin(b+c) sin(c+a) sin(a+b) 

Solution. Observe that sin(u-v)sin(u+v) = (cos 2v-cos 2u)/2 = sin2 u - sin2v. Let 
x = sin2 a, y = sin2 b, z = sin2 c. In adding up the terms, the left side of the 
inequality becomes 

.Jx(x-y)(x-z)+.jY(y-z)(y-x)+..Jz(z-x)(z-y) 

sin(b +c) sin(c +a) sin(a+b) 

This is nonnegative by the r = 112 case of Schur's inequality. 



§3. Muirhead's Inequality 

Muirhead's inequality is an important generalization of the AM-GM 
inequality. It is a powerful tool for solving inequality problem. First we give a 
definition which is a generalization of arithmetic and geometric means. 

Definition. Let XI. X2, ... , Xn be positive real numbers and P = (PhP2, ... , Pn) €~n. 
The p-mean of Xh X2, ... , Xn is defined by 

1 
[p] - - "x P1 x P2 • ·xPn - ,L..J u(l) u(2)' u(n)' 

n'ueSn 

where Sn is the set of all permutations of {1,2, ... , n}. (The summlltion sign 
means to sum n! terms, one term for each permutation (j in Sn.) 

lin 
For example, [(1,0, ... ,0)] =-nl l:XU(l) =-n LX; is the arithmetic mean of XI, X2, ,." 

• ueS. 1=1 

[( 1 1 1 )] lin II. lin 
Xn and -;;' -;;, ... , -;; = Xl X2 .,. X. is their geometric mean. 

Theorem (Muirhead's Inequality). Let Xl, X2, .. " Xn be positive real numbers and 

P, q €lR\n. If P >- q, then [PI 2: [q]. Furthermore, for P i= q, equality holds if and 

only ifxl=X2= .. ·=Xn. 

Since (1,0, ... ,0)>-(1In,1In, ... ,1/n), the AM-GM inequality is a corollary of 
Muirhead's inequality. 

Example 1. For any a, b, c > 0, prove that 
(a+b)(b+c)(c+a) 2: 8abc. 

Solution. Expanding both sides, the desired inequality is 

a2b+a2c+b2c+b2a+c2a+c2b 2: 6abc 

or [(2,1,0)] 2: [(1,1,1)]. This is Muirhead's inequality for (2,1,0)>-(1,1,1). 

For the next example, we would like to point out a useful trick. When the 
product of XI. X2, ... , Xn is 1, we have 

[(Pt.P2, "',Pn)] = [(p,-r,Prr'''',Pn-r )] 

for any real number r. 

Example 2. (1995 IMO) For any a, b, c> 0 with abc = 1, prove that 
1 1 1 3 

~---+ + >-
d(b+c) b3(c+a) c3(a+b) 2' 

Solution. MUltiplying by the common denominator and expanding both sides, 
the desired inequality is 

2(a4b4 +b4c4 +c4a4) + 2(a4b3c+a4c3b +b4c3a+b4a3c+c4a3b+c4b3a) 

+ 2(a3b3c2 +b3c3a2 +c3a3b2 ) 

~ 3(a5b 4c 3 +asc 4b 3 +b5c 4a 3 +bSa 4c 3 +c5a 4b3 +cSb4a3)+6a4b4c4 . 

This is equivalent to [(4,4,0)]+2[(4,3,1)] + [(3,3,2)] 2: 3[(5,4,3)] + [(4,4,4)], Note 
4+4+0 =4+3+1 = 3+3+2 = 8, but 5+4+3 = 4+4+4 = 12. So we can set r = 4/3 
and use the trick above to get [(5,4,3)] = [(1113,8/3,5/3)} and also [(4,4,4)] = 
[(8/3,8/3,8/3)]. 

Observe that (4,4,0) >- (1113,8/3,5/3), (4,3,1) >- (1113,8/3,5/3) and (3,3,2) >
(8/3,8/3,8/3). So applying Muirhead's inequality to these three majorizations and 
adding the inequalities, we get the desired inequality. 

Example 3. (1990 IMO Shortlisted Problem) For any x, y, z > 0 with xyz = 1, 
prove that 

~ I ~ 3 ----+ + > . 
(1 +y)(l+z) (l+z)(l+x) (l+x)(l+y) 4 

Solution. Multiplying by the common denominator and expanding both sides, 
the desired inequality is 

4(x4+/+i+x3+l+i) 2: 3(1 +x+y+z+xy+yz+zx+xyz) 

or 4[(4,0,0)] + 4[(3,0,0)] 2: [(0,0,0)] + 3[(1,0,0)] + 3[(1,1,0)] + [(1,1, I)). 



For this, we apply Muirhead's inequality and the trick as follow: 

[(4,0,0)] ~ [(4/3,4/3,4/3)] = [(0,0,0)], 
3[(4,0,0)] ~ 3[(2,1,1)] = 3[(1,0,0)], 
3[(3,0,0)] ~ 3[(4/3,4/3,1/3)] = 3[(1,1,0)] 

and [(3,0,0)] ~ [(1,1,1)] . 

Adding these, we get the desired inequality. 

Remark. For the following example, we will modify the trick above. In case xyz 
~ 1, we have [(P\,P2,P3)] ~ [(p,-r,Prr,Prr)] for every r~ 0. Also, we will use 
the following 

Illln h [p]+[q] [p+q] (Th· . d h GM Fact. For p, q € IN>. , we ave 2 ~ -2-· IS IS ue to t e AM-

inequality 

a€Sn and dividing by n!, we get the inequality.) 

Example 4. (2005 IMO) For any x,y, z > ° withxyz ~ 1, prove that 

Solution. Multiplying by the common denominator and expanding both sides, 
the desired inequality is equivalent to [(9,0,0)]+4[(7,5,0)]+[(5,2,2)]+[(5,5,5)] ~ 
[(6,0,0)] + [(5,5,2)] + 2[(5,4,0)] +2[(4,2,0)] + [(2,2,2)]. 

To prove this, we note that 

(1) [(9,0,0)] ~ [(7,1,1)] ~ [(6,0,0)] 

(2) [(7,5,0)] ~ [(5,5,2)] 

(3) 2[(7,5,0)] ~ 2[(6,5,1)] ~ 2[(5,4,0)] 

(4) [(7,5,0)] + [(5,2,2)] ~ 2[(6,7/2,1)] ~ 2[(9/2,2,-1/2)] ~ 2[(4,2,0)] 

(5) [(5,5,5)] ~ [(2,2,2)], 

where (1) and (3) are by Muirhead's inequality and the remark, (2) is by 
Muirhead's inequality, (4) is by the fact, Muirhead's inequality and the remark 
and (5) is by the remark. 

Considering the sum of the leftmost parts of these inequalities is greater 
than or equal to the sum of the rightmost parts of these inequalities, we get the 
desired inequalities. 

Alternate Solution. Since 

(x3 _1)2(y2 + Z2) 

x(x2 + y2 + Z2)(X5 + y2 + Z2) ~ 0, 

we have 
X5 _X2 /_y2 Z5_ Z2 r_x2 I_I Z5_Z2 

-;----:;-----::-+ + > + +-:-~-=---o-
X5+y2+Z2 l+Z2+X2 Z5+ X2+y 2 X3(X2+1 +Z2) y3(y2+Z2+X2) z3(z2+x2+/) 

Proofs of Muirhead's Inequality 

1212121 
~ 2 (x --+ y --+z --) 

x + y +Z2 X Y z 

1 
~ 2 2 2 (X2+y2+Z2_yz-zx-xy) 

x +y +z 

_ (X_y)2+(Y_Z)2+(Z_X)2 >0 
- 2(X2 + y2 + Z2) - . 

Let P >- q and P f. q. From i = 1 to n, the first nonzero Pi- qi is positive. So 
there will be a negative pi- qi later. It follows that there are) < k such thatpj > qj, 
Pk < qk and Pi = qi for any possible i between), k. 

Let b = (PJ+Pk)/2, d = (PrPk)/2 so that [b-d,b+d] = [Pb pJl => [qk, qj]. Let c 
be the maximum of Iqrbl and Iqrbl, then 0:::; d < c. Let r = (r" ... ,rn) be defined 
by ri = Pi except rj = b + c and rk = b - c. By the definition of c, either rj = qj or 

rk=qk. Also, by the definitions of b, c, d, we get P >- r, P f. r and r >- q. Now 

'Z-$-lO 



n!([p] - [r]) = LXu(x:(j)X:(k) - X;;(j)X~(k) = L Xu (U b+d V b- d - Ub+CV b- C ), 

C'ES". ueSn 

where Xa is the product of x:(1) for i =F j, k and u = xa(j) , v = Xa(k)' For each 
permutation CJ, there is a permutation p such that CJ(i) = p(i) for i =F j, k and CJ(J) = 

p(k), CJ(k) = p(j). In the above sum, if we pair the tenns for CJ and p, then Xa = xp 
and combining the parenthetical factors for the CJ and p tenns, we have 

( b+d b-d b+c b-c)+( b+d b-d b+c b-c) b-d b-d( d+c d+c) (d-c d-C) > 0 u v - u v v u -v u = u v u - v u - v _. 

So the above sum is nonnegative. Then [p]:::: [r]. 

Equality holds if and only if u = v for all pairs of a and p, which means XI= 

X2 = ... = Xn· Finally we recall r has at least one more coordinate in agreement with 
q than p. So repeating this process finitely many times, we will eventually get the 
case r = q. Then we are done. 

4. Functional Equations 

A functional equatioll is an equation whose variables are ranging over func
tions. Hence, we. are seeking all possible functions satisfying the equation. We 
will let Z denote the set of all integers, Z+ or N denote the positive integers, No 
denote the nonnegative integers, Q denotes the rational numbers, lR denotes the 
real numbers, lR+ denote the positive real numbers andlC denote the complex 
numbers. 

In simple cases, a functional equation can be solved by introducing some 
substitutions to yield more informations or additional equations. 

Example. (1) Find all functions f : lR -+ lR such that 

x 2 f(x) + f(l - x) = 2x - X4 

for all x E lR. 

Solution. Replacing x by I - x, we have (I _.x)2 f(l - x) + f(x) = 2(1· - x) -
(l - x)4. Siqce f(1 - x) = 2x - x4 - x 2 f(x) by the given equation, we have 
(1- x)2(2x _x4 - x 2 f(x» + f(x) = 2(1- x) - (1- X)4. Solving for f(x), we 
have 

. 2(1-x) - (1._X)4 - (l-x)2(2x _x4) 2 
f~)= =1-x. 

l-x2(I-x)2 

Check: For f(x) = 1 - x 2, x 2 f(x) + f(l - x) =x2(1- x2) + (1- (I - X)2) = 
2x - x4. 

For certain type of functional equations, a standard approach to solving the 
problem is to determine some special values (such as f(O) or f(1», then induc
tively determine fen) fom E No, follow by reciprocal values f(~) and use density 
to find all f (x), x E lR. The following are examples of such approach .. 

Example. (2) Find all functions f : Q -+ Q such that 

f(x + y) = f(x) + fey) (Cauchy Equation) 

for all x, y E Q. 

Solution. Step 1 Taking x = 0 = y, we get f(O) = f(O) + f(O) =? f(O) = O. 
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Step 2 We will prove f (kx) = k f (x) for k ∈ N, x ∈ Q by induction. This is true
for k = 1. Assume this is true for k. Taking y = kx, we get

f (x + kx) = f (x) + f (kx) = f (x) + k f (x) = (k + 1) f (x).

Step 3 Taking y = −x, we get 0 = f (0) = f (x + (−x)) = f (x) + f (−x) ⇒
f (−x) = − f (x). So f (−kx) = − f (kx) = −k f (x) for k ∈ N. Therefore,
f (kx) = k f (x) for k ∈ Z, x ∈ Q.

Step 4 Taking x = 1
k , we get f (1) = f (k 1k ) = k f ( 1k ) ⇒ f ( 1k ) = 1

k f (1).

Step 5 For m ∈ Z, n ∈ N, f (mn ) = m f ( 1n ) = m
n f (1). Therefore, f (x) = cx with

c(= f (1)) ∈ Q.

Check: For f (x) = cx with c ∈ Q, f (x+y) = c(x+y) = cx+cy = f (x)+ f (y).

In dealing with functions on R, after finding the function on Q, we can often
finish the problem by using the following fact.

Density of Rational Numbers. For every real number x, there are rational num-
bers p1, p2, . . . increase to x and there are rational numbers q1, q2, . . . decrease
to x . We denote this by pn ↗ x and qn ↘ x as n→ +∞.

It follows from decimal representation of real numbers. For example, π =
3.14159 . . . is the limits of 3,

31

10
,
314

100
,
3141

1000
, . . . and also 4,

32

10
,
315

100
,
3142

1000
, . . . .

Example. (3) Find all functions f : R → R such that f (x + y) = f (x) + f (y)
for all x, y ∈ R and f (x) ≥ 0 for x ≥ 0.
Solution. Step 1 By example 2, f (x) = x f (1) for x ∈ Q.

Step 2 If x ≥ y, then x − y ≥ 0. So

f (x) = f ((x − y) + y) = f (x − y) + f (y) ≥ f (y).

So, f is increasing.

Step 3 If x ∈ R, then by the density of rational numbers, there are pn, qn ∈ Q

such that pn ≤ x ≤ qn, pn ↗ x and qn ↘ x as n → +∞. So by steps 1 and 2,
pn f (1) = f (pn) ≤ f (x) ≤ f (qn) = qn f (1). As n → +∞, pn f (1) ↗ x f (1)

27

and qn f (1) ↘ x f (1). So pn f (1) and qn f (1) will squeeze f (x) to x f (1). We get
f (x) = x f (1) for all x ∈ R. Therefore, f (x) = cx with c(= f (1)) ≥ 0.
Check: For f (x) = cx with c ≥ 0, f (x+y) = c(x+y) = cx+cy = f (x)+ f (y)
and f (x) = cx ≥ 0 for x ≥ 0.

Remarks. (1) In example 3, if we replace the condition “ f (x) ≥ 0 for x ≥ 0”
by “ f is monotone”, then the answer is essentially the same, namely f (x) = cx
with c = f (1). Also, if the condition “ f (x) ≥ 0 for x ≥ 0” is replaced by “ f is
continuous at 0”, then steps 2 and 3 in example 3 are not necessary. We can take
rational pn ↗ x and take limit of pn f (1) = f (pn) = f (pn − x) + f (x) to get
x f (1) = f (x) since pn − x ↗ 0.
(2) The Cauchy equation f (x + y) = f (x)+ f (y) for all x, y ∈ R has noncontin-
uous solutions (in particular, solutions not of the form f (x) = cx). This requires
the concept of a Hamel basis of the vector space R over Q from linear algebra.

The following are some useful facts related to the Cauchy equation.

Fact 1. Let A = R, [0, ∞) or (0, ∞). If f : A → R satisfies f (x + y) =
f (x) + f (y) and f (xy) = f (x) f (y) for all x, y ∈ A, then either f (x) = 0 for
all x ∈ A or f (x) = x for all x ∈ A.
Proof. By example 2, we have f (x) = f (1) = x for all x ∈ Q. If f (1) = 0, then
f (x) = f (x · 1) = f (x) f (1) = 0 for all x ∈ A. Otherwise, we have f (1) �= 0.
since f (1) = f (1) f (1), we get f (1) = 1. Then f (x) = x for all x ∈ A ∩ Q.

If y ≥ 0, then f (y) = f (
√
y) f (

√
y) = f (

√
y)2 ≥ 0 and f (x + y) =

f (x) + f (y) ≥ f (x), which implies f is increasing. Now for any x ∈ A \ Q,

by the density of rational numbers, there are pn, qn ∈ Q such that pn < x < qn,
pn ↗ x and qn ↘ x as n → +∞. As f is increasing, we have pn = f (pn) ≤
f (x) ≤ f (qn) = qn . Taking limits, the sandwich theorem gives f (x) = x for all
x ∈ A.

Fact 2. If a function f : (0, ∞) → R satisfies f (xy) = f (x) f (y) for all x, y > 0
and f is monotone, then either f (x) = 0 for all x > 0 or there exists c such that
f (x) = x c for all x > 0.

Proof. For x > 0, f (x) = f (√x)2 ≥ 0. Also, f (1) = f (1) f (1) implies f (1) =
0 or 1. If f (1) = 0, then f (x) = f (x) f (1) = 0 for all x > 0. If f (1) = 1, then

28



f (x) > 0 for all x > 0 (since f (x) = 0 implies f (1) = f (x 1
x
) = f (x) f (1

x

) = 0,
which would lead to a contradiction).

Define g : R → R by g(w) = ln f (ew). Then

g(x + y) = ln f (ex+y) = ln f (ex ) f (ey) = ln f (ex ) + ln f (ey) = g(x) + g(y).

Since f is monotone, it follows that g is also monotone. Then g(w) = cw for all
w. Therefore, f (x) = x c for all x > 0.

As an application of these facts, we look at the following example.

Example. (4) (2002 IMO) Find all functions f from the set R of real numbers to
itself such that(

f (x) + f (z))( f (y) + f (t)) = f (xy − zt) + f (xt + yz)

for all x, y, z, t in R.

Solution. (Due to Yu Hok Pun, 2002Hong Kong IMO teammember, gold medalist)
Suppose f (x) = c for all x . Then the equation implies 4c2 = 2c. So c can only be
0 or
1

2
. Reversing steps, we can also check f (x) = 0 for all x or f (x) = 1

2
for all

x are solutions.

Suppose the equation is satisfied by a nonconstant function f. Setting x = 0
and z = 0, we get 2 f (0)( f (y) + f (t)) = 2 f (0), which implies f (0) = 0 or
f (y) + f (t) = 1 for all y, t. In the latter case, setting y = t, we get the constant
function f (y) = 1

2
for all y. Hence we may assume f (0) = 0.

Setting y = 1, z = 0, t = 0, we get f (x) f (1) = f (x). Since f (x) is not the
zero function, f (1) = 1. Setting z = 0, t = 0, we get f (x) f (y) = f (xy) for all
xy. In particular, f (w) = f (√w)2 ≥ 0 for w > 0.

Setting x = 0, y = 1 and t = 1,we have 2 f (1) f (z) = f (−z)+ f (z),which
implies f (−z) = f (z) for all z. So f is even.
Define the function g : (0, ∞) → R by g(w) = f (

√
w) ≥ 0. Then for all

x, y > 0,

g(xy) = f (√xy) = f (√x√y) = f (√x) f (√y) = g(x)g(y).
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Next f is even implies g(x2) = f (x) for all x . Setting z = y, t = x in the given
equation, we get

(
g(x2) + g(y2))2 = g((x2 + y2)2) = g(x2 + y2)2

for all x, y. Taking square roots and letting a = x 2, b = y2, we get g(a + b) =
g(a) + g(b) for all a, b > 0.

By fact 1, we have g(w) = w for all w > 0. Since f (0) = 0 and f is even, it
follows f (x) = g(x2) = x2 for all x .
Check: If f (x) = x2, then the equation reduces to

(x2 + z2)(y2 + t2) = (xy − zt)2 + (xt + yz)2,

which is a well known identity and can easily be checked by expansion or seen
from |p|2|q|2 = |pq|2, where p = x + i z, q = y + i t ∈ C.

The concept of a fixed point is another useful idea in attacking a functional
equations. Knowing all the fixed points are important in certain types of functional
equations.

Definitions. w is a fixed point of a function f if w is in the domain of f and
f (w) = w. Let f (1) = f and f (n) = f ◦ f (n−1) for n = 2, 3, 4, . . . , the function
f (n) is called the n-th iterate of f.

(5) (1983 IMO) Find all functions f : R+ → R+ such that f (x f (y)) = y f (x) for
all x, y ∈ R+ and as x → +∞, f (x) → 0.

Solution. Step 1 Taking x = 1 = y, we get f ( f (1)) = f (1). Taking x = 1, y =
f (1), we get f ( f ( f (1))) = f (1)2. Then

f (1)2 = f ( f ( f (1))) = f ( f (1)) = f (1) ⇒ f (1) = 1

since f (1) ∈ R+. So 1 is a fixed point of f.

Step 2 Taking y = x, we get f (x f (x)) = x f (x). So w = x f (x) is a fixed point
of f for every x ∈ R+.

Step 3 Suppose f has a fixed point x > 1. By step 2, x f (x) = x 2 is also a fixed
point, x2 f (x2) = x4 is also a fixed point, . . . . So x2n ’s are fixed points. Since
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x > 1, x2
n → +∞, but f (x2

n
) = x2n → +∞, not 0. This contradicts f (x) → 0

as x → +∞. So f does not have any fixed point x > 1.

Step 4 Suppose f has a fixed point x ∈ (0, 1). Then

1 = f ( 1
x
x) = f ( 1

x
f (x)) = x f ( 1

x
) ⇒ f (

1

x
) = 1
x
,

i.e. f has a fixed point 1x > 1, contradicting step 3. So f does not have any fixed
point x ∈ (0, 1).

Step 5 Steps 1, 3, 4 showed the only fixed point of f is 1. By step 2, we get
x f (x) = 1⇒ f (x) = 1

x for all x ∈ R+.

Check: For f (x) = 1
x , f (x f (y)) = f ( xy ) = y

x = y f (x). As x → +∞, f (x) =
1
x → 0.

(6) (1996 IMO) Find all functions f : N0 → N0 such that f (m + f (n)) =
f ( f (m)) + f (n) for all m, n ∈ N0.

Solution. Step 1 Taking m = 0 = n, we get f ( f (0)) = f ( f (0)) + f (0) ⇒
f (0) = 0. Taking m = 0, we get f ( f (n)) = f (n), i.e. f (n) is a fixed point of f
for every n ∈ N0. Also the equation becomes f (m + f (n)) = f (m) + f (n).
Step 2 If w is a fixed point of f, then we will show kw is a fixed point of f for
all k ∈ N0. The cases k = 0, 1 are known. Suppose kw is a fixed point, then
f (kw + w) = f (kw + f (w)) = f (kw) + f (w) = kw + w and so (k + 1)w is
also a fixed point.

Step 3 If 0 is the only fixed point of f , then f (n) = 0 for all n ∈ N0 by step 1.
Obviously, the zero function is a solution.

Otherwise, f has a least fixed pointw > 0.Wewill show the only fixed points
are kw, k ∈ N0. Suppose x is a fixed point. By the division algorithm, x = kw+r,
where 0 ≤ r < w.We have

x = f (x) = f (r + kw) = f (r + f (kw)) = f (r ) + f (kw) = f (r ) + kw.

So f (r ) = x−kw = r. Sincew is the least positive fixed point, r = 0 and x = kw.
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Since f (n) is a fixed point for all n ∈ N0 by step 1, f (n) = cnw for some
cn ∈ N0.We have c0 = 0.
Step 4 For n ∈ N0, by the division algorithm, n = kw + r, 0 ≤ r < w.We have

f (n) = f (r + kw) = f (r + f (kw)) = f (r ) + f (kw)

= crw + kw = (cr + k)w = (cr +
[ n
w

]
)w.

Check: For each w > 0, let c0 = 0 and let c1, . . . , cw−1 ∈ N0 be arbitrary. The
functions f (n) = (cr + [ n

w
])w, where r is the remainder of n divided by w, (and

the zero function) are all the solutions. Write m = kw + r, n = lw + s with
0 ≤ r, s < w. Then

f (m+ f (n)) = f (r+kw+(cs+l)w) = crw+kw+csw+lw = f ( f (m))+ f (n).

Let Sn be the set of fixed points of f (n). Observe that if x is a fixed point of
f (n), then f (x) is also a fixed point of f (n) because f (n)( f (x)) = f (n+1)(x) =
f ( f (n)(x)) = f (x). So f takes Sn to itself. Also f is injective on Sn because if
f (a) = f (b) for a, b ∈ Sn, then a = f (n)(a) = f (n−1)( f (a)) = f (n−1)( f (b)) =
f (n)(b) = b. This means that if Sn is a finite set, then f is a permutation of Sn.
Since g(x) = x implies g(2)(x) = g(g((x)) = g(x) = x, so the fixed points

of g are also fixed points of g(2). Letting g = f, f (2), f (4), f (8), . . . , respectively,
we get S1 ⊆ S2 ⊆ S4 ⊆ S8 ⊆ · · · .

Example. (7) Find all functions f : R → R such that f ( f (x)) = x 2 − 2 for all
x ∈ R.

Solution. Assume such f exists. It turns out S2 and S4 are useful for this problem.
The fixed points of f (2) are the roots of x = x2 − 2, i.e. S2 = {−1, 2}. The fixed
points of f (4) are the roots of x = x4 − 4x2 + 2. i.e. S4 = {−1, 2, −1±

√
5

2
}. Let

c = −1+
√
5

2
, d = −1−

√
5

2
. Since f permutes S2 and c, d ∈ S4 \ S2, f (c) = c

or d. If f (c) = c, then f (2)(c) = c implies c is a fixed point of f (2), which is not
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true. So f (c) = d and hence f (d) = c. Then c = f (d) = f ( f (c)) = f (2)(c),
again a contradiction. So no such f can exist.

The above examples showed traditional or systematical ways of solving func-
tional equations. The following examples show some other approaches to deal
with these equations.

Example. (8) Find all functions f : N → N such that f ( f (m) + f (n)) = m + n
for all m, n ∈ N.

Solution. Clearly, the identity function f (x) = x is a solution. We will show that
is the only solution.

To show f (1) = 1, suppose f (1) = t > 1. Let s = f (t − 1) > 0. Observe
that if f (m) = n, then f (2n) = f ( f (m) + f (m)) = 2m. So f (2t) = 2 and
f (2s) = 2t − 2. Then 2s + 2t = f ( f (2s) + f (2t)) = f (2t) = 2 ⇒ t < 1, a
contradiction. Therefore, f (1) = 1.
Inductively, suppose f (n) = n. Then f (n + 1) = f ( f (n) + f (1)) = n + 1.

Therefore, f (n) = n for all n ∈ N by mathematical induction.

(9) (1987 IMO) Prove that there is no function f : N0 → N0 such that f ( f (n)) =
n + 1987.
Solution. Suppose there is such a function f. Then f is injective, i.e. f (a) =
f (b) ⇒ a + 1987 = f ( f (a)) = f ( f (b)) = b + 1987⇒ a = b.
Suppose f (n) misses exactly k distinct values c1, . . . , ck in N0, i.e. f (n) �=

c1, . . . , ck for all n ∈ N0. Then f ( f (n)) misses the 2k distinct values c1, . . . , ck
and f (c1), . . . , f (ck) inN0. (The f (cj )’s are distinct because f is injective.) Now
if w �= c1, . . . , ck, f (c1), . . . , f (ck), then there is m ∈ N0 such that f (m) = w.

Sincew �= f (cj),m �= cj , so there is n ∈ N0 such that f (n) = m, then f ( f (n)) =
w.This shows f ( f (n))misses only the 2k values c1, . . . , ck, f (c1), . . . , f (ck) and
no others. Since n + 1987 misses the 1987 values 0, 1, . . . , 1986 and 2k �= 1987,
this is a contradiction.

(10) (1999 IMO) Determine all functions f : R → R such that

f (x − f (y)) = f ( f (y)) + x f (y) + f (x) − 1
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for all x, y ∈ R.

Solution. Let c = f (0). Setting x = y = 0, we get f (−c) = f (c) + c − 1. So
c �= 0. Let A be the range of f, then for x = f (y) ∈ A, we have c = f (0) =
f (x) + x2 + f (x) − 1. Solving for f (x), this gives f (x) = c + 1

2
− x

2

2
.

Next, if we set y = 0, we get

{ f (x − c) − f (x) : x ∈ R} = {cx + f (c) − 1 : x ∈ R} = R

because c �= 0. This means A − A = {y1 − y2 : y1, y2 ∈ A} = R.

Now for an arbitrary x ∈ R, let y1, y2 ∈ A be such that y1 − y2 = x . Then

f (x) = f (y1 − y2) = f (y2) + y1y2 + f (y1) − 1

= c + 1
2

− y
2
2
2

+ y1y2 + c + 1
2

− y
2
1
2

− 1

= c − (y1 − y2)2
2

= c − x
2

2
.

Since for x ∈ A, f (x) = c + 1
2

− x
2

2
, so c = 1. Hence, f (x) = 1− x

2

2
for all x .

Check: For f (x) = 1− x
2

2
, both sides equal

1

2
+ y

2

2
− y

4

8
+ x − xy

2

2
− x

2

2
.

Exercises

1. Find all functions f : N0 → Q such that f (1) �= 0 and

f (x + y2) = f (x) + 2( f (y))2 for all x, y ∈ N0.

2. Find all functions f : Q → R such that f (1) = 2 and

f (xy) = f (x) f (y) − f (x + y) + 1 for all x, y ∈ Q.

3. Find all functions f : Q → R such that

f (x) f (y) = f (x + y) for all x, y ∈ Q.
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4. Find all functions f : R → R such that

(a) f (x + y) = f (x) + f (y) + 2xy for all x, y ∈ R and

(b) lim
x→0
f (x)

x
= 1.

(Hint: For n ∈ N, consider y = x, y = 2x, . . . , y = (n − 1)x .)

5. (1986 IMO) Find all functions f : [0, ∞) → [0, ∞) such that

(a) f (x f (y)) f (y) = f (x + y) for x, y ≥ 0 and
(b) f (2) = 0 and f (x) �= 0 for 0 ≤ x < 2.

6. Suppose f : R → R+ is such that

f (
√
x2 + y2) = f (x) f (y) for every x, y ∈ R.

Find f (x) for x ∈ Q in terms of f (1).

*7. (1990 IMO) Let Q+ be the set of positive rational numbers. Construct a
function f : Q+ → Q+ such that

f (x f (y)) = f (x)

y
for all x, y ∈ Q+.

*8. (1994 IMO)Let S be the set of real numbers greater than−1.Find all functions
f : S→ S such that

(a) f (x + f (y) + x f (y)) = y + f (x) + y f (x) for all x, y ∈ S and
(b) f (x)x is strictly increasing for−1 < x < 0 and for 0 < x .

(Hint: Show f can only have a fixed point at 0.)

*9. (1992 IMO) Find all functions f : R → R such that

f (x2 + f (y)) = y + ( f (x))2 for all x, y ∈ R.

(Hint: Assume f (0) = 0, then show x > 0 ⇒ f (x) > 0, and f is
increasing.)

*10. Find all functions f : Q → Q such that f (2) = 2 and

f

(
x + y
x − y

)
= f (x) + f (y)
f (x) − f (y) for x �= y.

(Hint: Try y = cx for different c ∈ Q and y = x − 2.)
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5. Number Theory

§1 Divisibility.

Definitions. (i) If a, b, c are integers such that a = bc and b �= 0, then we say b
divides a and denote this by b|a. (For example, 2 divides 6, so we write 2|6.)
(ii) A positive integer p > 1 is a prime number if 1 and p are the only positive

integers dividing p. If a positive integer n > 1 is not prime, it is a composite
number.

There is a famous proof of the fact that there are infinitely many prime
numbers. It goes as follow. Suppose there are only finitely many prime numbers,
say they are p1, p2, . . . , pn. Then the number M = p1 p2 · · · pn + 1 is greater than
p1, p2, . . . , pn. So M cannot be prime, hence there is a prime number pi dividing
M. However, pi also divides M − 1. Hence pi will divide M − (M − 1) = 1, a
contradiction.

Fundamental Theorem of Arithmetic (or Prime Factorization Theorem).
Every positive integer n can be written as the product of prime powers n =
2e13e25e37e4 · · · pekk , where the ei ’s are nonnegative integers, in one and only one
way (except for reordering of the primes).

Examples. 90 = 213251 and 924 = 223171111.
Questions. Do positive rational numbers have prime factorizations? (Yes, if
exponents are allowed to be any integers.) Do positive real numbers have prime
factorizations (allowing rational exponents)? (No, π does not.)

Corollaries. (1) m = pd11 p
d2
2 · · · pdkk divides n = pe11 p

e2
2 · · · pekk if and only if

0 ≤ di ≤ ei for i = 1, 2, · · · , k.
(2) The number n = 2e13e2 · · · pekk has exactly (e1+1)(e2+1) · · · (ek+1) positive
divisors.
(3) A positive integer n is the m-th power of a positive integer b (i.e. n = bm) if
and only if in the prime factorization of n = 2e13e25e3 . . . pekk , every ei is a multiple
of m.

Examples. (1) Since 90 = 213251, it has (1 + 1)(2 + 1)(1 + 1) = 12 positive
divisors. They are 2d13d25d3 , where d1 = 0, 1, d2 = 0, 1, 2 and d3 = 0, 1.

36



(2) Suppose n is a positive integer such that 2n has 28 positive divisors and 3n has
30 positive divisors. How many positive divisors does 6n have?

Solution. Write n = 2e13e2 · · · pekk . Then (e1 + 2)(e2 + 1) · · · (ek + 1) = 28
and (e1 + 1)(e2 + 2) · · · (ek + 1) = 30. Now a = (e3 + 1) · · · (ek + 1) divides
28 and 30, so it must be 1 or 2. If a = 1, then (e1 + 2)(e2 + 1) = 28 and
(e1 + 1)(e2 + 2) = 30, which have the unique solution e1 = 5, e2 = 3. It follows
6n has (e1+2)(e2+2)a = 35 positive divisors. If a = 2, then (e1+2)(e2+1) = 14
and (e1 + 1)(e2 + 2) = 15, which have no integer solutions by simple checking.
(3) (1985 IMO) Given a set M of 1985 distinct positive integers, none of which
has a prime divisor greater than 26. Prove that M contains at least one subset of
four distinct elements whose product is the fourth power of an integer.

Solution. Let M = {n1, n2, n3, . . . , n1985}. Taking prime factorizations, suppose
ni = 2e1,i3e2,i5e3,i · · · 23e9,i . Since 23 is the ninth prime number, there are 29 = 512
possible parity (i.e. odd-even) patterns for the numbers ei,1, e2,i , e3,i , . . . , e9,i . So
among any 513 of them, there will be two (say ni , n j ) with the same pattern. Then
nin j = b2i j . Note bi j cannot have any prime divisor greater than 26.
Remove these pairs one at a time. Since 1985− 2× 512 = 961 > 513, there

are at least 513 pairs. Consider the bi j ’s for these pairs. There will be two (say
bi j , bkl) such that bi jbkl = c2. Then nin jnknl = b2i jb2kl = c4.

Definitions. Let a1, a2, . . . , an be integers, not all zeros.

(i) The greatest common divisor (or highest common factor) of a1, a2, . . . , an
is the largest positive integer dividing all of them. We denote this number
by (a1, a2, . . . , an) or gcd(a1, a2, . . . , an). If (a1, a2, . . . , an) = 1, then we say
a1, a2, . . . , an are coprime or relatively prime. In particular, two coprime integers
have no common prime divisors!

(ii) The least common multiple of a1, a2, . . . , an is the least positive integer
which is a multiple of each of them. We denote this number by [a1, a2, . . . , an] or
lcm(a1, a2, . . . , an).

Example. (4) (6, 8) = 2, [6, 8] = 24; (6, 8, 9) = 1, [6, 8, 9] = 72.

Theorem. If ai = 2e1,i3e2,i · · · pek,ik , then

(a1, a2, . . . , an) = 2min{e1,i }3min{e2,i } · · · pmin{ek,i }k
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and
[a1, a2, . . . , an] = 2max{e1,i }3max{e2,i } · · · pmax{ek,i }k .

For n = 2, (a1, a2)[a1, a2] = a1a2. (The last equation need not be true for more
than 2 numbers.)

Example. (5) 6 = 2131, 8 = 2330, so (6, 8) = 2130 = 2, [6, 8] = 2331 = 24.

Prime factorization is difficult for large numbers. So to find gcd’s, we can
also use the following fact.

Euclidean Algorithm. If a, b are integers not both zeros, then (a, b) = (a −
bm, b) = (a, b − an) for any positive integers m, n. In particular, if a > b > 0
and a = bm + r, then (a, b) = (r, b).

Examples. (6) (2445, 652) = (489, 652) = (489, 163) = 163.

(7) (IMO1959) Prove that the fraction 21n+414n+3 is irreducible for every natural number
n.

Solution. (21n + 4, 14n + 3) = (7n + 1, 14n + 3) = (7n + 1, 1) = 1.

The following are some useful facts about relatively prime integers.

(1) For nonnegative integers a, b not both zeros, (a, b) is the least positive integer
of the form am + bn, where m, n are integers. In particular, if (a, b) = 1,
then there are integers m, n such that am + bn = 1.
Reasons. Clearly (a, b) divides positive numbers of the form am+bn, hence
(a, b) ≤ am + bn. By symmetry, we may assume a ≥ b.We will induct on
a. If a = 1, then b = 0 or 1 and (a, b) = 1 = a · 1 + b · 0. Suppose this
is true for all cases a < a0. By Euclidean algoritnm, (a0, b) = (r, b), where
a0 = bq + r, 0 ≤ r < b. Since b < a0, by the inductive hypothesis, there are
integers m, n such that (a0, b) = (r, b) = rm + bn = (a0 − bq)m + bn =
a0m + b(n − qm). So the case a = a0 is true.

(2) If n|ab and (a, n) = 1, then n|b. (This is because ar + ns = 1 for some
integers r, s so that n|(ab)r + n(sb) = b.) In particular, if p is prime and
p|ab, then p|a or p|b. From this, we get that if (a, n) = 1 and (b, n) = 1,
then (ab, n) = 1.
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(3) If nk = ab and (a, b) = 1, then each of a and b is the k-th power of an integer.
(This follows from taking prime factorization of n and using the second part
of the last fact.)

§2 Modulo Arithmetic.

Division Algorithm. Let b be a positive integer. For any integer a, there are
integers q, r such that a = bq + r and 0 ≤ r < b. (r is called the remainder of a
upon division by b. Remainders are always nonnegative.)

Note that when 19 is divided by 5, the remainder is 4, but when −19 is
divided by 5, the remainder is 1 because −19 = 5(−4) + 1. When the integers
. . . , −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, . . . is divided by 5, the respec-
tive remainders form the periodic sequence

. . . , 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, . . . .

Definitions. (i) We say a is congruent to a ′ modulo b and denote this by a ≡
a′(mod b) if and only if a and a ′ have the same remainder upon division by b.

(ii) For a positive integer n, a complete set of residues modulo n is a set
of n integers r1, r2, . . . , rn such that every integer is congruent to exactly one of
r1, r2, . . . , rn modulo n. (For example, 0, 1, 2, . . . , n − 1 form a complete set of
residues modulo n for every positive integer n.)

Basic Properties. (i) a ≡ a′(mod b) if and only if b|a − a ′. (Often this is used as
the definition of the congruent relation.)

(ii) If a ≡ a′(mod b) and c ≡ c′(mod b), then a + c ≡ a′ + c′(mod b), a − c ≡
a′ − c′(mod b), ac ≡ a′c′(mod b), an ≡ a′n(mod b) and P(a) ≡ P(a′)(mod b)
for any polynomial P(x) with integer coefficients.

Example. (8) Find the remainder of 197820 upon division by 53 = 125.
Solution. 197820 = (2000 − 22)20 ≡ (−22)20 = 48410 ≡ (−16)10 = 2565 ≡
65 = 2535 ≡ 32(−7) ≡ 26(mod 125).

Other than finding remainders, modulo arithmetic is also useful in many
situations. For example, (mod 2) is good for parity check. The fact that a number
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is divisible by 3 if and only if the sum of digits is divisible by 3 can be easily
explained by

an10
n + an−110n−1 + · · · + a110+ a0 ≡ an + an−1 + · · · + a1 + a0(mod 3).

In working with squares, (mod 4) is useful in doing parity check since (2n)2 =
4n2 ≡ 0(mod 4) and (2n + 1)2 = 4n2 + 4n + 1 ≡ 1(mod 4). Similarly for cubes,
we have k3 ≡ −1, 0 or 1(mod 9) according to k ≡ −1, 0, 1(mod 3) respectively.
For fourth powers, k4 ≡ 0 or 1 (mod 16) according to k is even or odd respectively.
Also, as in the reasoning above for (mod 3), one can show that every nonnegative
integer in base 10 is congruent to the sum of its digits (mod 9). To determine the
units digits, we use (mod 10).

The following facts are very useful in dealing with some problems.

Further Properties. (iii) (Cancellation Property) If am ≡ am ′(mod b) and
(a, b) = 1, then b|a(m − m ′), so b|m −m ′, i.e. m ≡ m ′(mod b).

(iv) (Existence of Multiplicative Inverse) If (a, b) = 1, then there exists a unique
m(mod b) such that am ≡ 1(mod b). We may denote this m by a−1. (Reasons.
Since (a, b) = 1, there exist integers m, n such that 1 = (a, b) = am + bn ≡
am(mod b). If am ′ ≡ 1(mod b), then m ≡ m ′(mod b) by the cancellation prop-
erty.)

(v) For a positive integer c, if (a, b) = 1, then we define a−c ≡ (a−1)c(mod b).
Since ac(a−1)c ≡ 1(mod b), so we also have a−m ≡ (ac)−1(mod b). From this,
we can check that ar+s ≡ aras(mod b) and (ar )s ≡ ars(mod b) for all integers
r, s.

(vi) For nonnegative integers a, b not both zeros, if r a ≡ 1(mod s) and r b ≡
1(mod s), then there are integers m, n isuch that r (a,b) = r am+bn = (r a)m(r b)n ≡
1(mod s).

Fermat’s Little Theorem. If p is prime and (a, p) = 1, then a p−1 ≡ 1(mod p).
(This means that a p−2 ≡ a−1 (mod p) because a(a p−2) ≡ 1(mod p).)

Euler’s Theorem. If (a, n) = 1, then aφ(n) ≡ 1(mod n), where the Euler φ-
function φ(n) is the number of positive integers less than or equal to n, which are
relatively prime to n. (For a prime p, φ(p) = p − 1 and hence Euler’s theorem
generalizes Fermat’s little theorem.)
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To understand the reasons behind these theorems, we will define a reduced set
of residues modulo n to be a set of φ(n) integers r1, r2, . . . , rφ(n) such that every
integer relatively prime to n is congruent to exactly one of r1, r2, . . . , rφ(n) modulo
n. To prove Euler’s theorem, we note that if r1, r2, . . . , rφ(n) is a reduced set of
residues modulo n and (a, n) = 1, then ar1, ar2, . . . , arφ(n) are relatively prime to
n and they also form a reduced set of residues modulo n. (This is because ri = r j
if and only if ari ≡ ar j (mod n) by the properties above.) So each ari is congruent
to a unique r j modulo n and hence

aφ(n)r1r2 · · · rφ(n) = (ar1)(ar2) · · · (arφ(n)) ≡ r1r2 · · · rφ(n)(mod n).

Since (r1r2 · · · rφ(n), n) = 1, applying the cancellation property, we get aφ(n) ≡ 1
(mod n).

Wilson’s Theorem. If p is a prime number, then (p − 1)! ≡ −1 (mod p). (The
converse is also true, if n > 4 is composite, then (n − 1)! ≡ 0 (mod n).)
Reasons. The case p = 2 is clear. Let p > 2 be prime and 1 ≤ a < p, then
(a, p) = 1 implies a, 2a, . . . , a(p − 1) form a reduced set of residues modulo p
and hence there is a unique b such that 1 ≤ b < p and ab ≡ 1 (mod p). We have
a = b if and only if p divides a2 − 1 = (a − 1)(a + 1), that is a = 1 or p − 1.
Hence, for the p − 3 integers 2, 3, . . . , p − 2, we can form (p − 3)/2 pairs a, b
with ab ≡ 1 (mod p). Then (p − 1)! ≡ 1 · 1(p−3)/2(p − 1) ≡ −1 (mod p).

For the converse of Wilson’s theorem, if n > 4 is composite, then let p be a
prime dividing n and supoose n �= p2. Then p < n and n/p < n so that p �= n/p
and n = p(n/p) divides (n − 1)!. If n = p2, then p �= 2 and p < 2p < p2 = n
so again n divides 2p2 = p(2p), which divides (n − 1)!.

Examples. (9) φ(1) = 1. If p is prime, then 1, 2, 3, . . . , p − 1 are re;atively
prime to p and so φ(p) = p − 1. (Again, this means Fermat’s little theorem
is a special case of Euler’s theorem). For k ≥ 1, p prime, since the numbers
p, 2p, 3p, . . . , pk are the only numbers less than pk not relatively prime to pk, so
φ(pk) = pk − pk−1 = pk(1− 1

p ).

(10) Let us find the units digit of 77
7
. Note φ(10) = 4, since only 1,3,7,9 are less

than or equal to 10 and relatively prime to 10. Since (7, 10) = 1, so 7φ(10) =
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74 ≡ 1(mod 10) by Euler’s theorem. Now 77 ≡ (−1)7 ≡ 3(mod 4) and so
77
7 = 74n+3 = (74)n73 ≡ 1n73 = 343 ≡ 3(mod 10). So the units digit of 777 is 3.

Chinese Remainder Theorem. Let m1,m2, . . . ,mk be positive integers such that
(mi ,m j) = 1 for every pair i �= j . Then the equations x ≡ b1(mod m1), x ≡
b2(mod m2), . . . , x ≡ bk(mod mk) have a common solution. In fact, every two
solutions are congruent (mod m1m2 · · ·mk) and we say the solution is unique
(mod m1m2 · · ·mk).
Reasons. One solution x can be found as follow: let M j = m1m2...mk

m j , then

x = Mφ(m1)
1 b1 + Mφ(m2)

2 b2 + · · · + Mφ(mk )
k bk

is a solution since mi |Mj for i �= j, (Mi ,mi ) = 1 imply x ≡ Mφ(mi )
i bi ≡

bi (mod mi ) for i = 1, 2, . . . , k by Euler’s theorem. Next, to show the solution is
unique (mod m1m2 · · ·mk), let x ′ ≡ bi (mod mi ) also. Then x − x ′ ≡ 0(mod mi )
for i = 1, 2, . . . , k, i.e. x−x ′ is a commonmultiple of them i ’s. Since (mi ,m j ) = 1
for i �= j, so their lcm m1m2 · · ·mk |x − x ′. Then x ≡ x ′(mod m1m2 · · ·mk).)

Computation Formulas. If (a, b) = 1, then φ(ab) = φ(a)φ(b). If n =
pe11 p

e2
2 · · · pekk and ei ≥ 1 for i = 1, 2, . . . , k, then

φ(n) = n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pk
).

Reasons. For the first statement, observe that if 1 ≤ x ≤ ab and (x, ab) = 1,
then (x, a) = 1 and (x, b) = 1. So the remainders r, s of x upon divisions by a, b
are relatively prime to a, b, respectively by the Euclidean algorithm. Conversely,
if 1 ≤ r ≤ a, (a, r ) = 1 and 1 ≤ s ≤ b, (b, s) = 1, then x ≡ r (mod a) and x ≡
s(mod b) have a unique solution less than or equal to ab by the Chinese remainder
theorem. Thus, the pairing x ↔ (r, s) is a one-to-one correspondence. The second
statement follows from the first statement and the fact φ(pki ) = pki (1− 1

pi ).

Examples. (11) φ(100) = φ(2252) = 100(1− 1
2 )(1− 1

5 ) = 40.

(12) To solve the system x ≡ 3(mod 7), x ≡ 2(mod 5),wemay use the formula in
the paragraph below the Chinese remainder theorem to get x ≡ 5φ(7)3+ 7φ(5)2 =
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563 + 742 ≡ 17(mod 35). (However, in general the formula may involve large
numbers.) Alternatively, we can solve as follow: x ≡ 3(mod 7) ⇔ x = 7n + 3,

x ≡ 2(mod 5) ⇔ 7n + 3 ≡ 2(mod 5) ⇔ 7n ≡ −1 ≡ 4(mod 5) ⇔

n ≡ 3(7n) ≡ 2(mod 5) ⇔ n = 5k + 2.
Then x = 7(5k + 2) + 3 = 35k + 17 (or x ≡ 17(mod 35).)

(13) (IMO 1989) Prove that for each positive integer n there exist n consecutive
positive integers, none of which is an integral power of a prime number.

Solution. Let p1, p2, . . . , p2n−1, p2n be 2n distinct prime numbers. Now by the
Chinese remainder theorem,

x ≡ −1(mod p1 p2), x ≡ −2(mod p3 p4), . . . , x ≡ −n(mod p2n−1 p2n)

have a common solution. Then each of the numbers x + 1, x + 2, . . . , x + n is
divisible by two different prime numbers. Hence each cannot be a prime power.

(14) If q is a prime factor of a2 + b2 and q ≡ 3(mod 4), then q|a and q|b. (This
fact is sometimes useful, for example in exercises 11 and 22.)

Solution. Suppose q does not divide a, say. Then (q, a) = 1. Let c = aq−2,
then ac = aq−1 ≡ 1(mod q) by Fermat’s little theorem. Now q|a2 + b2 implies
b2 ≡ −a2(mod q), so (bc)2 ≡ −1(mod q). Then q does not divide bc and
(bc)q−1 ≡ (−1)(q−1)/2 = −1(mod q), contradicting Fermat’s little theorem. So
q|a and similarly q|b.

(15) (1978 IMO) Letm and n be natural numbers with 1 ≤ m < n. In their decimal
representations, the last three digits of 1978m are equal, respectively, to the last
three digits of 1978n. Find m and n such that m + n has its least value.

Solution. Since the last three digits are equal, so 1978n ≡ 1978m(mod 1000), i.e.

1000 = 2353|1978n − 1978m = 1978m(1978n−m − 1).
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So, 23|1978m (because 1978n−m − 1 is odd) and the least m is 3. Let d = n − m.

The problem now is to look for the least positive integer d such that 53|1978d − 1
(i.e. 1978d ≡ 1(mod 53).) Since φ(53) = 100, so 1978100 ≡ 1(mod 53) by Euler’s
theorem. Thus the least such d is at most 100.

Suppose the least d < 100. Let 100 = dq + r with 0 ≤ r < d, then
1978r ≡ (1978d)q1978r = 1978100 ≡ 1(mod 53). Since d is to be the least such
exponent, r must be 0. Then d|100.Also, 5|1978d−1, so 1 ≡ 1978d ≡ 3d(mod 5).
The only such d’s are multiples of 4. So d = 4 or 20.However, example (8) shows
that 197820 �≡ 1(mod 53). (This also shows that 19784 �≡ 1(mod 53) because
19784 ≡ 1(mod 53) implies 197820 = (19784)5 ≡ 1(mod 53).) So d ≥ 100.
Therefore the least d = 100 and the least m + n = d + 2m = 106 when m = 3
and n = d +m = 103.

Exercises

1. For each of the following statements, determine if each is true or false. If
true, give an explanation. If false, provide a counterexample.

(a) If p is a prime number and p|nk, then pk|nk .
(b) If (ab, c) = 1, then (a, c) = 1 and (b, c) = 1.
(c) If a2 ≡ b2(mod c2), then a ≡ b(mod c).

2. As in the last exercise, determine if each of the following statement is true or
false. Provide reason or counterexample.

(a) If p is an odd prime, then φ(p2 − 1) = φ(p − 1)φ(p + 1). How about
φ(p2 − 4) = φ(p − 2)φ(p + 2) ?

(b) If n > 1, then show that the sequence n, φ(n), φ(φ(n)), φ(φ(φ(n))),
φ(φ(φ(φ(n)))), . . .must be all 1’s after the n-th term.

3. If p is a prime number, show that p divides the binomial coefficients C pn =
p!

n!(p−n)! for n = 1, 2, . . . , p − 1.

4. Find all intergers x such that x ≡ 1(mod 2), x ≡ 2(mod 3) and x ≡
3(mod 5).

44



5. Compute the last 2 digits of 77
7
.(Hint: Consider (mod 4) and (mod 25).)

6. (1972 USAMO) Prove that for any positive integers a, b, c,

[a, b, c]2

[a, b][b, c][c, a]
= (a, b, c)2

(a, b)(b, c)(c, a)
.

7. Show that the greatest power of a prime number p dividing n! is

∞∑
k=1
[
n

pk
] = [ n

p
]+ [ n

p2
]+ [ n

p3
]+ · · · ,

where [x] is the greatest integer less than or equal to x .

8 (1972 IMO 1972) Let m and n be arbitrary non-negative integers. Prove that

(2m)!(2n)!

m!n!(m + n)!
is an integer. (Hint: One solution uses the last exercise. Another solution is
to get a recurrence relation.)

9. Do there exist 21 consecutive positive integers each of which is divisible by
one or more primes p from the interval 2 ≤ p ≤ 13?

10. Show that there are infinitely many prime numbers of the form 4n− 1. (Hint:
Modify the proof that there are infinitely many prime numbers.)

11. Show that there are infinitely many prime numbers of the form 4n+ 1. (Hint:
Use example 14.)

Remarks. There is a famous theorem called Dirichlet’s Theorem on Prime
Progression, which states that for every pair of relatively prime positive
integers a, b, the arithmetic progression a, a + b, a + 2b, a + 3b, . . . must
contain infinitely many prime numbers.

Another famous theorem known as Chebysev’s theorem asserts that for
every x > 1, there is always a prime number p between x and 2x . This is
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also called Bertrand’s Postulate because it was experimentally verified by
Bertrand for x from 1 to 1, 000, 000 before Chebysev proved it.

§3 Divisibility Problems

Examples. (16) (1998 IMO) Determine all pairs (a, b) of positive integers such
that ab2 + b + 7 divides a2b + a + b.
Solution. Considering the expressions as polynomials of a and treating b as
constant, it is natural to begin as follow. If ab2 + b+ 7 divides a2b+ a + b, then
ab2 + b + 7 divides

a(ab2 + b + 7) − b(a2b + a + b) = 7a − b2.

If 7a − b2 = 0, then 7 divides b and so b = 7k, a = 7k2 for some positive
integer k. It is easy to check these pairs (a, b) = (7k2, 7k) satisfy the condition.

If 7a−b2 < 0, then ab2+b+7 ≤ |7a−b2| = −7a+b2, but this contradicts
−7a + b2 < b2 < ab2 + b + 7.
If 7a − b2 > 0, then ab2 + b + 7 ≤ 7a − b2. If b ≥ 3, then ab2 + b + 7 >

9a > 7a > 7a− b2, a contradiction. So b can only be 1 or 2. If b = 1, then a+ 8
divides 7a− 1 = 7(a+ 8) − 57. So a+ 8 divides 57, which implies a = 11 or 49.
If b = 2, then 4a + 9 divides 7a − 4. Since 7a − 4 < 2(4a + 9) = 8a + 18, we
get 7a − 4 = 4a + 9, which has no integer solution. Finally, (a, b) = (11, 1) and
(49, 1) are easily checked to be solutions.

(17) (1988 IMO) Let a and b be positive integers such that ab+ 1 divides a2+ b2.
Show that

a2 + b2
ab + 1 is the square of an integer.

Solution. Let k = (a2 + b2)/(ab+ 1). Assume there exists a case k is an integer,
but not a perfect square. Among all such cases, consider the case when max{a, b}
is least possible. Note a = b implies 0 < k = 2a2/(a2 + 1) < 2 so that k = 1.
Hence, by symmetry, we may assume a > b. Now x 2 + b2 − k(xb + 1) = 0
has a as a root. The other root is the integer c = kb − a = (b2 − k)/a. Now
cb + 1 = (c2 + b2)/k > 0 and c = (b2 − k)/a �= 0 imply c is a positive integer.
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Also, c = (b2 − k)/a < (a2 − k)/a < a. Now k = (c2 + b2)/(cb + 1) is a
nonsquare integer and max{b, c} < a = max{a, b} contradict max{a, b} is least
possible. Therefore, all such k’s are perfect squares.

Remarks. Considering to the roots of a quadratic expression is a useful trick in
some number theory problems!

(18) (2003 IMO)Determine all pairs of positive integers (a, b) such that
a2

2ab2 − b3 + 1
is a positive integer.

Solution. Let k = a2/(2ab2 − b3 + 1) be a positive integer. Then a2 − 2kb2a +
kb3 − k = 0. (Note it is possible to consider roots. However, the following is a
variation that is also useful.) Multiplying by 4 and completing squares, we get
(2a− 2kb2)2 = (2kb2− b)2+ (4k− b2). Let M = 2a− 2kb2 and N = 2kb2− b,
then M2 = N 2 + (4k − b2).
If 4k − b2 = 0, then b is even and M = ±N . If M = −N , then we get

b = 2a. If M = N , then 2a = 4kb2 − b = b4 − b. Thus, we get (a, b) = (b/2, b)
or ((b4− b)/2, b) with b an even integer. We can easily check these are solutions.
If 4k − b2 > 0, then since N = 2kb2 − b = b(2kb − 1) ≥ 1(2− 1) = 1, so

M2 ≥ (N + 1)2.We have

4k − b2 = M2 − N 2 ≥ (N + 1)2 − N 2 = 2N + 1 = 4kb2 − 2b + 1,

which implies 4k(b2 − 1) + (b − 1)2 ≤ 0. Since the left side is also nonegative,
this forces b = 1 and k = a2/(2a − 1 + 1) = a/2. Then (a, b) = (2k, 1), which
can be checked to be a solution for every positive integer k.

If 4k − b2 < 0, then M2 ≤ (N − 1)2. So

4k − b2 = M2 − N 2 ≤ (N − 1)2 − N 2 = −2N + 1 = −4kb2 + 2b + 1,

which implies 0 ≤ (1 − 4k)b2 + 2b + (1 − 4k). However, the right side equals
(1− 4k)(b + 1

1− 4k )
2 + 8k(2k − 1)

1− 4k < 0, a contradiction.

(19) (1972 Putnam Exam) Show that if n is an integer greater than 1, then n does
not divide 2n − 1.
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Solution. Assume n divides 2n − 1 for some integer n > 1. Since 2n − 1 is odd,
so n is odd. Let p be the smallest prime divisor of n. Then p divides 2n −1, hence
2n ≡ 1(mod p). By Fermat’s little theorem, 2p−1 ≡ 1(mod p). Now the greatest
common divisor d of n and p − 1 must be 1 because d divides n, d ≤ p − 1
and p is the smallest prime divisor of n. Then there are integers r, s such that
rn + s(p − 1) = 1, which implies

2 = 2d = (2n)r (2p−1)s ≡ 1(mod p),

a contradiction.

Exercises

12. (1992 IMO) Find all integers a, b, c with 1 < a < b < c such that (a −
1)(b − 1)(c− 1) is a divisor of abc − 1.

13. (1994 IMO) Determine all ordered pairs (m, n) of positive integers such that
(n3 + 1)/(mn − 1) is an integer. (Comments: There are 9 solutions.)

14. Redo Example 18 by considering roots of quadratic expression as in the
solution of Example 17.

15. (1999 IMO) Determine all pairs (n, p) of positive integers such that p is a
prime, n ≤ 2p, and (p − 1)n + 1 is divisible by n p−1. (Hint: For p ≥ 3,
consider the smallest prime divisor q of n.)

16. (2000CHKMO)Find all primenumbers p andq such that
(7p − 2p)(7q − 2q)

pq
is an integer.

17. (2003 IMO) Let p be a prime number. Prove that there exists a prime number
q such that for every integer n, the number n p− p is not divisible by q. (Hint:
Note not all of the prime divisors of M = (p p − 1)/(p− 1) are congruent to
1 (mod p2). Let q be such a prime divisor of M.)

18. (1990 IMO) Determine all integers n > 1 such that (2n + 1)/n2 is an integer.
(Hint: Write n = 3kr with (3, r ) = 1. Show k = 0 or 1 by factoring 2n + 1
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and considering (mod 9). Show r = 1 by considering the smallest prime
divisor of r if r > 1.)

§4 Diophantine Equations–Equations which integral solutions are sought.

Examples. (20) (1979 USAMO) Determine all integral solutions of n41 + n42 +
· · · + n414 = 1599.
Solution. We have (2n)4 = 16n4 ≡ 0(mod 16) and

(2n + 1)4 = 16n4 + 32n3 + 8n(3n + 1) + 1 ≡ 1(mod 16).

So, n41 + n42 + · · · + n414 ≡ 0, 1, 2, . . . , 14(mod 16), but 1599 ≡ 15(mod 16). So,
there can be no solution.

(21) (1976 USAMO) Determine all integral solutions of a2 + b2 + c2 = a2b2.
Solution. Suppose (a, b, c) is a solution. If a, b, c are odd, then a2 + b2 + c2 ≡
3(mod 4), but a2b2 ≡ 1(mod 4). If two are odd and one even, then a2 + b2 +
c2 ≡ 2(mod 4), but a2b2 ≡ 0 or 1(mod 4). If one is odd and two even, then
a2 + b2 + c2 ≡ 1(mod 4), but a2b2 ≡ 0(mod 4).
Therefore, a, b, c must all be even, say a = 2a0, b = 2b0, c = 2c0. Then we

get a20+b20+c20 = 4a20b20. If at least one of a0, b0, c0 is odd, then a20+b20+c20 ≡ 1, 2
or 3(mod 4), but 4a20b

2
0 ≡ 0(mod 4). So a0, b0, c0 must all be even again, say

a0 = 2a1, b0 = 2b1, c0 = 2c1. Then a21 + b21 + c21 = 16a21b21. So a1, b1, c1 must all
be even. From this we see inductively that a, b, c can be divisible by any power of
2. Therefore, a = b = c = 0.

(22) (1993 APMO) Determine all positive integer n for which the equation x n +
(2+ x)n + (2− x)n = 0 has an integer as a solution.
Solution. If n is even, the terms on the left side are nonnegative and cannot all be
0. So there will not be any integer solution. If n = 1, then x = −4 is the solution.
If n is odd and at least 3, then any solution x must be even, otherwise the left side is
odd. Suppose x = 2y. Then the equation becomes yn + (1+ y)n + (1− y)n = 0.
Obviously y �= 0.We have 0 = yn + (1+ y)n + (1− y)n ≡ 2(mod |y|). So y|2,
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forcing y = ±1 or ±2. However, simple checkings show these are not solutions.
So n = 1 is the only solution.

(23) Determine all integral solutions of y2 = 1+ x + x2 + x3 + x4.
Solution. Completing squares, we have (x 2 + x

2 + 1)2 = y2 + 5
4 x
2 and (x2 +

x
2 )
2 + 3

4 (x + 2
3 )
2 + 2

3 = y2. So x2 + x
2 + 1 ≥ |y| > x2 + x

2 . If x is odd, then
|y| = x2 + x

2 + 1
2 . Substituting back in to the equation and simplifying we get

x2− 2x − 3 = 0, yielding x = −1 or 3. If x is even, then |y| = x 2+ x
2 + 1 and so

5
4 x
2 = 0 forcing x = 0. Therefore, the solutions are (x, y) = (−1, ±1), (3, ±11)

and (0, ±1).

(24) Determine all nonzero integral solutions of (a2 + b)(a + b2) = (a − b)3.
Solution. Expanding, then simplifying the equation, we get 2b2 + (a2 − 3a)b +
(3a2 + a) = 0. Applying the quadratic formula, we get

b = 3a − a2 ±
√
a4 − 6a3 − 15a2 − 8a
4

= 3a − a2 ±
√
a(a − 8)(a + 1)2
4

.

So a(a − 8) = (a − 4)2 − 42 must be a perfect square, say x2 = (a − 4)2 − 42.
Then (a−4)2− x2 = 16. So (a−4+ x)(a−4− x) = (±1)(±16) or (±2)(±8) or
(±4)(±4).From these,we get the nonzero a = −1, 8, 9.These lead to the solutions
(a, b) = (−1, −1), (8, −10), (9, −6), (9, −21). (Check: The 4 solutions yield the
4 equations 0× 0 = 0, 54× 108 = 183, 75× 45 = 153, 60× 450 = 303.)

(25) Find all positive integral solutions of 3x + 4y = 5z .

Solution. Wewill show there is exactly one set of solution, namely x = y = z = 2.
To simplify the equation, we consider modulo 3. We have 1 = 0+1y ≡ 3x +4y =
5z ≡ (−1)z (mod 3). It follows that z must be even, say z = 2w. Then
3x = 5z−4y = (5w +2y)(5w −2y).Now 5w +2y and 5w −2y are not both divisible
by 3, since their sum is not divisible by 3. So, 5w + 2y = 3x and 5w − 2y = 1.
Then, (−1)w + (−1)y ≡ 0(mod 3) and (−1)w − (−1)y ≡ 1(mod 3). From these,
we getw is odd and y is even. If y > 2, then 5 ≡ 5w +2y = 3x ≡ 1 or 3 (mod 8),
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a contradiction. So y = 2. Then 5w − 2y = 1 implies w = 1 and z = 2. Finally,
we get x = 2.

Finally, we come to the most famous Diophantine equation. Let us define
Pythagorean triples to be triples (a, b, c) of positive integers satisfying a2 + b2 =
c2. For example, (3, 4, 5) and (5, 12, 13) are Pythagorean triples. Clearly, if
a2+ b2 = c2, then (ad)2+ (bd)2 = (cd)2 for any positive integer d . So, solutions
of a2+b2 = c2 with a, b, c relatively prime (i.e. having no common prime divisors)
are more important. These are called primitive solutions. Below we will establish
a famous theorem giving all primitive solutions.

Theorem. If u, v are relatively prime positive integers of opposite parity and
u > v, then a = u2 − v2, b = 2uv, c = u2 + v2 give a primitive solution of
a2 + b2 = c2. Conversely, every primitive solution is of this form, with a possible
permutation of a and b.
(For example, u = 2, v = 1 yields a = 3, b = 4, c = 5.)

Reasons. For the first statement, a2+b2 = u4+2u2v2+v4 = c2. Suppose two of
a, b, c have a common prime divisor p, then the equation will imply all three have
p as a common divisor. Note p �= 2 since a, c are odd. Then p|(c + a)/2 = u2
and p|(c−a)/2 = v2. This contradicts u, v being relatively prime. So a, b, cmust
be relatively prime.

For the second statement, if a2+ b2 = c2, then a2+ b2 ≡ 0 or 1 (mod 4). So,
if a, b, c are also relatively prime, then one of a or b is odd and the other is even.
Let us say a is odd and b is even. Then c is odd and it follows m = (c+ a)/2 and
n = (c − a)/2 are positive integers. Note a(= m − n) and c(= m + n) relatively
prime implies m, n cannot have a common prime divisor (for if p|m and p|n, then
p|m − n = a and p|m + n = c). Now (b/2)2 = (c2 − a2)/4 = mn. It follows
that both m and n are perfect squares with no common prime divisors. Let us say
m = u2 and n = v2. Then a = u2− v2, b = 2uv and c = u2+ v2. Since a is odd,
u and v are of opposite parity.

Remark. The general solutions of a2 + b2 = c2 are either trivial with a or b
equals 0 or nontrivial with a, b of the form±(u2− v2)d, ±2uvd and c of the form
±(u2 + v2)d, where u, v are as above and d is positive.

Example. (26) Find all positive integral solutions of 3x + 4y = 5z using the
theorem on Pythagorean triples.
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Solution. Let x, y, z be a solution, then 1 ≡ (−1)z(mod 3) and (−1)x ≡
1(mod 4). So x and z are even, say x = 2a and z = 2b. Then (3a)2+(2y)2 = (5b)2.
Since 3a, 2y and 5b are relatively prime, by the theorem on Pythagorean triples,
3a = u2−v2 and 2y = 2uv,where u > v and one is odd, the other even. Now 2y =
2uv implies u = 2y−1 > v = 1. Then 3a = 22(y−1) − 1 = (2y−1 − 1)(2y−1 + 1).
Since the two factors on the right differ by 2 and must be powers of 3, we have
2y−1 − 1 = 1, which gives y = 2, u = 2, a = 1, x = 2 and z = 2.

Exercises

19. Show that 15x2 − 7y2 = 9 has no integral solutions.

20. Find all integral solution(s) of x 3+2y3+4z3 = 9w3. (Hint: Consider (mod 9)
first.)

21. Find all integral solution(s) of 3 · 2x + 1 = y2.

22. Show that y2 = x3 + 7 has no integral solutions. (Hint: Note y2 + 1 =
(x + 2)(x2 − 2x + 4) and use example 14.)

*23. Show that x4 + y4 = z2 has no positive integral solutions. (Hint: Suppose
(x, y, z) is a positive solution with z least possible, then show there is another
solution with a smaller z value using the theorem on Pythagorean triples.)
Then also conclude that x4 + y4 = z4 has no positive integral solution.

Remarks. The famous Fermat’s Last Theorem is the statement that for every
integer n > 2, the equation xn + yn = zn has no positive integral solution.
Fermat claimed to have a proof 350 years ago, but nobody found his proof.
Only a few year ago, Andrew Wiles finally proved it. His proof was 200
pages long.
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6. Combinatorics

Combinatorics is the study of counting objects. There are many basic, yet
useful principles that allow us to count efficiently.

§1. Addition and Multiplication Principles.

Addition Principle. Suppose events A1, A2, . . . , An have a1, a2, . . . , an outcomes
respectively. If all of these outcomes are distinct, then the number of outcomes due
to event A1 or event A2 or . . . or event An is a1 + a2 + · · · + an.
Remarks.When you need to count something, the difficulty is how to break up the
things into groups that are easy to count.

Examples. (1) Flipping a coin (event A1) results in two outcomes: head or tail.
Tossing a dice (event A2) results in six outcomes: 1,2,3,4,5,6. So flipping a coin
or tossing a dice results in 6+ 2 = 8 outcomes.

(2) Find the number of squares having all their vertices belonging to an 10 × 10
array of equally spaced dots.

Solution. Each such square has a unique circumscribed squarewith sides parallel to
the sides of the array! Use these circumscribed squares as events. If a circumscribed
square is k × k (that is, each side has k + 1 dots), then there are k distinct squares
(outcomes) inscribed in this circumscribed square. For k = 1, 2, . . . , 9, there are
(10− k)2 circumscribed squares of dimension k × k. So the answer is
9∑
k=1

(10−k)2 ·k =
9∑
k=1

(100k−20k2+k3) = 100
9∑
k=1
k−20

9∑
k=1
k2+

9∑
k=1
k3 = 825,

using the formulas

n∑
k=1
k = n(n + 1)

2
,

n∑
k=1
k2 = n(n + 1)(2n + 1)

6
and

n∑
k=1
k3 =

(n(n + 1)
2

)2
.

Multiplication Principle. Suppose events A1, A2, . . . , An have a1, a2, . . . , an
outcomes respectively. Then the number of outcomes of event A1, followed by
event A2, ..., followed by event An is a1a2 · · · an .
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Examples. (3) Let n, k be integers such that 0 ≤ k ≤ n.
(a) Find the number Pnk (or nPk) of permutations of n distinct objects taken k at
a time. This is the number of ways of taking k of the n objects one after the
other without replacement so ordering is important. (If k is not mentioned,
then the default value is k = n.)

(b) Find the number Cnk (or nCk or

(
n

k

)
) of combinations of n distinct objects

taken k at a time. This is the number of ways of taking k of the n objects at
the same time so ordering is not important.

Solutions (a) There are n outcomes of taking the first object, followed by n−1 out-
comes of taking the second object, ..., there are n−k+1 outcomes of taking the k-th
objects. By themultiplication principle, Pnk = n(n − 1) · · · (n − k + 1) = n!

(n − k)! .

(b) Divide all permutations of n objects taken k at a time into groups that
have the same k objects. In each group, the number of ways the k objects were
taken was Pkk = k!. Since order is not important in combinations, the k! ways
in each group is only counted once. Hence Cnk is the number of groups, hence

Cnk = P
n
k
k!

= n!

k!(n − k)! .

(4) Find the number of positive divisors of a positive integer N having prime
factorization 2e13e2 · · · penn . Find the number of ordered pairs (a, b) of positive
integers a, b such that lcm(a, b) = N .

Solution. Every divisor of N is of the form2A13A2 · · · pAnn ,where Ai = 0, 1, 2, . . . , ei
for i = 1, 2, . . . , n. So the number of outcomes in the event of filling in A1 fol-
lowed by the event of filling in A2 ... followed by the event of filling in An is
(e1 + 1)(e2 + 1) · · · (en + 1). This is the number of positive divisors of N .

Let a = 2m13m2 · · · pmnn and b = 2k13k2 · · · pknn . Then lcm(a, b) = N if and
only if max (m1, k1) = e1 and max (m2, k2) = e2 and ... and max (mn, kn) = en .
Consider the event max (m1, k1) = e1, there are 2e1+1 possible outcomes, namely
(m1, k1) = (0, e1), (1, e1), . . . , (e1, e1), (e1, e1−1), . . . , (e1, 1), (e1, 0).Similarly,
there are 2ei + 1 outcomes for the event max (m i , ki ) = ei . So the number of pairs
(a, b) such that lcm(a, b) = n is (2e1 + 1)(2e2 + 1) · · · (2en + 1).
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§2. Bijection Principle.

Bijection Principle. If there is a one-to-one correspondence between the outcomes
of event A and outcomes of event B, then A and B have the same number of
outcomes.

Reminder. When we are asked to count the number of outcomes of an event,
sometimes it may be possible to set up a one-to-one correspondence with another
event whose outcomes are easier to count.

Examples. (5) Let n be a positive integer. In how many ways can one write a sum
of at least two positive integers that add up to n? Consider the same set of integers
written in a different order as being different. (For example, there are 3 ways to
express 3 as 3 = 1+ 1+ 1 = 2+ 1 = 1+ 2.)
Solution. (First the answer can be discovered by trying the cases n = 4, 5 and
observe pattern!) We study the case n = 3. We have 3 = (1) + (1) + (1) =
(1+ 1) + (1) = (1) + (1+ 1). Each of the sum is in a one-to-one correspondence
with (1 1 1), where each blank square is filled with a + or a ) + (. Note since
each sum has at least two terms, there is at least on ) + (.

For a general n, we have n = (1 1 · · · 1) with n − 1 blank squares. By the
multiplication principle, in filling in the blank squares one followed by the other,
there are 2n−1 ways, but filling all blank squares with + is not allowed. So there
are 2n−1 − 1 ways.

(6) Howmany paths are there going from (0, 0) to (10, 20) on the coordinate plane
such that either the x or the y coordinate of every point on the path is an integer and
the x and y coordinates on the path are always nondecreasing at every moment?

Solution. Note such a path is a staircase from (0, 0) to (10, 20) with corners at
lattice points (i.e. points with x, y integers). Break the path into unit length pieces.
Then each piece is either moving left or up. By projecting the path to the x and
y-axes, we see that the length is 30 units and there are 10 left and 20 up pieces.
There is a one-to-one correspondence between a path and a sequence of 10 lefts
and 20 ups in some order. Hence, among the 30 pieces, it depends where we take
the 10 lefts. Therefore, there are C3010 paths.
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(7) Each of the vertices of a regular nonagon (i.e. 9-sided polygon) has been
colored either red or blue. Prove that there exist two congruent monochromatic
(i.e. vertices having the same color) triangles.

Solution. By the pigeonhole principle, there are at least five vertices of the same
color, say red. So there are at least C53 = 10 triangles having red vertices. For each
triangle ABC (vertices in clockwise order), take vertex A, go around the nonagon
in the clockwise direction and count the number of sides of the nonagon travelled
from A to B, from B to C and from C to A.

Arrange these three numbers in increasing order x ≤ y ≤ z. There is a one-to-
one correspondence between the sides of triangle ABC and (x, y, z). Since x, y, z
are positive integers, x ≤ y ≤ z and x + y + z = 9, there are 7 outcomes, namely
(x, y, z) = (1, 1, 7), (1, 2, 6), (1, 3, 5), (1, 4, 4), (2, 2, 5), (2, 3, 4), (3, 3, 3).Since
10 > 7, by the pigeonhole principle, there must be two congruent red triangles.

(8) Let m and n be integers greater than 1. Let S be a set with n elements, and let
A1, A2, . . . , Am be subsets of S. Assume that for any two elements x and y in S,
there is a set Ai containing either x or y, but not both. Prove that n ≤ 2m .

Solution. For each element z in S, define f (z) = (z1, z2, . . . , zm), where zi = 1
if z is in the set Ai , otherwise zi = 0. If x �= y, then f (x) and f (y) differ in
some coordinates. So the n elements in S correspond to n different f (z). By
the multiplication principle, there are exactly 2 × 2 × · · · × 2 = 2m possible
(z1, z2, . . . , zm)’s. Therefore, n ≤ 2m .

§3 Pigeonhole Principle.

Pigeonhole Principle. If n + 1 or more objects are put into n boxes, then at least
two of the objects will be in the same box. More generally, if m objects are put

into n boxes, then at least
⌈m
n

⌉
objects will be in the same box.

Examples. (9) (1954 Putnam Exam) Five point are chosen from inside of the unit

square. Show that there are two points with distance at most
1

2

√
2.
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Solution. Divide the inside of the unit square into 4 squares with side
1

2
. By the

pigeonhole principle, there are two points in the same square. Then their distance

is at most the length of the diagonal, which is
1

2

√
2.

(10) Eleven numbers are chosen from 1, 2, . . . , 20. Show that the sum of two of
them is 21.

Solution. Consider the 10 sets {1, 20}, {2, 19}, · · · , {10, 11}. By the pigeonhole
principle, two of them will be from the same set. Hence the sum is 21.

(11) From any set of m integers, where m > 1, show that there must be a subset
the sum of whose elements is divisible by m.

Solution. Let a1, a2, . . . , am be the integers. Consider the m + 1 numbers

S0 = 0, S1 = a1, S2 = a1 + a2, . . . , Sm = a1 + a2 + · · · + am .

By the pigeonhole principle, there are Si , Sj with i > j such that Si ≡ Sj (mod m).

Then aj+1+· · ·+ai = Si − Sj ≡ 0(mod m). So {aj+1, . . . , ai } is a subset the sum
of whose elements is divisible by m.

(12) Suppose n+1 numbers are chosen from 1, 2, . . . , 2n. Show that there are two
of them such that one divides the other.

Solution. Factor each of the n + 1 numbers into the form 2mk with k odd. There
are n possibilities for k, namely k = 1, 3, . . . , 2n−1. By the pigeonhole principle
two of them have the same k factor. Then the one with the smaller exponent m
divides the one with the larger exponent m.
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(13) Each pair of 6 distinct points are joined by a red or blue line segment. Show
that there is a red or blue triangle. (Note if 6 is replaced by 5, the problem will not
be true as one can color the edges of a pentagon red and the diagonals blue to get
a counterexample.)

Solution. Take one of the 6 points, say A. By the pigeonhole principle, among the
5 segments from A, there are 3 of the same color, say AB, AC, AD are red. Either
triangle BCD is blue or one of the side, say BC, is red, then triangle ABC is red.

Alternative Formulation. Among any 6 people, either there are 3 who knows each
other or there are 3 with no pair knows each other.

Solution. Associate each person a point. Draw a red segment joining the points
if the corresponding people knows each other, a blue segment if they don’t know
each other. Then use the result above.

Remarks. There is a famous theorem known as Ramsey’s Theorem, which asserts
that for any positive integers p and q, there is a smallest positive integer n =
R(p, q) such that the following statement is true:

If n points are given with no three collinear and all line segments connecting
pairs of them are colored red or blue, then either there are p points, all seg-
ments connecting them are red or there are q points, all segments connecting
them are blue.

Example (13) is the statement R(3, 3) = 6.Very few Ramsey numbers R(p, q) are
known. Also, Ramsey’s theorem can be extended to more than 2 colors. Briefly,
given integers p1, . . . , pk, there is a least n such that if all segments connecting
n points are colored by k colors C1, . . . ,Ck, then either there are p1 points with
segments all C1 colored or . . . or there are pk points with segments all Ck colored.

§4 Principle of Inclusion and Exclusion.

Principle of Inclusion andExclusion (PIE).Let |S| denote the number of elements
in a set S.

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|,
|A1∪A2∪A3| = |A1|+|A2|+|A3|−|A1∩A2|−|A1∩A3|−|A2∩A3|+|A1∩A2∩A3|.
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In general,

|A1∪A2∪· · ·∪An| =
∑
1≤i≤n

|Ai |−
∑

1≤i< j≤n
|Ai∩Aj |+

∑
1≤i< j<k≤n

|Ai∩Aj∩Ak |−· · · .

Examples. (14) Find the number of positive integers at most 1000 which are
divisible by 10 or 12 or 14.

Solution. Let Ak be the set of positive integers at most 1000 which are divisible by
k. Since Ai∩Aj = Alcm(i, j), lcm(10, 12) = 60, lcm(10, 14) = 70, lcm(12, 14) =
84 and lcm(10, 12, 14) = 420, so by PIE,

|A10 ∪ A12 ∪ A14|
=|A10| + |A12| + |A14| − |A10 ∩ A12| − |A10 ∩ A14|

− |A12 ∩ A14| + |A10 ∩ A12 ∩ A14|

=
[
1000

10

]
+

[
1000

12

]
+

[
1000

14

]
−

[
1000

60

]
−

[
1000

70

]
−

[
1000

84

]
+

[
1000

420

]
=100+ 83+ 71− 16− 14− 11+ 2 = 215.

(15) (Derangement Problem) How many ways can n letters be put into n envelopes
so that no letter goes into the right envelope?

Solution. Totally there are n! ways of putting n letters into n envelopes. We will
count the opposite situation, where at least one letter goes into the right envelopes.
Let Ai be all possible ways of putting letters into envelopes such that the i-th letter
goes to the right envelope. Since the other letters may go randomly into the other
n − 1 envelopes, |Ai | = (n − 1)!. Similarly, |Ai ∩ Aj | = (n − 2)! for i �= j as the
other n − 2 letters may be randomly placed, etc. By PIE,

|
n⋃
i=1
Ai | =

∑
1≤i≤n

|Ai | −
∑

1≤i< j≤n
|Ai ∩ Aj | +

∑
1≤i< j<k≤n

|Ai ∩ Aj ∩ Ak | − · · ·

=
(
n

1

)
(n − 1)!−

(
n

2

)
(n − 2)!+

(
n

3

)
(n − 3)!− · · ·

= n!( 1
1!

− 1
2!

+ 1
3!

− · · · ± 1
n!

).
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So the number of ways no letters go into the right envelopes is

n!− |A1 ∪ A2 ∪ · · · ∪ An| = n!(1− 1
1!

+ 1
2!

− 1
3!

+ · · · ± 1
n!

).

(Note the probability that no letters will go to the right envelopes is the above

expression divided by n!, which is close to
1

e
= 1− 1

1!
+ 1
2!

− 1
3!

+ · · · when n
is large.)

(16) (Euler φ-function) For a positive integer n, show that the number of integers

in {1, 2, . . . , n} that are relatively prime to n is φ(n) = n
m∏
i=1

(1− 1
pi

), where

n = pe11 pe22 · · · pemm is the prime factorization of n.

Solution. Instead we count the number of integers in {1, 2, . . . , n} that are not
relatively prime to n. Then these integers are divisible by at least one of the primes
p1, p2, . . . , pm . Let Ai be the number of integers in {1, 2 . . . , n} that are divisible
by pi . By PIE,

|
m⋃
i=1
Ai | =

∑
1≤i≤m

|Ai | −
∑

1≤i< j≤n
|Ai ∩ Aj | +

∑
1≤i< j<k≤m

|Ai ∩ Aj ∩ Ak | − · · ·

=
∑
1≤i≤m

n

pi
−

∑
1≤i< j≤m

n

pi pj
+

∑
1≤i< j<k≤n

n

pi pj pk
− · · · .

Hence

φ(n) = n − |A1 ∪ A2 ∪ · · · ∪ Am |
= n −

∑
1≤i≤m

n

pi
+

∑
1≤i< j≤m

n

pi pj
− · · ·

= n
(
1− ( 1

p1
+ 1

p2
+ · · · + 1

pm

) + (
1

p1 p2
+ · · · + 1

pm−1 pm

) + · · ·
)

= n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pm
)

= n
m∏
i=1

(1− 1
pi

).
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§5 Recurrence Relations and Generating Functions.

Given a sequence a0, a1, a2, a3, . . . , a recurrence relation is typically a for-
mula for an in terms of a0, a1, a2, . . . , an−1 and n. For example, the famous
Fibonacci sequence is defined by the initial conditions F0 = 1, F1 = 1 and the
recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 2. Using the recurrence relation,
we see that the Fibonacci sequence Fn is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

For a sequence a0, a1, a2, a3, . . . , the generating function of the sequence is
f (x) = a0 + a1x + a2x2 + a3x3 + · · · . (Note this series may not converge for all
real x .) We can often use recurrence relations and generating functions to help in
counting things.

Examples. (17) Let an be the number of regions formed on a plane by n lines, no
two of which are parallel and no three concurrent. Find an.

Solution. Clearly, a1 = 2, a2 = 4, a3 = 7 by drawing pictures. To solve the
problem by recursion, observe that any two of the lines must intersect. Suppose
n − 1 lines formed an−1 regions. The n-th line will intersect them at n − 1 points.
These n − 1 points divide the n-th line into n parts and each part cuts one of the
an−1 regions into two. So an = an−1 + n. Then

an − a1 = (an − an−1) + (an−1 − an−2) + · · · + (a2 − a1)

= n + (n − 1) + · · · + 2 = (n + 2)(n − 1)
2

.

Therefore, an = a1 + (n + 2)(n − 1)
2

= n
2 + n + 2
2

.

(18) Show that the n-th term of the Fibonacci sequence is given by

Fn = 1√
5

((1+
√
5

2

)n+1 − (1−
√
5

2

)n+1)
. (Binet’s Formula)

Solution. Consider the generating function f (x) = F0+ F1x+ F2x2+ F3x3+· · ·
of the Fibonacci sequence. Using F0 = F1 and Fn = Fn−1 + Fn−2, we have

x f (x) = F0x + F1x2 + F2x3 + F3x4 + · · ·
x2 f (x) = F0x

2 + F1x3 + F2x4 + · · ·
(x2 + x) f (x) = F1x + F2x2 + F3x3 + F4x4 + · · · = f (x) − 1.
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So f (x) = −1
x2 + x − 1 .Bypartial fraction, we get

−1
x2 + x − 1 = A

x − r + B

x − s ,

where A = − 1√
5
, B = 1√

5
, r = −1+

√
5

2
, s = −1−

√
5

2
. Note |s| > |r | >

1. So for |x | < |r |, we have |x/r | < 1, |x/s| < 1 and

f (x) = 1√
5

( 1

r − x − 1

s − x
) = 1√

5

( 1/r

1− (x/r )
− 1/s

1− (x/s)

)
= 1√

5

((1
r

+ x
r 2

+ x
2

r 3
+ · · ·) − (1

s
+ x
s2

+ x
2

s3
+ · · ·))

=
∞∑
n=0

1√
5

( 1
r n+1

− 1

sn+1
)
xn.

Therefore, Fn = 1√
5

( 1
r n+1

− 1

sn+1
)
. Since

1

r
= 1+

√
5

2
,
1

s
= 1−

√
5

2
, Binet’s

formula follows.

Using generating functions, we can find formulas for terms of k-th order linear
recurrence relations (which are of the form an = c1an−1 + c2an−2 + · · · + ckan−k
with constants c1, c2, . . . , ck.)

Theorem. Let the sequence a0, a1, a2, . . . satisfy an = c1an−1 + c2an−2 (c1, c2
constants) for n > 1 and the characteristic equation x 2 = c1x+c2 has roots r1, r2.
Then there are constants b1, b2 such that for n = 0, 1, 2, . . . ,

an =
{
b1r n1 + b2r n2 if r1 �= r2
b1r n1 + b2nr n2 if r1 = r2.

Remarks. Similar theorem is true for higher order linear recurrence relation. If
a0, a1, a2, . . . satisfies an = c1an−1 + c2an−2 + c3an−3 and x3 = c1x2 + c2x + c3
has roots r1, r2, r3, then there are constants b1, b2, b3 such that for n = 0, 1, 2, . . . ,

an =

⎧⎨
⎩
b1r n1 + b2r n2 + b3r n3 if r1, r2, r3 are distinct
b1r n1 + b2nr n1 + b3r n3 if r1 = r2 �= r3
b1r n1 + b2nr n1 + b3n2r n1 if r1 = r2 = r3.
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(19) (1989 Putnam Exam) Prove that there exists a unique function f defined on
(0, +∞) such that f (x) > 0 and f ( f (x)) = 6x − f (x).

Solution. For a > 0, define a0 = a, an = f (an−1) for n = 1, 2, 3, . . . . Then an =
f (an−1) = f ( f (an−2)) = 6an−2 − f (an−2) = −an−1 + 6an−2. The characteristic
equation x2 = −x + 6 has roots −3 and 2. So an = α(−3)n + β2n . If α �= 0,
then an < 0 when n is large, contradicting f (x) > 0. So α = 0. Since a0 = a, so
β = a.We get f (a) = a1 = 2a. Simple checking shows that f (x) = 2x satisfies
f ( f (x)) = 4x = 6x − f (x). Therefore, the unique function is f (x) = 2x .

(20) (1991 Chinese National Senior High Math Competition) Let an be the number
of positive integers having digits 1, 3 and 4 only and sum of digits equal n. (Find a
recurrence relation for an and) show that a2n is a perfect square for n = 1, 2, 3, . . . .

Solution. Let An be the set of all such integers. Then A1 = {1}, A2 = {11}, A3 =
{111, 3}, A4 = {1111, 13, 31, 4}, . . . . So a1 = 1, a2 = 1, a3 = 2, a4 = 4. Note
the number d1d2 · · · dk (in digit form) is in An if and only if the number d1d2 · · · dk−1

is in

{ An−1 if dk = 1
An−3 if dk = 3
An−4 if dk = 4.

So an = an−1 + an−3 + an−4 for n > 4. Although we

can get a formula for an using the characteristic equation method, it turns out that
formula will not be to helpful to show a2n’s are perfect squares.

Before proceeding further, we will use the recurrence relation to write out
the terms of an.Weget 1, 1, 2, 4, 6, 9, 15, 25, 40, 64, 104, 169, 273, 441, 714, . . . .

Thea2n sequence is 1, 4, 9, 25, 64, 169, 441, . . .and seems to be all perfect squares.
What can we observe from the an sequence? Well, a2n−1 + a2n = a2n+1 and
a2na2n+2 = a22n+1 seem to be true. If true, these can finish the problem for us
because a2 = 12 and if a2k = m2, then a2k+2 = a22k+1/a2k = (a2k+1/m)2 will
imply all a2n’s are perfect squares by induction.

Now we can check the relations by mathematical induction. For the first
relation, a1 + a2 = 2 = a3. Suppose a2n−1 + a2n = a2n+1. Then a2n+1 + a2n+2 =
a2n−1 + a2n + a2n+2 = a2n+3 by the recurrence relation, which completes the
induction for the first relation. For the second relation, a2a4 = 4 = a23 . Suppose
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a2na2n+2 = a22n+1. Then using the recurrence relation and the first relation, we get

a2n+2a2n+4 = a2n+2(a2n+3 + a2n+1 + a2n) = a2n+2a2n+3 + a2n+2a2n+1 + a22n+1
= a2n+2a2n+3 + a2n+1(a2n+2 + a2n+1) = a2n+2a2n+3 + a2n+1a2n+3
= a2n+3(a2n+2 + a2n+1) = a22n+3,

which completes the induction for the second relation.

(21) Supposea1, a2, . . . , an and b1, b2, . . . , bn are twodifferent groups of n positive
integers such that the numbers ai+aj (1 ≤ i < j ≤ n) are the same as the numbers
bi + bj (1 ≤ i < j ≤ n). Show that n is a power of 2.

Solution. Let f (x) = xa1 + xa2 + · · · + xan and g(x) = xb1 + xb2 + · · · + xbn .
Then

f 2(x) =
n∑
i=1
x2ai + 2

∑
1≤i< j≤n

xai+aj = f (x2) + 2
∑

1≤i< j≤n
xai+aj ,

f 2(x) − f (x2) = 2
∑

1≤i< j≤n
xai+aj = 2

∑
1≤i< j≤n

xbi+bj = g2(x) − g(x2).

So g(x2) − f (x2) = g2(x) − f 2(x) = (g(x) + f (x))(g(x) − f (x)). Since
g(1) = n = f (1), so g(x)− f (x) = (x−1)k p(x) for some k ≥ 1 and polynomial
p(x). Then

g(x) + f (x) = g(x
2) − f (x2)

g(x) − f (x) = (x2 − 1)k p(x2)
(x − 1)k p(x) = (x + 1)k p(x

2)

p(x)
.

Setting x = 1, we get 2n = f (1) + g(1) = 2k . Therefore n = 2k−1.

For the next few examples, we will need to multiply power series. Observe that

(a0 + a1x + a2x2 + a3x3 + · · ·)(b0 + b1x + b2x2 + b3x3 + · · ·)
=a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · · .
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For sequences a0, a1, a2, a3, . . . and b0, b1, b2, b3, . . . ,we define their convolution
to be the sequence c0, c1, c2, c3, . . . , where

cn = a0bn + a1bn−1 + · · · + anb0 =
n∑
k=0
akbn−k

is the coefficient sequence of the product of the generating functions for the two
sequences. We will denote the convolution by an � bn = cn.

On the open interval (−1, 1), if we multiply 1

1− x = 1+ x + x2 + x3 + · · ·

by itself, we get
1

(1− x)2 = 1+ 2x + 3x2 + 4x3 + · · · . (This also follows from
differentiating the geometric series.) In short, 1 � 1 = n + 1. Now

x

(1− x)2 = x + 2x2 + 3x3 + · · · .

Differentiating both sides, we get
1+ x

(1− x)3 = 1+ 4x + 9x2 + 16x3 + · · · .

Examples. (22) For n ≥ 3, show that(
n

1

)
− 22

(
n

2

)
+ 32

(
n

3

)
− · · · + (−1)n+1n2

(
n

n

)
= 0.

Solution. Note the left side is a convoluted expression. Now

1− 4x + 9x2 − 16x3 + · · · = 1− x
(1+ x)3 ,(

n

n

)
x +

(
n

n − 1

)
x2 + · · · +

(
n

0

)
xn+1 =

(
n

0

)
x +

(
n

1

)
x2 + · · · +

(
n

n

)
xn+1

= x(1+ x)n.
Their product is x(1− x)(1+ x)n−3, which is of degree n − 1. So the coefficient
of xn is (

n

1

)
− 22

(
n

2

)
+ 32

(
n

3

)
− · · · + (−1)n+1n2

(
n

n

)
= 0.
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The binomial theorem asserts that for any real number α,

(1+ x)α = 1+ αx + α(α − 1)
2

x2 + · · · =
∞∑
k=0

(
α

k

)
xk,

where

(
α

k

)
= α(α − 1) · · · (α − k + 1)

k!
. If α is a nonnegative integer, this is true

for all x . However, if α is not a nonnegative integer (eg. α = −1), then it is only
true for |x | < 1. Considering the cases α = −n and α = 1/2, we have(−n

k

)
= −n(−n − 1) · · · (−n − k + 1)

k!

= (−1)kn(n + 1) · · · (n + k − 1)
k!

= (−1)k
(
n + k − 1
k

)
,

(
1/2

k

)
=
1
2 (
1
2 − 1) · · · ( 12 − k + 1)

k!
= (−1)k−11 · 3 · 5 · · · (2k − 3)

2kk!
.

Example. (23) (Catalan Numbers) Find the number Tn of ways a convex n-sided
polygon can be divided into triangles by n − 3 nonintersecting diagonals. (Here
nonintersecting means no intersection inside the polygon.)

Solution. The first few cases are T3 = 1, T4 = 2 and T5 = 5. Consider a (n + 1)-
sided convex polygon v1v2 . . . vn+1. Fix edge vnvn+1. For any of these divisions,
one of the triangles will be vkvnvn+1 with 1 ≤ k ≤ n − 1. For each such k,
the polygon v1v2 . . . vkvn+1 has k + 1 sides and the polygon vkvk+1 . . . vn has
n − k + 1 sides. These yield Tk+1Tn−k+1 triangulations of v1v2 . . . vn+1 having
triangle vkvnvn+1. (For the case k = 1 or n − 1, T2 should be set to 1.) Summing
from k = 1 to n − 1, we get Tn+1 = T2Tn + T3Tn−1 + · · · + TnT2, which is a
convoluted expression.

Consider the generating function f (x) = T2+ T3x + T4x2 + T5x3 + · · · .We
have

f 2(x) = T 22 + (T2T3 + T3T2)x + (T2T4 + T3T3 + T4T2)x2 + · · ·
= T3 + T4x + T5x2 + T6x3 + · · · .
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So x f 2(x) = T3x + T4x2+ T5x3+ T6x4+ · · · = f (x) − 1. Solving for f (x) with
x �= 0, we get

f (x) = 1± √
1− 4x
2x

= 1

2x

(
1±

∞∑
k=0

(
1/2

k

)
(−4x)k

)
.

Since f (0) = T2 = 1, the plus sign is rejected. Comparing coefficients, we get
for n = 3, 4, 5, . . . ,

Tn = −1
2

(
1/2

n − 1

)
(−4)n−1 = (2n − 4)!

(n − 1)!(n − 2)! = C
2n−4
n−2
n − 1 .

Exercises.

1. (1980 USSR Math Olympiad) Let n be an odd integer greater than 1. Show
that one of the numbers 21 − 1, 22 − 1, 23 − 1, . . . , 2n − 1 is divisible by n.
(Hint: None of them is congruent to −1(mod n).)

2. Show that there are integers a, b, c, not all zero, with absolute values less
than 106 such that

|a + b
√
2+ c

√
3| ≤ 1+

√
2+

√
3

1+ 106 + 1012 .

(Hint: Consider all numbers of the form r + s
√
2 + t

√
3, where r, s, t ∈

{0, 1, 2, . . . , 106 − 1} and see how they are distributed.)
3. (1976 USA Math Olympiad) Each square of a 4× 7 board is colored white or
black. Prove that with any such coloring, there is always a rectangle whose
four corner squares are of the same color. Is this true if the board is 4× 6?

4. For n ≥ 3, how many n digit numbers are there such that each digit is 1, 2 or
3 and the digits contain 1,2,3 each at least once? (Hint: Let A1 be the set of
n digit numbers, each of its digits is 2 or 3.)

5. In a group of 100 people, suppose everyone knows at least 51 other people
in the group. Show that there are three people in the group who know each
other.
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6. (1978 Austrian-Polish Math Competition) There are 1978 clubs. Each club
has 40 members. It is known that every pair of these clubs has exactly one
common member. Show that there is one member who belongs to every club.

7. (1964 IMO) Seventeen people correspond by mail with each other. In their
letters only 3 different topics are discussed. Each letter deals with only one
of these topics. Show that there are at least three people who write to each
other on the same topic. (Hint: Use 17 points and 3 colors. One color for
each topic.)

8. Show that for integers a, b, c with c �= 0, 1, 4, 9, 16, . . . , if (a + b√c)n =
p + q√c, then (a − b√c)n = p − q√c for every positive integer n.

9. Let an be the number of ways in which a 2 × n rectangle can be formed out
of n 1 × 2 rectangles. Find a recurrence relation of an in terms of an−1 and
an−2, then find an in terms of n.

10. Let an be the number of strings of n symbols each of which is either 0, 1 or
2 such that no two consecutive 0’s occur. Show that an = 2an−1 + 2an−2 and
find an in terms of n. (Note a1 = 3, a2 = 8, a3 = 22.)

11. Show that there are an = 2n−1 ways of arranging the integers 1, 2, . . . , n in a
row such that except for the leftmost, every number differ from some number
to its left by +1 or −1. (Hint: The rightmost integer must be 1 or n.)

12. In example (12), show that ak =
{
F2n if k = 2n is even
FnFn+1 if k = 2n + 1 is odd, where Fn

is the n-th Fibonacci numbers.
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7.  Coordinate Geometry 
 

When we do a geometry problem, we should first look at the given facts and 
the conclusion. If all these involve intersection points, midpoints, feet of 
perpendiculars, parallel lines, then there is a good chance we can solve the 
problem by coordinate geometry.  However, if they involve two or more 
circles, angle bisectors and areas of triangles, then sometimes it is still possible 
to solve the problem by choosing a good place to put the origin and the x-axis.  
Below we will give some examples.  It is important to stay away from messy 

computations! 

 

Example 1. (1995 IMO) Let A, B, C and D be four distinct points on a line, in 
that order.  The circles with diameters AC and BD intersect at the points X and Y.  
The line XY meets BC at the point Z.  Let P be a point on the line XY different 
from Z.  The line CP intersects the circle with diameter AC at the points C and M, 
and the line BP intersects the circle with diameter BD at the points B and N.  
Prove that the lines AM, DN, and XY are concurrent. 
 

Z

X

Y

P

A B DC

M

Q  Q'

N

 

 
(Remarks.  Quite obvious we should set the 
origin at Z. Although the figure is not symmetric 
with respect to line XY, there are pairs such as 
M, N and A, D and B, C that are symmetric in 
roles! So we work on the left half of the figure, 
the computations will be similar for the right 
half.) 
 

 

Solution. (Due to Mok Tze Tao, 1995 Hong Kong Team Member) Set the origin 
at Z and the x-axis on line AD. Let the coordinates of the circumcenters of 
triangles AMC and BND be (x1, 0) and (x2, 0), and the circumradii be r1 and r2, 
respectively.  Then the coordinates of A and C are (x1 – r1, 0) and (x1 + r1, 0), 

respectively. Let the coordinates of P be (0, y0). Since AM ⊥ CP and the slope of 

CP is –y0/(x1+ r1), so the equation of AM is 
2

1

2

1011 )( rxyyxrx −=−+ . Let Q be the 

intersection of AM with XY, then Q has coordinates )/)( ,0( 0

2

1

2

1 yxr − . Similarly, 

 2

let Q' be the intersection of DN with XY, then Q' has 

coordinates )/)(,0( 0

2

2

2

2 yxr − . Since 
22

1

2

1 ZXxr =−   ,2

2

2

2 xr −= so Q = Q'. 

 
Example 2. (1998 APMO) Let ABC be a triangle and D the foot of the altitude 
from A. Let E and F be on a line passing through D such that AE is perpendicular 
to BE, AF is perpendicular to CF, and E and F are different from D. Let M and N 
be the midpoints of the line segments BC and EF, respectively.  Prove that AN is 
perpendicular to NM. 

 

A

B

C
D

M

E FN
 

 
(Remarks. We can  set  the  origin at  D  and  the  
x-axis  on  line  BC.  Then computing the 
coordinates of E and F will be a bit messy. A 
better choice is to set the line through D,E,F 
horizontal.) 

 

Solution. (Due to Cheung Pok Man, 1998 Hong Kong Team Member) Set the 
origin at A and the x-axis parallel to line EF. Let the coordinates of D, E, F be (d, 

b), (e, b), (f, b), respectively. The case b=0 leads to D=E, which is not allowed.  
 

So we may assume b≠ 0. Since BE ⊥ AE and the slope of AE is b/e, so the 
equation of line BE works out to be ex + by = e

2 
+ b

2
. Similarly, the equations of 

lines CF and BC are fx + by = f 
2 

+ b
2
 and dx + by = d

2 
+ b

2
, respectively. 

Solving the equations for BE and BC, we find B has coordinates (d+e, b–(de/b)). 
Similarly, C has coordinates (d+f, b–(df/b)). Then M has coordinates (d+(e+f)/2, 

b–(de+df)/(2b)) and N has coordinates ((e+f)/2, b). So the slope of AN is 2b/(e+f ) 

and the slope of MN is −(e+f )/(2b). Therefore,  AN ⊥ MN. 
 

Example 3. (2000 IMO) Two circles Γ1 and Γ2 intersect at M and N. Let l be the 

common tangent to Γ1 and Γ2 so that M is closer to l than N is. Let l touch Γ1 at 

A and Γ2 at B. Let the line through M parallel to l meet the circle Γ1 again at C 

and the circle Γ2 again at D. Lines CA and DB meet at E; lines AN and CD meet 
at P; lines BN and  CD meet at Q. Show that EP=EQ. 
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O
1

O
2

A B

M

C D

N

P Q

E

Γ

Γ

1

2

 

(Remarks. Here if we set the x-axis on the line 
through the centers of the circles, then the 
equation of the line AB will be complicated. So it 
is better to have line AB on the x-axis.) 

 

Solution. Set the origin at A and the x-axis on line 
AB. Let B, M have coordinates (b,0), (s,t), 

respectively. Let the centers O1, O2 of Γ1, Γ2 be 

at (0, r1), (b, r2), respectively. Then C, D have coordinates (−s,t), (2b−s,t), 
respectively. Since AB, CD are parallel, CD=2b=2AB implies A, B are midpoints 

of CE, DE, respectively. So E is at (s, − t). We see EM ⊥ CD. 
 
To get EP=EQ, it is now left to show M is the midpoint of segment PQ. Since O1 

O2 ⊥ MN and the slope of O1 O2 is (r2–r1)/b, the equation of line MN is bx+(r2–

r1)y = bs+(r2–r1)t. (This line should pass through the midpoint of segment AB.) 
Since O2M=r2 and O1M=r1, we get 

 

 )()( 2

2

2

2

2 rtrsb =−+−  and 
2

1

2

1

2 )( rtrs =−+ . 
 
Subtracting these equations, we get b

2
/2=bs+(r2–r1)t, which implies (b/2, 0) is on 

line MN. Since PQ, AB are parallel and line MN intersects AB at its midpoint, M 

must be the midpoint of segment PQ. Together with EM ⊥ PQ, we get EP=EQ. 
 
Example 4. (2000 APMO) Let ABC be a triangle. Let M and N be the points in 
which the median and the angle bisector, respectively, at A meet the side BC. Let 
Q and P be the points in which the perpendicular at N to NA meets MA and BA, 
respectively, and O the point in which the perpendicular at P to BA meets AN 
produced. Prove that QO is perpendicular to BC. 
 

A N

B

C

P

O

M
Q

 

(Remarks. Here the equation of the angle bisector is a 
bit tricky to obtain unless it is the x-axis. In that case, 
the two sides of the angle is symmetric with respect to 
the x-axis.) 
 
Solution. (Due to Wong Chun Wai, 2000 Hong Kong 
Team Member) Set the origin at N and the x-axis on 
line NO. Let the equation of line AB be y = ax+b, then 
A has coordinates (−b/a, 0) and P has coordinates 
(0,b). The  equation  of  lines  AC  and  PO are 

y=−ax−b and y=(–1/a)x+b, respectively. So O has coordinates (ab, 0). Let the 
equation of BC be y=cx. Then B has coordinates (b/(c–a), bc/(c–a)), C has 

 4

coordinates (−b/(c+a), −bc(c+a)) and M has coordinates (ab/(c
2
–a

2
), abc/(c

2
–a

2
)). 

Then the equation of line AM is y =(a
2
/c)(x+b/c) and so Q has coordinates (0, 

ab/c).  Then BC has slope c and QO has slope −1/c. So QO ⊥ BC. 
 

Example 5. (1998 IMO) In the convex quadrilateral ABCD, the diagonals AC 
and BD are perpendicular and the opposite sides AB and DC are not parallel. 
Suppose that the point P, where the perpendicular bisectors of AB and DC meet, 
is inside ABCD. Prove that ABCD is a cyclic quadrilateral if and only if the 
triangles ABP and CDP have equal areas. 
 

B

A

D

CP

 

 
(Remarks. The area of a triangle can be computed by 
taking the half length of the cross product. A natural 
candidate for the origin is P and having the diagonals 
parallel to the axes will be helpful.) 
 
Solution. (Due to Leung Wing Chung, 1998 Hong Kong 
Team Member) Set the origin at  P and  the x-axis  parallel  

to line AC. Then the equations of lines AC and BD are y=p and x=q, respectively. 
Let AP=BP=r and CP=DP=s. Then the coordinates of A,B,C,D are 

),( 22
ppr −− , ),( 22 qrq − , ),( 22 pps − , ),,( 22 qsq −− respectively. Using the 

determinant formula for finding the area of a triangle, we see that the areas of 
triangles ABP and CDP are equal if and only if  
 

,
2

1

2

1
22

22

22

22

qsq

pps

qrq

ppr

−−

−
=

−

−−
 

 

which after cancelling 
2

1
 on both sides is equivalent to 

.22222222
pqqspspqqrpr −−−−=−−−−  

 

Since f(x)= pqqxpx −−−− 2222  is strictly decreasing when x ≥ |p| and |q|, 
equality of areas hold if and only if r=s, which is equivalent to A, B, C, D 
concyclic (since P being on the perpendicular bisectors of AB, CD is the only 
possible place for the center). 
 

Example 6. Let O be the center of the circumcircle of ∆ABC and let AD be a 
diameter. Let the tangent at D to the circumcircle intersect line BC at P. Let line 
PO intersect lines AC, AB at M, N respectively. Prove that OM=ON. 
 



 5

O

A

D

P P'

C

B

N M

 

Solution. Set O as the origin and line MN 
as the x-axis.  
 
Let P’ be the reflection of P with respect to 
O. Then the coordinates of P and P’ are of 
the form (p,0) and (−p,0).  
 

The equation of the circumcircle as a conic 
section is of the form x

2
+y

2
−r

2
=0. The equation of the pair of lines AP’ and BC 

as a (degenerate) conic section is 
  

( )( ) ,0)()( =−−+− pxnypxmy  
 

where m is the slope of line AP’ and n is the slope of line BC. Since these two 
conic sections intersect at A, B, C, so the equation of the pair of lines AB and AC 
as a (degenerate) conic section is of the form 
 

( )( ),)()(222
pxnypxmyryx −−+−=−+ λ  

 
for some real number λ. When we set y = 0, we see the x-coordinates of M and N 
satisfies x

2 
−r

2
 = λmn(x

2
 − p

2
), whose roots are some positive number and its 

negative. Therefore, OM = ON.  
__________________________________ 

 
 
After seeing these examples, we would like to remind the readers that there are 
pure geometric proofs to each of the problems.   For examples (1) and (3), there 
are proofs that only take a few lines.  We encourage the readers to discover these 
simple proofs. 
 
Although in the opinions of many people, a pure geometric proof is better and 
more beautiful than a coordinate geometric proof, we should point out that 
sometimes the coordinate geometric proofs may be preferred when there are 
many cases.  For example (2), the different possible orderings of the points D, E, 

F on the line can all happen as some pictures will show.  The coordinate 
geometric proofs above cover all cases. 
 
 

Exercises 

 
1. (1994 Canadian Math Olympiad) Let ABC be an acute triangle. Let D be on 

side BC such that AD⊥BC. Let H be a point on segment AD different from A 

 6

and D. Let line BH intersect side AC at E and line CH intersect side AB at F. 

Prove that ∠EDA= ∠FDA. 

 

2. Let E be a point inside triangle ABC such that ∠ABE =∠ACE. Let F and G 

be the feet of the perpendiculars from E to the internal and external bisectors, 

respectively, of ∠BAC. Prove that the line FG passes through the midpoint of 

BC. 
 
3. Let circle Γ2 lie inside circle Γ1 and the two circles do not intersect. For any 

point A on Γ1, let B and C be the two points on Γ1 such that AB and AC are 
tangent to Γ2. Prove that BC is tangent to Γ2 if and only if OI

2
=R

2
−2Rr, where 

O, I are the centers of Γ1, Γ2 and R, r are the radii of Γ1, Γ2, respectively. (Hint: 
Set the origin at A and the x-axis on AI.)  

 
4. (1999 IMO) Two circles Γ1 and Γ2 are contained inside the circle Γ and are 

tangent to Γ at distinct points M and N, respectively. Γ1 passes through the 
center of Γ2. The line passing through the two points of intersection of Γ1 and   
Γ2 meet Γ at A and B. The lines MA and MB meet Γ1 at C and D, respectively. 

Prove that CD is tangent to Γ2. (Hint: Set the origin at M, x-axis on MO1, t =∠
OO1O2 , where O,  O1, O2 are the centers of Γ, Γ1, Γ2, respectively.) 

 
5. A circle with center C does not intersect a line L. Let F be the foot of the 

perpendicular from C to line L. Through F, two lines different from line CF 
are drawn cutting the circle at four points, the first line at A, B with A between 
F and B; the second line at D,E with D between F and E. Let line BD intersect 
line L at G and line AE intersect line L at H. Prove that GF=HF.  
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8.  Vector Geometry 
 

A vector XY  is an object having a magnitude (the length XY) and a direction 
(from X to Y).  Vectors are very useful in solving certain types of geometry 
problems.  First, we will mention some basic concepts related to vectors. Two 
vectors are the same if and only if they have the same magnitudes and directions.   
 

A vector OX  from the origin O to a point X is called a position vector.  For 

convenience, often a position vector OX will simply be denoted by X, when the 

position of the origin is understood, so that the vector XY = OXOY −  will 

simply be Y – X.  The length of the position vector OX  = X will be denoted by 
|X|.  We have the triangle inequality |X+Y| ≤|X|+|Y|, with equality if and only if X 
= tY for some t ≥  0.  Also, |cX| = |c||X| for number c. 
 

O Y

P

(1-t)Y

tX

X

 

For a point P on the line XY, in terms of position vectors, 
P = tX + (1 – t)Y, where t= PY/XY.  Conversely, for every 
real number t, the position vector tX+(1 – t)Y corresponds 
to a point on the line XY. The segment XY is consisted of 
points corresponding to the cases t in [0, 1]. 
 

   

   

B

A D

C

 

 
Example 1. (1980 Leningrad High School Math 

Olympiad)  Call a segment in a convex quadrilateral 
a midline if it joins the midpoints of opposite sides.  
Show that if the sum of the midlines of a 
quadrilateral is equal to its semiperimeter, then the 
quadrilateral is a parallelogram. 

 
Solution.  Let ABCD be such a convex quadrilateral.  Set the origin at A.  The 

sum of the lengths of the midlines is 
2

1
(|B+C−D|+|D+C−B|) and the 

semiperimeter is 
2

1
(|B|+|C−D|+|D|+|C−B|). So 

 
|B+C−D|+|D+C−B| = |B|+|C−D|+|D|+|C−B|. 

  
By triangle inequality, |B|+|C−D| ≥ |B+C−D|, with equality if and only if 
B=t(C−D) (or AB || CD).  Similarly, |D|+|C−B| ≥ |D+C−B|, with equality if and 
only if AD||BC.  For the equation above to be true, both triangle inequalities must 
be equalities.  In that case, ABCD is a parallelogram. 

 8

A

B

CD

E
F

G

 

Example 2. (Crux Problem 2333) D and E are points 
on sides AC and AB of triangle ABC, respectively.  
Also, DE is not parallel to CB.  Suppose F and G are 
points of BC and ED, respectively, such that 
BF/FC=EG/GD=BE/CD=r.  Show that GF is parallel 
to the angle bisector of ∠ BAC.  

 
Solution.  Set the origin at A.  Then E = pB and D = qC for some p, q in (0, 1).  
Let t = 1/(r+1) = FC/BC = GD/ED, then r = (1−t)/t and 
 

F = tB + (1−t)C     and     G = tE + (1−t)D = tpB + (1−t)qC. 
 
Since BE = rCD, so |E−B|=r|D−C|. Then 

(1 – p)|B| = r(1 – q)|C| = 
t

t−1
(1 – q)|C|    and 

.
||||

||)1()1)(1()1( 







+−=−−+−=−

C

C

B

B
BptCqtBptGF   

This is parallel to ,
|||| C

C

B

B
+  which is in the direction of the bisector of ∠BAC.  

 
* * * * * * * * * * * * * * * * * * * * 

 
The dot product of two vectors X and Y is the number X·Y= |X||Y| cos θ, where θ 
is the angle between the vectors.  Dot product has the following properties: 
 
(1)  X·Y=Y·X, (X+Y)·Z=X·Z+Y·Z  and (cX)·Y=c(X·Y). 

(2) |X|
2
=X·X, |X·Y| ≤ |X| |Y| and OX⊥OY if and only if X·Y= 0. 

 
Example 3. (1975 USAMO)  Let A, B, C, D denote four points in space and AB 
the distance between A and B, and so on.  Show that  
 

.222222
CDABBCADBDAC +≥+++  

 
Solution.  Set the origin at A.  The inequality to be proved is  
 

C·C+(B−D)·(B−D)+D·D+(B−C)·(B−C) ≥  B·B+(C−D)·(C−D). 
  
After expansion and regrouping, this is the same as (B−C−D)·(B−C−D) ≥ 0,  
with equality if and only if B – C = D = D – A, i.e. is BCAD is a parallelogram. 
 

* * * * * * * * * * * * * * * * * * * * * 
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For a triangle ABC, the position vectors of its centroid is G = (A+B+C)/3. If we 

take the circumcenter O as the origin, then since OH  = OG3 , the position 
vector of the orthocenter is H = A+B+C. Now for the incenter I, let a, b, c be 
the side lengths and AI intersect BC at D.  Since BD:CD = c:b and DI:AI = 

,:: cbac
cb

ca
+=

+
 so 

cb

cCbB
D

+

+
=  and 

cba

cCbBaA
I

++

++
= . 

 

O

A

B C

D
E

 

 
Example 4. (2

nd
 Balkan Math Olympiad)  Let O be the 

center of the circle through the points A, B, C, and let D 
be the midpoint of AB.  Let E be the centroid of triangle 

ACD.  Prove that CD⊥OE if and only if AB = AC. 
 

Solution.  Set the origin at O.  Then 

,
2

BA
D

+
=   ,

6

23

3

CBADCA
E

++
=

++
=   .

2

2CBA
CD

−+
=−  

Hence CD⊥OE if and only if (A+B – 2C)·(3A + B+ 2C)=0. Using A·A=B·B=C·C, 

this is the same as A·(B−C)=A·B−A·C=0. Then OA⊥BC, which implies AB = AC. 
 

Example 5. (1990 IMO Unused Problem, Proposed by France)  Given ∆ABC 
with no side equal to another side, let G, I and H be its centroid, incenter and 

orthocenter, respectively.  Prove that ∠ GIH > 90°.  
 
Solution.  Set the origin at the circumcenter.  Then 

H = A + B + C,    G = 3

CBA ++
,   I = .

cba

cCbBaA

++

++
 

 
We need to show (G−I)·(H−I) = G·H+I·I−I·(G+H) < 0. Now A·A=B·B=C·C=R

2
 

and 2B·C=B·B+C·C−(B−C)·(B−C)=2R
2
−a

2
, ….  Hence, 

 

3

)()( CBACBA
HG

++⋅++
=⋅ ,

3

222
2 cba

R
++

−=  

2)(

)()(

cba

cCbBaAcCbBaA
II

++

++⋅++
=⋅ ,3 2

cba

abc
R

++
−=  

)(3

)()(4
)(

cba

CBAcCbBaA
HGI

++

++⋅++
=+⋅ .

)(3

)]()()([2
4

222
2

cba

bacacbcba
R

++

+++++
−=  
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Using these, (G−I)·(H−I) = G·H+I·I−I·(G+H) < 0 is equivalent to proving  
 

(a + b + c)(a
2
+b

2
+c

2
) + 3abc > 2[a

2
(b +c) + b

2
(c + a) + c

2
(a + b)]. 

 
After expansion and regrouping, this becomes Schur’s inequality 
 

a(a – b)(a – c) + b(b – c)(b – a) + c(c – a)(c – b) > 0. 
 

To obtain this inequality, without loss of generality, assume a ≥ b ≥ c. Then  
 

a(a – b)(a – c) ≥ b(a – b)(b – c) 
 

so that the sum of the first two terms is nonnegative.  As the third term is also 
nonnegative, the above inequality is true. 
 
 

* * * * * * * * * * * * * * * * * * * * * 
 
The cross product of two vectors X and Y is a vector denoted by X×Y having 
magnitude |X||Y| sin θ, where θ is the angle between the vectors, and direction 
perpendicular to the plane of X and Y satisfying the right hand rule.  Cross 
product has the following properties: 
 
(1) X × Y = − Y × X, (X + Y) × Z = X × Z+ Y × Z  and  (cX) × Y = c(X × Y). 

(2) 
2

1
|X × Y| is the area of ∆XOY.  When X, Y ≠O, we have X × Y= 0 if and 

only if X, O, Y are collinear. 

 
Example 6. (1984 Annual Greek High School Competition)  Let A1A2A3A4A5A6 
be a convex hexagon having its opposite sides parallel.  Prove that triangles 
A1A3A5 and A2A4A6 have equal areas.  
 
Solution.  Set the origin at any point.  Since opposite sides are parallel, we have 
  

(A1−A2)×(A4−A5)=0,  (A3−A2)×(A5−A6)=0 and  (A3−A4)×(A6−A1)=0. 
 
Expanding these equations and adding them, we get  
 

A1×A3+ A3×A5+ A5×A1= A2×A4+ A4×A6+ A6×A2.  
Now  

[A1A3A5] = 
2

1
|(A1−A3)×(A1−A5)| = 

2

1
| A1×A3+ A3×A5+ A5×A1|. 

Similarly, [A2A4A6] =
2

1 | A2×A4+ A4×A6+ A6×A2|. So [A1A3A5] = [A2A4A6].  

 
Example 7. (1996 Balkan Math Olympiad)  Let ABCDE be a convex pentagon 
and let M, N, P, Q, R be the midpoints of sides AB, BC, CD, DE, EA, 
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respectively.  If segments AP, BQ, CR, DM have a common point, show that this 
point also lies on EN. 
 
Solution.  Set the origin at the common point.  Since, A, P and the origin are 
collinear, 

 .
22

0
DACADC

APA
×+×

=






 +
×=×=  

 
So A×C=D×A.  Similarly, B×D=E×B, C×E=A×C and D×A=B×D.  Then 
E×B=C×E. So E×N=E×(B+C)/2=0, which implies E, N and the origin are 
collinear. 
 

B

A C

C1

B1

C2

A1

A2

B2  

Example 8. (16
th
 Austrian Math Olympiad) A line 

intersects the sides (or sides produced) BC, CA, AB 
of triangle ABC in the points A1, B1, C1, 
respectively.  The points A2, B2, C2 are symmetric to 
A1, B1, C1 with respect to the midpoints of BC, CA, 

AB, respectively.  Prove that A2, B2, C2 are collinear. 

 
Solution.   Set the origin at a vertex, say C.  Then A1 = c1B, B1 = c2A and C1 = 
A+c3(B −A) for some constants c1, c2, c3.  Since A1, B1, C1 are collinear, 
 

0 = )()( 1111 ACAB −×− = .)( 3231211 BAccccccc ×+−−  
 

Now 
   
  A2 =B − A1=(1 − c1)B,  B2 =A − B1=(1− c2)A, C2= (A + B) – C1 = c3A + (1 − c3)B. 
 
From these, we get 
 

 )()( 2222 ACAB −×− = .0)( 3231211 =×+−− BAccccccc  
 

so A2, B2, C2 are collinear. 
 
                                    ****************************** 
 
Two vectors X and Y are linearly independent if the equation aX+bY=O has 
exactly one solution, namely a=b=0. This is the case if and only if X,Y ≠ O and 
X,O,Y are not collinear. If aX+bY+cZ=0 for some a,b,c not all zeros and 
a+b+c=0, then X,Y,Z are collinear because, say a ≠ 0, we have b+c=−a and 
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ZttYZ
a

c
Y

a

b
X )1( −+=−−=     (where 

a

b
t −=  ) 

 
is on the line YZ. 
 

   
O

A1

A2

A3

B1 B2 B3

P3

P1

P2

 

Example 9. (Pappus' Theorem) A line, which 
passes through points A1, A2, A3, intersects another 
line, which passes through points B1, B2, B3, at a 
point O. Let lines A2B3, A3 B2 intersect at P1, lines 
A1B3, A3 B1 intersect at P2 and lines A1B2, A2 B1 
intersect at P3. Show that P1, P2, P3 are collinear. 
 

Solution. Set the origin at O. Let A and B be unit vectors along the lines through 
Ai's and Bi's, respectively. Then Ai=riA and Bi=siB for some constants ri, si. Now 

  
P3 = tA1+(1−t)B2 = tr1A+(1−t)s2B   for some t   and 

 
                         P3 = uA2+(1−u)B1 = ur2A+(1−u)s1B  for some u. 
 
Subtracting, we find 0 = (tr1−ur2)A + [(1−t)s2−(1−u)s1]B. Since A and B are 
linearly independent, we must have tr1−ur2 = 0 and (1−t)s2 − (1−u)s1 = 0. After 
solving for t and u, we find  

.
)()(

2211

2121

2211

2121
3 B

srsr

rrss
A

srsr

ssrr
P

−

−
+

−

−
=  

Also, ,
)()(

3322

3232

3322

3232
1 B

srsr

rrss
A

srsr

ssrr
P

−

−
+

−

−
=   .

)()(

1133

1313

1133

1313
2 B

srsr

rrss
A

srsr

ssrr
P

−

−
+

−

−
=  

Note that  
r1s1(r2s2−r3s3)P1 + r2s2(r3s3−r1s1)P2 + r3s3(r1s1−r2s2)P3 = 0 

 
and the sum of the coefficients is also 0. So P1, P2, P3 are collinear. 
 

Exercises 
 
1. (1997 Hungarian Math Olympiad) Let R be the circumradius of triangle ABC, 

and let G and H be its centroid and orthocenter, respectively. Let F be the 
midpoint of GH. Show that AF

2 
+ BF

2 
+ CF

2 
= 3R

2
. 

 
2. Let ABC be any triangle. Two squares BAEP and ACRD are constructed 

externally to ABC. Let M and N be the midpoints of BC and ED, respectively. 
Show that AM⊥ED and AN⊥BC. 
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3. (1996 Vietnamese Math Olympiad) Let ABCD be a tetrahedron with 

AB=AC=CD and circumcenter O. Let G be the centroid of triangle ACD, let E 
be the midpoint of BG, and let F be the midpoint of AE. Prove that OF is 
perpendicular to BG if and only if OD is perpendicular to AC. 

 
4. (2001 IMO Unused Problem) Let ABC be a triangle with centroid G. 

Determine, with proof, the position of the point P in the plane of ABC such 
that AP·AG+BP·BG+CP·CG is a minimum, and express this minimum value 
in terms of the side lengths of ABC. (Hint: Set the origin at G.) 

 
5. (Pedoe's Inequality) Let a,b,c and a1,b1,c1 be the side lengths of triangles ABC 

and A1B1C1, respectively. Supposes their areas are S and S1, respectively. 
Prove that  

.16)()()( 1

2222

1

2222

1

2222

1 SScbaccbabcbaa ≥−+++−+++−  

 
6. (Desargue's Theorem) For two triangles ABC and A1B1C1, let lines BC, B1C1 

intersect at P; lines CA, C1A1 intersect at Q and lines AB, A1B1 intersect at R. 
Prove that lines AA1, BB1, CC1 are concurrent if and only if P, Q, R are 
collinear. 

 
7. (2004 APMO) Let O be the circumcenter and H be the orthocenter of an acute 

triangle ABC. Prove that the area of one of the triangles AOH, BOH and COH 
is equal to the sum of the areas of the other two. 
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9. Stewart’s Theorem and Ceva’s Theorem 
 

Notations: For ∆ABC, its area will be denoted by [ABC] or SABC. As usual, let a 
be the length of side BC, b be the length of side CA and c be the length of side 
AB.  
 

c b
p

nm

A

B CD
 

             m+n = a 

 
Stewart’s Theorem. Let D be a point on side BC. Let 
p, m and n be the lengths of line segments AD, BD and 
CD respectively. Then  

 
b

2
m +c

2
n = a(p

2
+mn). 

 

 
Proof. Since ∠ADB +∠ADC=180˚, so cos∠ADB + cos∠ADC = 0.The formula 

follows from the cosine law as cos∠ADB = (m
2
+p

2
–c

2
)/(2mp) and cos∠ADC = 

(n
2
+p

2
–b

2
)/(2np). 

 
Formulas. (1) If AD is the median to side BC, then m = a/2 = n. Let ma denote 

the length of AD. Stewart’s theorem yields .22
2

1 222
acbma −+=  This formula 

is sometimes refered to as Apollonius’ formula. Note we have the interesting 
formula  

).(3)(4 222222
cbammm cba ++=++  

 
(2) If AD is the angle bisector of ∠BAC, then m/n=c/b and m+n=a imply 
m=ca/(b+c) and n=ba/(b+c). Let ta denote the length of AD. Stewart’s theorem 

yields .
)(

1
2

2










+
−=

cb

a
bcta  

 
Next we come to an important theorem known as Ceva’s theorem. It explains 
why medians or altitudes or angle bisectors of a triangle are concurrent. 

  

α

β
β

α '

γ
γ

'
'

A

B CD

E
X

F

 

 
Ceva’s Theorem. For ∆ABC, let D be on line BC, E 
be on line CA and F be on line AB. If lines AD, BE 
and CF are concurrent, then 

.1=××
EA

CE

DC

BD

FB

AF
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(Remarks. By the sine law, AF/sin γ =AC/sin∠AFC and FB/sin γ’=CB/sin∠CFB 

Since sin∠AFC = sin∠CFB, we get AF/FB = (AC sin γ)/(CB sin γ’). Using 
similar equations, we see that the equation in Ceva’s theorem can be written as 
 

.1
'sin'sin'sin

sinsinsin
=

γβα

γβα
 

 
This is called the trigonometric form of the equation.) 
 
 

A

B C

EF

O

DE' F'
 

Proof. Let O be the concurrent point. Through A, 
draw a line parallel to BE and let it intersect line 
BC at E’. Similarly, through A, draw a line parallel 
to CF and let it intersect line BC at F’. Then AF/FB 
= F’C/CB, CE/EA = CB/BE’ and CD/CF’ = 
OD/OA = BD/BE’. So BD/DC = BE’/F’C. 
Therefore, 
 

.1
''

''
=××=××

BE

CB

CF

BE

CB

CF

EA

CE

DC

BD

FB

AF
 

 

Converse of Ceva’s Theorem. If ,1=××
EA

CE

DC

BD

FB

AF
 then lines AD, BE and 

CF are concurrent.  
 
Proof. We will prove the converse by the method of false position. We are given 

.1=××
EA

CE

DC

BD

FB

AF
 Let lines AD and BE intersect at X and lines CX and AB 

intersect at F’. By Ceva’s theorem, .1
'

'
=××

EA

CE

DC

BD

BF

AF
 So 

BF

AF

FB

AF

'

'
= . Then 

BF

AB

BF

AF

FB

AF

FB

AB

'
1

'

'
1 =+=+= , which implies F= F’ . 

 
Facts. (a) If AD, BE and CF are the median of ∆ABC, then they concur at a point 
called the centroid of the triangle, which is commonly denoted by G. In this case, 

the Ceva equation is just .1
2/

2/

2/

2/

2/

2/
=××

b

b

a

a

c

c
  

 
(b) If AD, BE and CF are the altitudes of ∆ABC, then they concur at a point 
called the orthocenter of the triangle, which commonly denoted by H. In this 

case, the Ceva equation is just .1
cos

cos

cos

cos

cos

cos
=××

Ac

Ca

Cb

Bc

Ba

Ab
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(c) If AD, BE and CF are the angle bisectors of ∆ABC, then they concur at a 
point called the incenter of the triangle, which is commonly denoted by I. In this 

case, the Ceva equation is just .1
)/(

)/(

)/(

)/(

)/(

)/(
=

+

+
×

+

+
×

+

+

accb

acab

cbba

cbca

baac

babc
 (Since points 

on an angle bisector are equidistant from the sides of the angle, I is equidistant 
from AB, BC, CA and hence it is the center of the inscribed circle in ∆ABC.)  
 
(d) The perpendicular bisectors of sides AB, BC, CA concur at a point called the 
circumcenter of the triangle, which is commonly denoted by O. (Since points on 
a perpendicular bisector of a line segment are equidistant from the endpoints, O 
is equidistant from A, B, C and hence it is the center of the circumscribed circle.)  
  

 
Formulas 

 

a

O

B

A

C

D  

 
Extended Sine Law. Let R be the radius of the 
circumcircle of ∆ABC. Then 

.2
sinsinsin

R
C

c

B

b

A

a
===  

 

Proof. Draw diameter BD. Then .2
sinsin

RBD
D

a

A

a
===  

 

c

a

b
h

a

A

B C  

 
Area of Triangle. Letting ha denote the height from A to 
side BC, we have  
 

.
42

sin

2
][

R

abcCabah
ABC a ===  

 

r

r
c

a

b
I

A

B C

r

 

 
Let s = (a+b+c)/2 be the semiperimeter of ∆ABC. Let I 
be the incenter of ∆ABC and r be the radius of the 
incircle of ∆ABC. Then  
 

.
222

][][][][ sr
crbrar

CIABICAIBABC =++=++=  
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Heron’s Formula.  .))()((][ csbsassABC −−−=   

 

Proof. By cosine law, cos C =(a
2
+b

2
–c

2
)/(2ab). We have 

 

                    )cos1)(cos1(
4

sin
4

][
22

2
22

2
CC

ba
C

ba
ABC −+==  

                                

).)()((

2

)(

2

)(

2

)(

2

)(

16

)2)(2( 222222

asbscss

bacbaccbacba

cbaabcbaab

−−−=

+−−+−+++
=

+−−−++
=

 

 
(Remarks. Combining with the formulas above, we get 

))()((4 csbsass

abc
R

−−−
=   and  

s

csbsas
r

))()(( −−−
= .) 

 

 
Theorems about Concyclic Points 

 
 

C
B

A D
P

A

P

C

B

D

 

Intersecting Chord Theorem.  
 
(1) Let line segments AB and CD (or both extended to) 
intersect at point P. Then A,B,C,D are concyclic if and only 
if PA×PB = PC×PD. 

 

C

P BA  

 
(2) Let lines PC and AB intersect at P. Then PC is tangent to 
the circumcircle of ∆ABC if and only if PC

2
 = PA× PB. 

 

 

Proof. For (1), observe that ∠APD =∠CPB. So A,B,C,D are concyclic ⇔      ∠PAD=∠PCB ⇔ ∆APD ~  ∆CPB ⇔ PA/PD=PC/PB ⇔ PA×PB =PC×PD. 
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For (2), observe that ∠APC =∠CPB. So PC is tangent to the circumcircle of 

∆ABC ⇔∠ACP=∠CBP ⇔ ∆ACP ~ ∆CBP ⇔ PC/PA=PB/PC ⇔ PC
2
 = 

PA×PB. 
 
Ptolemy’s Theorem. ABCD is a cyclic quadrilateral if and only if 
 

.BDACBCADCDAB ×=×+×  
 

(For general quadrilateral, .BDACBCADCDAB ×≥×+× ) 
 

 
 
 

D

A B

C

E

 

Proof. On side AB, construct ∆BAE ~ ∆CAD. Then 

AB/AC=AE/AD=BE/CD and ∠BAE =∠CAD. So   ∠BAC = ∠BAD −∠CAD =∠BAD −∠BAE =∠EAD.  
 
Then ∆BAC~ ∆EAD. So BC/AC=ED/AD. Then  
 

.BDACEDACBEACBCADCDAB ×≥×+×=×+×
 

 
Equality holds if and only if BE+ED=BD. This occurs if 
and only if ∠DBA=∠EBA=∠DCA, i.e. ABCD is cyclic. 
 

 
Simson’s Theorem. Let P be on the plane of ∆ABC. Let D,E,F be the feet of the 
perpendiculars from P to lines BC, CA, AB respectively. If P is on the 
circumcircle of ∆ABC, then D,E,F are collinear. The converse is also true. 
 
 

A

B
C

P

F

D

E

 

Proof. Connect PA and PB. Since ∠PFA= 90°=∠PEA, 
so P, F, A, E are concyclic and hence ∠PFE =∠PAE. 
Similarly, ∠PDB = 90°=∠PFB, so P, B, D, F are 
concyclic and hence  
 ∠PBD +∠PFD =180°. 

 
Now P is on the circumcircle  ⇔ ∠PAE =∠PBC ⇔ ∠PFE =∠PBD ⇔∠PFE +∠PFD =∠PBD +∠PFD ⇔∠PFE +∠PFD = 

180°⇔ D,E,F are collinear. 
_________________________________________________________________ 
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10.  Menelaus’ Theorem and Other Famous Theorems 
 
Below we will write P = WX ∩ YZ to denote P is the point of intersection of 
lines WX and YZ. If points A, B, C are collinear, we will introduce the sign 

convention : AB/BC = BCAB /  (so if B is between A and C, then AB/BC ≥ 0, 
otherwise AB/BC ≤ 0). 
 

D

B

A C

X

Y

Z

 

Menelaus’ Theorem Points X, Y, Z are taken from 
lines AB, BC, CA (which are the sides of △ABC 
extended) respectively. If there is a line passing 
through X, Y, Z, then   
 

.1−=⋅⋅
ZA

CZ

YC

BY

XB

AX
 

 
Proof. Let D be on line AC such that BD || XZ. Then AX/XB=AZ/ZD and 
BY/YC=DZ/ZC. So 

.1−=⋅⋅=⋅⋅
ZA

CZ

ZC

DZ

ZD

AZ

ZA

CZ

YC

BY

XB

AX
 

 

Converse of Menelaus’ Theorem. If 1−=⋅⋅
ZA

CZ

YC

BY

XB

AX
, then there is a line 

passing through X, Y, Z .  
 
Proof (by the method of false position). To see this, let Z’=XY∩CA. Then 
applying Menelaus theorem to the line through X, Y, Z’ and comparing with the 
equation above, we get CZ/ZA = CZ’/Z’A. Then CA/ZA = 1 + (CZ/ZA) = 
1+(CZ’/Z’A) = CA/ZA. It follows Z=Z’.  
 
 

Y

P

Q

B

R

X

Z

E
F

D
C

A

 

Pascal’s Theorem Let A, B, C, D, E, F be points 
on a circle (which are not necessarily in cyclic 
order). Let 
 

P=AB∩DE,  Q=BC∩EF,  R=CD∩FA. 
 
Then P,Q,R are collinear. 

 
Proof. Let X = EF ∩ AB, Y = AB ∩ CD, Z = CD ∩ EF. Applying Menelaus’ 
theorem respectively to lines BC, DE, FA cutting △XYZ extended, we have    
  

,1−=⋅⋅
CZ

YC

BY

XB

QX

ZQ
  ,1−=⋅⋅

EX

ZE

DZ

YD

PY

XP
  .1−=⋅⋅

AY

XA

FX

ZF

RZ

YR
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Multiplying these three equations together, then using the intersecting chord 
theorem to get XA·XB = XE·XF, YC·YD = YA·YB, ZE·ZF = ZC·ZD, we arrive at 
the equation 

.1−=⋅⋅
RZ

YR

PY

XP

QX

ZQ
 

 
By the converse of Menelaus’ theorem, this implies P, Q, R are collinear. 
 
Remarks. There are limiting cases of Pascal’s Theorem. For example, we may 
move A to approach B. In the limit, A and B will coincide and the line AB will 
become the tangent line at B. In the limiting case, we also denote the tangent 
line at A by AA. 
 

B
A

C E

F

D

 

Example 1.  (2001 Macedonian Math Olympiad) For the 
circumcircle of △ABC, let D be the intersection of the 
tangent line at A with line BC, E be the intersection of the 
tangent line at B with line CA and F be the intersection of 
the tangent line at C with line AB.  
 
Prove that points D,E,F are collinear. 
 

 
 
Solution Applying Pascal’s theorem to A, A, B, B, C, C on the circumcircle, 
since D=AA∩BC,  E=BB∩CA,  F=CC∩AB , we get D, E, F are collinear. 
 
 

A

B C

D

E

P

Q R
I

 

 
Example 2. Let D and E be the midpoints of the minor 
arcs AB and AC on the circumcircle of △ ABC, 
respectively. Let P be on the minor arc BC, Q = DP ∩ BA 
and R = PE ∩ AC. Prove that line QR passes through the 
incenter I of △ABC. 
 

 
Solution Since D is the midpoint of arc AB, line CD bisects ∠ACB. Similarly, 

line EB bisects ∠ABC. So I = CD ∩ EB. Applying Pascal’s theorem to C, D, P, 

E, B, A, we get I, Q, R are collinear.  
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A
A'

B

C

B'

C'

D

A''

B''

C''

H

 

 
Example 3. (2001 Australian Math Olympiad) Let 
A,B,C,A’,B’,C’ be points on a circle such that AA’ is 
perpendicular to BC, BB’ is perpendicular to CA, 
CC’ is perpendicular to AB. Further, let D be a point 
on that circle and let DA’ intersect BC in A’’, DB’ 
intersect CA in B’’, and DC’ intersect AB in C’’, all 
segments being extended where required. Prove that 
A’’, B’’, C’’ and the orthocenter of triangle ABC are 
collinear. 
 

Solution Let H be the orthocenter of △ABC. Applying Pascal’s theorem to A, A’, 

D, C’, C, B, we see H, A’’, C’’ are collinear. Similarly, applying Pascal’s 
theorem to B’, D, C’, C, A, B, we see B’’, C’’, H are collinear. So A’’, B’’, C’’, H 
are collinear. 
 
 

C

A
B

P

P
1 P

2

Q
1

Q
2

 

Example 4. (1991 IMO unused problem) Let 
ABC be any triangle and P any point in its 
interior. Let P1, P2 be the feet of the 
perpendiculars from P to the two sides AC and 
BC. Draw AP and BP and from C drop 
perpendiculars to AP and BP. Let Q1 and Q2 be 
the feet of these perpendiculars. If Q2≠P1 and 
Q1≠P2, then prove that the lines P1Q2, Q1P2 
and AB are concurrent. 

 
Solution Since ∠CP1P, ∠CP2P, ∠CQ2P, ∠CQ1P are all right angles, we see 
that the points C, Q1, P1, P, P2, Q2 lie on a circle with CP as diameter. Note A = 
CP1 ∩ PQ1 and B = Q2P ∩ P2C. Applying Pascal’s theorem to C, P1, Q2, P, Q1, 
P2, we see X = P1Q2 ∩ Q1P2 is on line AB. 
 

O

A' C'

B'

C
A B

R

Q

P

 

 
Desargues’ Theorem For triangles ABC and 
A’B’C’, if lines AA’, BB’, CC’ concur at a 
point O, then P, Q, R are collinear, where P = 
BC ∩ B’C’, Q = CA ∩ C’A’, R = AB ∩ A’B’ 
are points in the plane. 
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Proof. Applying Menelaus’ theorem respectively to line A’B’ cutting △OAB 

extended, line B’C’ cutting △OBC extended and the line C’A’ cutting △OCA 

extended,  we have 

  ,1
'

'

'

'
−=⋅⋅

OB

BB

RB

AR

AA

OA
,1

'

'

'

'
−=⋅⋅

OC

CC

PC

BP

BB

OB
  .1

'

'

'

'
−=⋅⋅

QA

CQ

CC

OC

OA

AA
 

 

Multiplying these three equations,  .1−=⋅⋅
QA

CQ

PC

BP

RB

AR
 

By the converse of Menelaus’ theorem, this implies P,Q,R are collinear. 
 
Converse of Desargues’ Theorem. For triangles ABC and A’B’C’, if P, Q, R are 
collinear, where P = BC ∩ B’C’, Q = CA ∩ C’A’, R = AB ∩ A’B’ are points on 
the plane, then lines AA’, BB’, CC’ concur at a point O (when they are not 
parallel).  
 
Proof. Let O=BB’∩CC’. Consider △RBB’ and △QCC’. Since lines RQ, BC, 

B’C’ concur at P, and A = RB ∩ QC, O = BB’ ∩ CC’, A’=BR’ ∩ C’Q, by 
Desargues’ theorem, A,O,A’ are collinear. So lines AA’, BB’, CC’ concur at O. 
 

D

C B

A

G

F

E

HX

O

 

 
Newton’s Theorem A circle is inscribed in a 
quadrilateral ABCD with sides AB, BC, CD, DA touch 
the circle at points E, F, G, H respectively. Then lines 
AC, EG, BD, FH are concurrent. 

 
Proof. Let O=EG∩FH and X=EH∩FG. Since D is the intersection of the tangent 
lines at G and at H to the circle, applying Pascal’s theorem to E,G,G,F,H,H, we 
get O, D, X are collinear. Similarly, applying Pascal’s theorem to E, E, H, F, F, 
G, we get B, X, O are collinear.  
 
Then B,O,D are collinear and so lines EG, BD, FH are concurrent at O. Similarly, 
we can also obtain lines AC, EG, FH are concurrent at O. Then Newton’s 
theorem follows.  
 

E

F

A
B

C D

G
L

K
J

I

H

M

N

O

P
 

 
Brianchon’s Theorem Lines AB, BC, CD, 
DE, EF, FA are tangent to a circle at points 
G, H, I, J, K, L (not necessarily in cyclic 
order). Then lines AD, BE, CF are 
concurrent. 
 



 23 

 
Proof. Let M = AB ∩ CD, N = DE ∩ FA. Applying Newton’s theorem to 
quadrilateral AMDN, we see lines AD, IL, GJ concur at a point A’. Similarly, 
lines BE, HK, GJ concur at a point B’ and lines CF, HK, IL concur at a point C’. 
Then A’,B’,G,J are collinear; B’,C’,H,K are collinear; C’,A’,I,L are collinear.  
 
Next we apply Pascal’s theorem to G, G, I, L, L, H and get points A, O, P are 
collinear, where O = GI ∩ LH and P = IL ∩ HG.  Applying Pascal’s theorem 
again to H, H, L, I, I, G, we get C, O, P are collinear. Hence A, C, P are collinear. 
 
Now AB ∩ A’B’ = AB ∩ GJ = G, BC ∩ B’C’ = BC ∩ HK = H and CA ∩ C’A’ = 
CA ∩ IL =P are collinear. Applying the converse of Desargues’ theorem to △ABC and △A’B’C’, we get lines AA’=AD, BB’=BE, CC’=CF are concurrent. 
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11.  Nine Point Circle and Euler Line 

 
The following theorem is a very interesting theorem. It is a high point in the 
history of geometry. 
 
 

A

B CD

EH
F N

C' K
B'

ML

A'
 

Nine Point Circle Theorem. For ∆ABC, let A’, B’, 
C’ be the midpoints of sides BC,CA,AB respectively. 
Let D,E,F be the feet of the altitudes to sides BC, 
CA, AB respectively. Let K,L,M be the midpoints of 
the line segments joining the orthocenter H to 
vertices A, B, C respectively.  
 
Then A’,B’,C’,D,E,F,K,L,M lie on a circle (called 
the nine point circle of ∆ABC). The center N of this 
circle is the midpoint of OH and the radius of this 
circle is half the circumradius of ∆ABC. 

 

Proof. By the midpoint theorem, LMBCBC ==
2

1
''  and .'

2

1
' MBAHLC ==  

Since AH⊥BC, B’C’LM is a rectangle. The circumcircle of B’C’LM contains E, 

F since B’L, C’M are diameters and∠B’EL = 90°=∠C’FM. So B’,C’,E,F,L,M 

are concyclic. Similarly, A’,B’,D,E,K,L are concyclic. So, the nine points lie on a 
common circle. Note B’L, C’M, A’K are diameters of the nine point circle.  
 

 

A

B C

C'
B'

A'

O

H

K

 

Next note O is the orthocenter of ∆A’B’C’. Since 
∆ABC ~ ∆A’B’C’, so ∆ABH ~ ∆A’B’O and  

A’O/AH = A’B’/AB =1/2 ⇒ A’O = ½AH = KH. 

Since A’O⊥BC and KH⊥BC, so A’O∥KH. Then 

A’OKH is a parallelogram. Since A’K is a diameter of 
the nine point circle, its center is the midpoint of OH. 
 

Finally, N,K are midpoints of OH, AH respectively. The radius NK of the nine 
point circle is half the circumradius OA by the midpoint theorem. 
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A

B CA'

O
H

G N

 

Euler Line of ∆ABC. Since A’O= ½AH and 

A’O∥AH, so OH and AA’ intersect at a point G such 
that OG=½HG=⅓OH. Similarly, this point G is on 
BB’ and CC’. Hence G is the centroid. (Note 
A’G=⅓A’A.) The points O,G,N,H lie on a common 
line (called the Euler line of  ∆ABC). We have OH = 
2ON = 3OG. 

 

  

r
a

r
a

r
a

A

B

C

I
a

 

For ∆ABC, there is an inscribed circle with center I 

and radius r. If we extend the sides of ∠BAC beyond 

B and C, then the bisectors of ∠BAC and the external 

angle bisectors of ∠B and ∠C are concurrent at a 

point Ia that is equidistant from side BC and the sides 

of ∠BAC. Hence, Ia is the center of a circle tangent 

to side BC and the sides of ∠BAC. This is called the 

escribed circle or excircle of ∆ABC opposite A, Ia is 
called the excenter and its radius ra is called the 
exradius. Similarly, there are excircles opposite to B 
and C. 

 
Feuerbach’s Theorem. For ∆ABC, the inscribed circle is internally tangent to 
the nine point circle and the three escribed circles are externally tangent to the 
nine point circle. 
 
Remark. This theorem will be proved later at the end of the chapter on inversion. 
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12.  Power of a Point and Radical Axis  
 
The power of a point P with respect to a circle is the number d

2 
− r

2
, where d is 

the distance from P to the center of the circle and r is the radius of the circle.  (If 
P is outside the circle, the power is positive. If P is inside, the power is negative. 
If P is on the circle, the power is 0.)  
  

    

r-d r+d

d
r

OP
A A'

OP

A=A'

 

In the intersecting chord theorem, if P is inside a circle and 
AA' is a chord through P, then the product PA × PA' is 
constant and can be determined by taking the case the 
chord AA' passes through P and the center O.  This gives 
PA × PA' = r

2 
− d

2
, where r is the radius of the circle and d 

= OP.  In the case P is outside the circle, the product PA × 
PA' can be determined by taking the limiting case PA is 
tangent to the circle.  Then PA × PA' = d

2 
− r

2
. 

Thus, PA × PA' is the absolute value of the power of P with respect to the circle. 
This is known as the power-of-a-point theorem.  
 
Next we will look at points having equal power with respect to two circles. 
 
Theorem. On a plane, for distinct points R,S and a number m, the locus of all 
points X such that RX

2
−SX

2 
= m

 
is a line perpendicular to line RS. Also, for 

distinct points R,S,X,Y, we have RX
2
−SX

2 
= RY

2
−SY

2 
if and only if XY ⊥RS. 

 

R(a,0) S(b,0)

X(x,y)
Proof. Let R,S have coordinate (a,0),(b,0). Point X with 
coordinate (x,y) is on the locus if and only if ((a−x)

2
+y

2
) − 

((b−x)
2
+y

2
) = m, which is equivalent to x = 

(a
2
−b

2
−m)/2(a−b), a line perpendicular to RS. The second 

statement  follows by using  Pythagoras’ theorem  for  the  
if-part and letting m = RY

2
−SY

2
 so that X,Y are both on the locus for the only-if-

part. 
 
Let circles C1 and C2 have distinct centers O1 and O2. By the theorem, the points 
X whose powers with respect to C1 and C2 are equal (i.e. O1X

2 
−

 
r1

2 
= O2X

2
 −r2

2
 ) 

form a line perpendicular to line O1O2. This line is called the radical axis of the 
two circles.  In the case of three circles C1, C2, C3 with noncollinear centers O1, 
O2, O3, the three radical axes of the three pairs of circles intersect at a point 
called the radical center of the three circles.  (This is because the intersection 
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point of any two of these radical axes has equal power with respect to all three 
circles, hence it is on the third radical axis too.) 
 

C
1

C
2

O
1 O

2

 
 

C
1

C
2

C
3

O
1 O

2

P

 

If two circles C1 and C2 intersect, their radical axis is 
the line through the intersection point(s) 
perpendicular to the line of the centers.  (This is 
because the intersection point(s) have 0 power with 
respect to both circles, hence they are on the radical 
axis.)   
         
If the two circles do not intersect, their radical axis 
can be found by taking a third circle C3 intersecting 
both C1 and C2.  Let the radical axis of C1 and C3 
intersect the radical axis of C2 and C3 at P.  Then the 
radical axis of C1 and C2 is the line through P 
perpendicular to the line of centers of C1 and C2. 
 

We will illustrate the usefulness of the intersecting chord theorem, the concepts 
of power of a point, radical axis and radical center in the following examples. 
 
Example 1.  (1996 St. Petersburg City Math Olympiad)  Let BD be the angle 
bisector of angle B in triangle ABC with D on side AC.  The circumcircle of 
triangle BDC meets AB at E, while the circumcircle of triangle ABD meets BC at 
F.  Prove that AE = CF. 

      
A D

B

C

E F

 

 
Solution.  By the intersecting chord theorem, AE 
× AB = AD × AC and CF × CB = CD × CA, so 
AE/CF = (AD/CD)(BC/AB).  However, AB/CB = 
AD/CD by the angle bisector theorem.  So AE = 
CF. 
 

 

    

A

B

C

E
F

D
 

Example 2.  (1997 USA Math Olympiad)  Let ABC 
be a triangle, and draw isosceles triangles BCD, 

CAE, ABF externally to ABC, with BC, CA, AB as 
their respective bases.  Prove the lines through A, 

B, C, perpendicular to the lines EF, FD, DE, 
respectively, are concurrent. 
  

 28 

C
1
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2
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A

B

C

F

E

D

 

Solution 1.  Let C1 be the circle with center D 
and radius BD, C2 be the circle with center E 
and radius CE, and C3 be the circle with center 
F and radius AF.  The line through A 
perpendicular to EF is the radical axis of C2 and 
C3, the line through B perpendicular to FD is 
the radical axis of C3 and C1 and the line 
through C perpendicular to DE is the radical 
axis of C1 and C2.  These three lines concur at 
the radical center of the three circles. 

 

A

B

C

F

E

D

P

Solution 2. Let P be the intersection of the 
perpendicular line from B to FD with the perpendicular 

line from C to DE. Then PB⊥FD and PC⊥DE. By 

the theorem above, we have  
 

PF
2
−PD

2
= BF

2
−BD

2
 and PD

2
−PE

2
= CD

2
−CE

2
. 

 
Adding these and using AF=BF, BD=CD and CE=AE, 

we get PF
2
−PE

2
= AF

2
−AE

2
. So PA⊥EF and P is the desired concurrent point. 

 
Example 3.  (1985 IMO)  A circle with center O passes through vertices A and C 
of triangle ABC and intersects side AB at K and side BC at N.  Let the 
circumcircles of triangles ABC and KBN intersect at B and M.  Prove that OM is 
perpendicular to BM. 
 

O

A C

B

K

N

P

M

 

Solution.   For the three circles mentioned, the 
radical axes of the three pairs are lines AC, KN 
and BM.  (The centers are noncollinear because 
two of them are on the perpendicular bisector of 
AC, but not the third.)  So the axes will concur at 

the radical center P.  Since ∠PMN = ∠BKN = ∠
NCA, it follows that P, M, N, C are concyclic.   

 
By power of a point, BM × BP = BN × BC = BO

2 
− r

2
 and PM × PB = PN × PK 

= PO
2 

− r
2
, where r is the radius of the circle through A, C, N, K.  Then PO

2 
− 

BO
2 

= BP(PM − BM) = PM
2 

− BM
2
.  By the theorem above, this implies OM ⊥ 

PB, which is the same as OM ⊥BM.  
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Example 4.  (1997 Chinese Math Olympiad)  Let quadrilateral ABCD be 
inscribed in a circle.  Suppose lines AB and DC intersect at P and lines AD and 
BC intersect at Q. From Q, construct the tangents QE and QF to the circle, 
where E and F are the points of tangency.  Prove that P, E, F are collinear. 
 

   

C
1

O
1

A

BC
D

Q

E

F

P
M

 

Solution.  Let M be a point on PQ such that ∠CMQ 

=∠ADC. Then D, C, M, Q are concyclic and also, B, 

C, M, P are concyclic.  Let r1 be the radius of the 
circumcircle C1 of ABCD and O1be the center of C1. 
By power of a point,  
 

 PO1
2 

− r1
2
 = PC × PD = PM × PQ 

and          QO1
2 

− r1
2
 = QC × QB = QM × PQ. 

 
Then PO1

2 
− QO1

2
 = (PM – QM) PQ = PM

2 
− QM

2
, which implies O1M⊥PQ.  

The circle C2 with QO1 as diameter passes through M, E, F and intersects C1 at 
E, F.  If r2 is the radius of C2 and O2 is the center of C2, then PO1

2 
− r1

2
 = PM × 

PQ = PO2
2 

− r2
2
.  So P lies on the radical axis of C1, C2, which is the line EF. 

 
A

B C
D

EH
F

M N

O

 

Example 5. (2001 Chinese National Senior High Math 

Competition) As in the figure, in △ABC, O is the 

circumcenter. The three altitudes AD, BE and CF 
intersect at H. Lines ED and AB intersect at M. Lines 

FD and AC intersect at N. Prove that (1) OB⊥DF, OC⊥DE; (2) OH⊥MN. 
 
Solution. (1) Since ∠AFC = 90°=∠ADC, so A,C,D,F 

are concyclic. Then ∠BDF =∠BAC.  Also, ∠OBC = 

½(180˚−∠BOC) = 90°−∠BAC = 90°−∠BDF implies OB⊥DF. Similarly, 

OC⊥DE. 
 

(2) We have        CH⊥MA ⇔ MC
2
−MH

2 
= AC

2
−AH

2
          (a) 

                            BH⊥NA ⇔  NB
2
−NH

2 
= AB

2
−AH

2
           (b) 

                            DA⊥BC ⇔  DB
2
−DC

2 
= AB

2
−AC

2
           (c) 

                  OB⊥DF = DN ⇔  BN
2
−BD

2 
= ON

2
−OD

2
          (d) 

                  OC⊥DE =DM ⇔ CM
2
−CD

2 
= OM

2
−OD

2
.         (e) 

 
Doing (a)−(b)+(c)+(d)−(e), we get NH

2
−MH

2 
= ON

2
−OM

2
. So OH⊥MN. 
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Alternative Solution. (1) Let J be on line DM such that JB∥DF. Since ∠AFC 
= 90°=∠ADC, so A,C,D,F are concyclic. Then ∠JBD = ∠BDF = ∠BAC. So 
line BJ is tangent to the circumcircle of △ABC. Then OB⊥JB. So OB⊥DF. 
Similarly, OC⊥DE.  
 
(2) Recall the Euler line OH of △ABC contains the center of the circumcircle 
and the center of the nine point circle. We will show N, M are on the radical 
axis of these circles and hence OH⊥MN.  
 
From (1), we know A,C,D,F are concyclic. By the intersecting chord theorem, 
NA×NC = NF×ND. Since AC is a chord of the circumcircle and FD is a chord 
on the nine-point circle, so N is on the radical axis of the circles and similarly 
for M. 
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13.  Miscellaneous Examples 
  
Example 1. (1994 Canadian Math Olympiad) Let ABC be an acute triangle. 
Let D be on side BC such that AD⊥BC. Let H be a point on the segment AD 
different from A and D. Let line BH intersect side AC at E and line CH 
intersect side AB at F. Prove that ∠EDA =∠FDA. 
 

A

B C

P Q

D

EF H

 
 

 
Solution 1. Draw a line through A parallel to BC. Let 
the line intersect line DE at Q and line DF at P. Note 
∆APF~∆BFD. So AP/BD=AF/BF. Similarly, 
AQ/CD=AE/CE. Also, by Ceva’s theorem,  

1=
EA

CE

DC

BD

FB

AF
⇔ CD

CE

AE
BD

FB

AF
⋅=⋅ ⇔ AP=AQ. 

This with DA=DA and ∠DAP = 90°=∠DAQ yield 

∆DAP~∆DAQ. Therefore, ∠EDA =∠FDA.  
 

    

A

B C
D

EF H

A'

E'

 

Solution 2. Let A’, E’ be the mirror image of A, E 
with respect to line BC. Since AF, CD, EH concur 
at B, by Ceva’s theorem,  
  

.
'

''
1

AE

CE

FC

HF

DH

DA

EA

CE

FC

HF

DH

AD −
==  

By the converse of Menelaus’ theorem, D, F, E’ 

are collinear. Hence, ∠EDA =∠E’DA’=∠FDA. 

Example 2.  (1997 USA Math Olympiad)  Let ABC be a triangle, and draw 
isosceles triangles BCD, CAE, ABF externally to ABC, with BC, CA, AB as 
their respective bases.  Prove the lines through A, B, C, perpendicular to the 
lines EF, FD, DE, respectively, are concurrent. 
 
 

A

B

C

E
F

D

A'

B' C'D'

F'
E'

 

Solution. Let A’,B’,C’ be points on FE,DF,ED 
respectively such that AA’⊥FE, BB’⊥DF and CC’⊥ ED. Let D’,E’,F’ be points on CB,AC,BA 
respectively such that DD’⊥CB, EE’⊥AC and FF’⊥ BA. Now DD’, EE’, FF’ are perpendicular 
bisectors of the sides of △ABC. So they concur. By 
the trigonometric form of Ceva’s theorem, we have 
 

.1
'sin

'sin

'sin

'sin

'sin

'sin
=

∠

∠

∠

∠

∠

∠

FDD

DED

EFF

FDF

DEE

EFE
 

Since E’E⊥CA and EF⊥AA’, so ∠E’EF≅∠CAA’. Similarly, ∠DEE’≅∠
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A’AB, ∠F’FD≅∠ABB’, ∠EFF’≅∠B’BC, ∠D’DE≅∠BCC’ and ∠FDD’≅∠B’BC. So  

.1
'sin

'sin

'sin

'sin

'sin

'sin
=

∠

∠

∠

∠

∠

∠

BCB

BCC

BCB

ABB

ABA

CAA
 

 
By the converse of Ceva’s theorem, we get AA’, BB’, CC’ are concurrent, 
which is the required conclusion. 
 
Example 3. (1996 IMO) Let ABCDEF be a convex hexagon such that AB is 
parallel to DE, BC is parallel to EF and CD is parallel to FA. Let RA, RC, RE 
denote the circumradii of triangles FAB, BCD, DEF, respectively and let P 
denote the perimeter of the hexagon. Prove that RA + RC + RE ≥ P/2. 
 

P

S R

QB

A

F E

D

C

 

 
Solution. Due to the parallel opposite sides, we have ∠A =∠D, ∠B =∠E,∠C =∠F. Let PQRS be the 

smallest rectangle containing the hexagon with side 
BC on PQ as shown. We have  
 
 2BF ≥ PS+QR = AP+AS+DQ+DR 

        = (AB sin B+FA sin C)+(CD sin C+DE sin B). 
  

Similarly,       2DB ≥ (CD sin A+BC sin B)+(EF sin B+FA sin A) 
and                 2FD ≥ (EF sin C+DE sin A)+(AB sin A+BC sin C). 

By the extended sine law, .
sin2

,
sin2

,
sin2 B

FD
R

C

DB
R

A

BF
R ECA === Dividing the 

first inequality by sin A, second inequality by sin C, third inequality by sin E 
and adding them, we get by the AM-GM inequality that 
 

4(RA + RC + RE ) ≥ AB 







+

B

A

A

B

sin

sin

sin

sin
+ BC 








+

C

B

B

C

sin

sin

sin

sin
+⋯ 

                 ≥ 2(AB+BC+CD+DE+EF+FA) = 2P. 
The result follows. 

 
Example 4. (1997 Chinese National Senior High Math Competition) Circles 
C1, C2 with centers O1, O2 and distinct radii intersect at M, N. C1, C2 are 
internally tangent to a circle C with center O at S and T respectively. Prove that 

OM⊥MN if and only if S,T,N are collinear. 
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Solution. Let the tangents at S and at T to circle C 

intersect at P. Let Q = OP ∩ ST. Now OP⊥ST and so 

PQ×PO = PS
2
. Also, PS

2 
= PN×PM by the intersecting 

chord theorem. Then PQ×PO = PN×PM, which implies  
O,Q,N,M concyclic. Hence, 
  ∠OMN = 90˚ ⇔ ∠OQN = 90˚  

                       ⇔ S,T,N are collinear since OQ⊥ST. 

 
 

A

B

CD

F

S

P
R Q

E

 

Example 5. The inscribed circle of △ABC touches 

sides BC, CA, AB at D, E, F respectively. P is a 

point inside △ABC. The inscribed circle of △PBC 

touches sides BC,CP,PB at D,Q,R respectively. 
Prove that E,F,R,Q are concyclic. 
 

Solution. If EF ∥ BC, then ∠AFE =∠AEF implies ∠ABC =∠ACB. So △ABC is isosceles. Then D is 

the midpoint of BC and P is on AD. Then EFRQ is 
an isosceles trapezoid and so E,F,R,Q are concyclic.  

If EF∩BC=S, then by Menelaus theorem, .1−=
EC

AE

FA

BF

SB

CS
 Since AF=AE, 

BR=BD=BF, CQ=CD=CE, PQ=PR, we get .1−=
QC

PQ

RP

BR

SB

CS
 So by the 

converse of Menelaus’ theorem, we have R, Q, S collinear. By the intersecting 
chord theorem, SE×SF = SD

2
 = SR×SQ. Then E,F,R,Q are concyclic. 

 
Example 6. As in the figure, circles C1, C2 with centers O1, O2 respectively 
intersect at A, B. P is a point on line AB. From P, draw tangents to circle C1 at 
C and circle C2 at D. Let EF be a common tangent to both circles with E on C1 
and F on C2. Prove that AB, CE, DF are concurrent. 
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Solution. Let Q = AB∩EF. Let lines CE, DF intersect 
line AB at R, R’ respectively. We have to show R=R’.  
 
Let line EF intersect lines PC, PD at M, N 
respectively. Applying Menelaus’ theorem to line 

CER through △QMP, we get .1−=
EM

QE

RQ

PR

CP

MC
 Since 

MC=ME, we get .
QE

PC

RQ

PR
=  Similarly, .

'

'

QF

PD

QR

PR
=   

By the intersecting chord theorem, PC
2
=PA×PB=PD

2
 and QE

2
=QA×QB=QF

2
. 

So .
'

'

QR

PR

RQ

PR
=  Therefore, R=R’. 

Exercises 
  
1. Let a, b, c denote the lengths of the sides BC, CA, AB respectively. Let ha, 

hb, hc be the heights from A, B, C to the opposite sides respectively. Let R be 

the circumradius, r be the inradius and s be the semiperimeter of △ABC.  

    (a)  For △ABC, show that 
rhhh cba

1111
=++ .  

    (b) Show that .
2

sin
2

sin
2

sin4
CBA

Rr =  (Hint: Show .
2

tan
as

rA

−
= )  

 
2. Show that among all triangles with the same perimeter, the equilateral 

triangle has the largest area. 
  
3. (1996 Iranian Math Olympiad) Let ABC be a scalene triangle (i.e. no two 

sides equal). The medians from A, B, C meet the circumcircle again at L, M, 

N respectively. If LM=LN, prove that 2BC
2
=AB

2
+AC

2
. (Hint: Show 

CG

LG

AC

LN
=  first.) 

 
4. (1995 IMO) Let ABCDEF be a convex hexagon with AB = BC = CD, DE = 

EF = FA and ∠BCD = ∠EFA = 60˚. Prove that AG+GB+GH+DH+HE ≥ 

CF. 
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5.  

     

A

B
C

F

D

E

D'

E'

F'

 

 
 
In the figure, if lines AD, BE, CF are concurrent, 
show that lines AD’, BE’, CF’ are concurrent. 

  
6.   

 

A

B C

D

F H

K

G

E

 

 
In the figure, ABCD, AFHD, KGCD are 
parallelograms and KG, FH intersect at point E. 
Show that lines FK, BD, GH are concurrent. (Hint: 
There are more than one ways of solving this. One 
way is to let FK, BD intersect at X, then show G,H,X 
are collinear.) 

  
  

7. (a) Let the angle bisector of ∠BAC intersect the circumcircle of △ABC at 

D. Show that if point I on the line segment AD is the incenter of △ABC, 

then BD = ID = CD. (Remark: The converse is also true.) 
 

(b) Show that OI
2
 = R

2
 −2Rr, where O is the circumcenter, R is the 

circumradius and r is the inradius of △ABC.  
 

8. Let a,b,c and a’, b’, c’ be the lengths of two triangles. Let K(x,y,z) be the 
area of a triangle with side lengths x,y,z. Show that 

 

 .)'','(),,()',','( cbaKcbaKccbbaaK +≥+++  

     When does equality hold? 
 
 
9. 

c

d
a

d

b

d

A

B
C

P

 

(Hong Kong IMO Prelim Contest 90-91) Let P be an 

interior point of △ABC and extend lines from the 

vertices through P to the opposite sides. Let a,b,c,d 
denote the lengths of the line segments indicated in the 
figure. Find abc if a+b+c = 43 and d = 3. 
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14. Homothety 
 

A geometric transformation of the plane is a function that sends every point 
on the plane to a point in the same plane. Here we will like to discuss one 
type of geometric transformations, called homothety, which can be used to 
solve quite a few geometry problems in some international math competitions. 

 
A homothety with center O and ratio k is a function that sends every point X 
on the plane to the point X’ such that  

 

' .OX k OX=
uuuur uuur

 
 
So if |k| > 1, then the homothety is a magnification with center O. If |k| < 1, it 
is a reduction with center O. A homothety sends a figure to a similar figure. 
For instance, let D, E, F be the midpoints of sides BC, CA, AB respectively of 
∆ABC. The homothety with center A and ratio 2           sends ∆AFE to ∆ABC. 
The homothety with center at the centroid G and ratio –1/2 sends ∆ABC to 
∆DEF. 
 
Example 1. (1978 IMO) In ∆ABC, AB = AC. A circle is tangent internally to 
the circumcircle of ABC and also to the sides AB, AC at P, Q, respectively. 
Prove that the midpoint of segment PQ is the center of the incircle of ∆ABC. 
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Solution. Let O be the center of the circle. Let the 
circle be tangent to the circumcircle of ∆ABC at D. 
Let I be the midpoint of PQ. Then A, I, O, D are 
collinear by symmetry. Consider the homothety 
with center A that sends ∆ABC to ∆AB’C’ such that 
D is on B’C’. Thus, k=AB’/AB. As right triangles 
AIP, ADB’, ABD, APO are similar, we have  
   AI /AO = (AI / AP)(AP / AO) 
               = (AD /AB’)(AB /AD) = AB/AB’=1/k.  

Hence, the homothety sends I to O. Then O being 
the incenter of ∆AB’C’ implies I is the incenter of 
∆ABC. 

   
For the next two examples, it would be helpful to know the following fact.  
If ∆ABC and ∆A’B’C’ are not congruent and AB||A’B’, BC||B’C’, CA||C’A’, 
then the corresponding angles of the triangles are the same so that the 
triangles are similar, but the corresponding sides are all of different lengths. 
Then AA’, BB’ intersect at a point X and BB’, CC’ intersect at a point Y. We 
get ∆ABC ~ ∆A’B’C’, ∆ABX ~ ∆A’B’X’ and ∆BCX ~ ∆B’C’X’. So  
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Therefore, AA’, BB’, CC’ concur at X. (This is a special case of the converse 
of Desargue’s theorem.) 
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Example 2. (1981 IMO) Three congruent circles 
have a common point O and lie inside a given 
triangle. Each circle touches a pair of sides of the 
triangle. Prove that the incenter and the 
circumcenter of the triangle and the point O are 
collinear. 
 

 
Solution. Consider the figure shown. Let A’, B’, C’ be the centers of the circles. 
Since the radii are the same, so A’B’ is parallel to AB, B’C’ is parallel to BC, 
C’A’ is parallel to CA. Since AA’, BB’, CC’ bisect ∠A, ∠B, ∠C respectively, 
they concur at the incenter I of ∆ABC. Note O is the circumcenter of ∆A’B’C’ as 
it is equidistant from A’, B’, C’. Then the homothety with center I sending 
∆A’B’C’ to ∆ABC will send O to the circumcenter P of ∆ABC. Therefore, I, O, P 
are collinear. 
 
Example 3. (1982 IMO) A non-isosceles triangle A1A2A3 is given with sides a1, 
a2, a3 (ai is the side opposite Ai). For all i=1, 2, 3, Mi is the midpoint of side ai, 
and Ti is the point where the incircle touchs side ai. Denote by Si the reflection of 
Ti in the interior bisector of angle Ai. Prove that the lines M1S1, M2S2 and M3S3 
are concurrent. 
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Solution. Let I be the incenter of ∆A1A2A3. Let 
B1, B2, B3 be the points where the internal angle 
bisectors of ∠A1, ∠A2, ∠A3 meet a1, a2, a3 
respectively.  
 
We will show SiSj is parallel to MiMj. With 
respect to A1B1, the reflection of T1 is S1 and the 
reflection of T2 is T3. 

 
So ∠T3IS1 = ∠T2IT1. With respect to A2B2, the reflection of T2 is S2 and the 
reflection of T1 is S3. So ∠T3IS2 = ∠T1IT2. Then ∠T3IS1 =∠T3IS2. Since IT3 is 
perpendicular to A1A2, we get S2S1 is parallel to A1A2. Since A1A2 is parallel to 
M2M1, we get S2S1 is parallel to M2M1. Similarly, S3S2 is parallel to M3M2 and 
S1S3 is parallel to M1M3.  
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       Now the circumcircle of ∆S1S2S3 is the incircle of ∆A1A2A3 and the 
circumcircle of ∆M1M2M3 is the nine point circle of ∆A1A2A3. Since ∆A1A2A3 is 
not equilateral, these circles have different radii. Hence ∆S1S2S3 is not congruent 
to ∆M1M2M3 and there is a homothety sending ∆S1S2S3 to ∆M1M2M3. Then M1S1, 
M2S2 and M3S3 concur at the center of the homothety. 
 

Example 4. (1983 IMO) Let A be one of the two distinct points of intersection of 
two unequal coplanar circles C1 and C2 with centers O1 and O2 respectively. One 
of the common tangents to the circles touches C1 at P1 and C2 at P2, while the 
other touches C1 at Q1 and C2 at Q2. Let M1 be the midpoint of P1Q1 and M2 be 
the midpoint of P2Q2. Prove that ∠O1AO2 = ∠M1AM2. 
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Solution. By symmetry, lines O2O1, P2P1, 
Q2Q1 concur at a point O. Consider the 
homothety with center O which sends C1 to 
C2. Let OA meet C1 at B, then A is the image 
of B under the homothety. Since ∆BM1O1 is 
sent to ∆AM2O2, so ∠M1BO1 = ∠M2AO2. 

       Now ∆OP1O1 similar to ∆OM1P1 implies 
OO1/OP1 = OP1/OM1. Then OO1 ·OM1 = OP1

2 
= OA · OB, which implies points A, 

B, M1, O1 are concyclic. Then ∠M1BO1 = ∠M1AO1. So ∠M1AO1 = ∠M2AO2. 
Adding ∠O1AM2 to both sides, we have ∠O1AO2 = ∠M1AM2. 
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Example 5. (1992 IMO) In the plane let 
C be a circle, L a line tangent to the 
circle C, and M a point on L. Find the 
locus of all points P with the following 
property: there exist two points Q, R on 
L such that M is the midpoint of QR and 
C is the inscribed circle of ∆PQR. 
 

Solution. Let L be the tangent to C at S. 
Let T be the reflection of S with respect 
to M. Let U be the point on C 
diametrically opposite S. Take a point P 
on the locus. The homothety with center 
P that sends C to the excircle C’ will 
send U to T’, the point where QR 
touches C’. Let line PR touch C’ at V.  
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Let s be the semiperimeter of ∆PQR, then TR = QS  = s – PR = PV – PR =VR = 
T’R. This implies P, U, T are collinear. Then the locus is on the part of line UT, 

opposite the ray U T
uuur

. 

Conversely, for any point P on the part of line UT, opposite the ray U T
uuur

, the 
homothety sends U to T and T’, so T = T’. Then QS = s – PR = PV – PR =VR = 
T’R= TR and QM = QS – MS =TR – MT = RM. Therefore, P is on the locus. 
      

Example 6. (2000APMO) Let ABC be a triangle. Let M and N be the points in 
which the median and the angle bisector, respectively at A meet the side BC. Let 
Q and P be the points in which the perpendicular at N to NA meets MA and BA 
respectively and O the point in which the perpendicular at P to BA meets AN 
produced. Prove that QO is perpendicular to BC.   
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Solution (due to Bobby Poon). The case AB = AC 
leads to M=N=Q, P=B and QO=MO⊥AB.  
 
Without loss of generality, we may assume AB > 
AC. Let AN intersect the circumcircle of ∆ABC at 
D. Then  ∠DBC = ∠DAC  =  ∠DAB =∠DCB. 
 
So DB = DC and MD is perpendicular to BC. 

 
Consider the homothety with center A that sends ∆DBC to ∆OB’C’. Then OB’ = 
OC’ and BC || B’C’. Let K = B’C’ ∩ PN. Then   ∠OB’K = ∠DBC  = ∠DAB = 90° – ∠AOP = ∠OPK. 
 
So points P, B’, O, K are concyclic. Hence ∠B’KO =∠B’PO = 90° and B’K = 
C’K. Since BC || B’C’, this implies K is on MA. So K = MA ∩ PN= Q. Now ∠
B’KO = 90° implies QO=KO ⊥ B’C’. Finally, BC || B’C’ implies QO ⊥ BC. 
 

 For the next example, the solution involves the concepts of power of a point 
with respect to a circle and the radical axis.  
 

Example 7. (1999 IMO) Two circles Γ1 and Γ2 are inside the circle Γ, and are 
tangent to Γ at the distinct points M and N, respectively.  Γ1 passes through the 
center of Γ2. The line passing through the two points of intersection of Γ1 and Γ2 
meets Γ at A and B. The lines MA and MB meet Γ1 at C and D, respectively. 
Prove that CD is tangent to Γ2. 
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Solution. (Official Solution) Let EF be the 
chord of Γ which is the common tangent to Γ1 

and Γ2 on the same side of line O1O2 as A. Let 
EF touch Γ1 at C’. The homothety with center M 
that sends Γ1 to Γ will send C’ to some point A’ 
and line EF to the tangent line L of Γ at A’. 
Since lines EF and L are parallel, A’ must be 
the midpoint of arc FA’E. Then ∠A’EC’ = ∠
A’FC’ = ∠ A’ME. So ∆A’EC is similar to 
∆A’ME. Then the power of A’ with respect to 
Γ1 is A’C’ ·A’M = A’E

2
. 

Similarly, the power of A’ with respect to Γ2 is A’F
2
. Since A’E = A’F, A’ has the 

same power with respect to Γ1 and Γ2. So A’ is on the radical axis AB. Hence, A’ 
= A. Then C’ = C and C is on EF.  
 

Similarly, the other common tangent to Γ1 and Γ2 passes through D. Let Oi be the 
center of Γi. By symmetry with respect to O1O2, we see that O2 is the midpoint of 
arc CO2D. Then∠DCO2 = ∠CDO2  = ∠FCO2. This implies O2 is on the angle 
bisector of ∠FCD. Since CF is tangent to Γ2, therefore CD is tangent to Γ2. 
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15. Inversion 
 
     In geometry, there is a transformation method called inversion for solving 
problems. To present this, we will introduce the extended plane, which is the 
plane together with a point that we would like to think of as infinity.  Also, we 
think of all lines on the plane as passing through the point at infinity!  To 
understand this, we will introduce the stereographic projection, which can be 
described as follow. 
 
     Consider a sphere sitting on a point O of a plane.  If we remove the north 
pole N of the sphere, we get a punctured sphere.   
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     For every point P on the plane, the line  
NP will intersect the punctured sphere at a 
unique point SP. This gives a one-to-one 
correspondence between the plane and the 
punctured sphere.  If we consider the points P 
on a circle in the plane, then the SP points will 
form a circle on the punctured sphere.  
However, if we consider the points P on any 
line in the plane, then the SP points will form 
a punctured circle on the sphere with N as the 
point removed from the circle. 

 
If we move a point P on any line of the plane toward infinity, then SP will go 
toward the same point N!  Thus, in this model, all lines can be thought of as 
going to the same infinity. 
 
 

r

O X'X

 

Now for the method of inversion, let O be a 
point on the plane and r be a positive number. 
The inversion with center O and radius r is the 
function on the extended plane that sends a 

point X ≠ O to the image point X′ on the ray OX  
such that OX·OX′ = r

2
. 

When X = O, X′ is taken to be the point at infinity.  When X is infinity, X′ is 
taken to be O.  The circle with center O and radius r is called the circle of 
inversion. 
 

    The method of inversion is based on the following  

Facts. (1) The function sending X to X′ described above is a one-to-one 
correspondence between the extended plane with itself.  (This follows from 
checking (X′ )′ = X. ) 
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(2)  If X is on the circle of inversion, then X′ = 
X.  If X is outside the circle of inversion, then X′ 
is the midpoint of the chord formed by the 
tangent points T1, T2 of the tangent lines from X 
to the circle of inversion.  (This follows from  

OX·OX′ = (r sec∠T1OX )(r cos∠T1OX) = r
2
.) 

 

(3)  A circle not passing through O is sent to a circle not passing through O.  In 
this case, the images of concyclic points are concyclic.  The point O, the centers 
of the circle and the image circle are collinear.  However, the center of the circle 
is not sent to the center of the image circle! 

(4)  A circle passing through O is sent to a line which is not passing through O 
and is parallel to the tangent line to the circle at O.  Conversely, a line not 
passing through O is sent to a circle passing through O with the tangent line at 
O parallel to the line. 

(5)  A line passing through O is sent to itself. 
 
(6)  If two curves intersect at a certain angle at a point P ≠ O, then the image 
curves will also intersect at the same angle at P′.  If the angle is a right angle, the 
curves are said to be orthogonal.  So in particular, orthogonal curves at P are sent 
to orthogonal curves at P′. A circle orthogonal to the circle of inversion is sent to 
itself.  Tangent curves at P are sent to tangent curves at P′. 
 
(7)  If points A, B are different from O and points O, A, B are not collinear, then 
the equation OA·OA′ = r

2 
= OB·OB′ implies OA/OB=OB′/OA′.   
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Along with ∠AOB = ∠B′OA′, they imply ∆OAB, 
∆OB′A′ are similar.  Then ∠OAB = ∠OB′A′ and 

OBOA
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′′ 2

 

so that 

.
2

AB
OBOA

r
BA

⋅
=′′  

 
      The following are some examples that illustrate the powerful method of 
inversion.  In each example, when we do inversion, it is often that we take the 
point that plays the most significant role and where many circles and lines 
intersect. 
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Example 1.  (Ptolemy’s Theorem)  For coplanar 
points A, B, C, D, if they are concyclic, then  
 

AB·CD + AD·BC = AC·BD. 
 
Solution.  Consider the inversion with center D and 
any radius r. 

 
By fact (4), the circumcircle of ∆ABC is sent to the line through A′, B′, C′.  Since 
A′B′ + B′C′ = A′C′, we have by fact (7) that 
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Multiplying by (AD·BD·CD)/r

2
, we get the desired equation. 

 
Remarks.  The steps can be reversed to get the converse statement that if AB·CD 
+ AD·BC = AC·BD, then A,B,C,D are concyclic. 
 
Example 2.  (1993 USAMO)  Let ABCD be a convex quadrilateral such that 
diagonals AC and BD intersect at right angles, and let O be their intersection 
point.  Prove that the reflections of O across AB, BC, CD, DA are concyclic. 
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Solution.  Let P, Q, R, S be the feet of 
perpendiculars from O to AB, BC, CD, DA, 
respectively.  The problem is equivalent to showing 
P, Q, R, S are concyclic (since they are the 
midpoints of O to its reflections).  Note OSAP, 
OPBQ, OQCR, ORDS are cyclic quadrilaterals. Let 
their circumcircles be called CA, CB, CC, CD, 
respectively.  

     Consider the inversion with center O and any radius r.  By fact (5), lines AC 
and BD are sent to themselves.  By fact (4), circle CA is sent to a line LA parallel 
to BD, circle CB is sent to a line LB parallel to AC, circle CC is sent to a line LC 
parallel to BD, circle CD is sent to a line LD parallel to AC.   
 
     Next CA intersects CB at O and P.  This implies LA ∩ LB = P′.  Similarly, LB ∩ 
LC = Q′, LC ∩ LD = R′ and LD ∩ LA = S′. 
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     Since AC ⊥ BD, P′Q′R′S′ is a rectangle, hence cyclic.  Therefore, by fact (3), 
P, Q, R, S are concyclic. 
 
Example 3.  (1996 IMO)  Let P be a point inside triangle ABC such that 
 ∠APB – ∠ACB =∠APC – ∠ABC. 
 
Let D, E be the incenters of triangles APB, APC, respectively.  Show that AP, 
BD, CE meet at a point. 
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Solution.  Let lines AP, BD intersect at X, lines AP, 
CE intersect at Y.  We have to show X = Y.  By the 
angle bisector theorem, BA/BP = XA/XP.  Similarly, 
CA/CP = YA/YP.  As X, Y are on AP, we get X = Y if 
and only if BA/BP = CA/CP. 
 
Consider the inversion with center A and any radius 
r.  By fact (7), ∆ABC, ∆AC′B′ are similar, ∆APB, 
∆AB′P′ are similar and ∆APC, ∆AC′P′ are similar.   

Now 
                    ∠B′C′P′  = ∠AC′P′ – ∠AC′B′ =∠APC – ∠ABC 

           = ∠APB – ∠ACB = ∠AB′P – ∠AB′C′ 
                                  = ∠C′B′P′. 

 
So ∆B′C′P′ is isosceles and P′B′ = P′C′. From ∆APB, ∆AB′P′ similar and ∆APC, 

∆AC′P′ similar, we get .
CP

CA

CP

AP

BP

AP

BP

BA
=

′′
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′
= Therefore, X = Y. 

 
Example 4. (1995 Israeli Math Olympiad) Let PQ be the diameter of semicircle 
H. Circle O is internally tangent to H and tangent to PQ at C.  Let A be a point on 
H and B a point on PQ such that AB ⊥ PQ and is tangent to O.  Prove that AC 
bisects ∠PAB.  
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Solution.  Consider the inversion 
with center C and any radius r.  By 
fact (7), ∆CAP, ∆CP′A′ similar and 
∆CAB, ∆CB′A′ similar.  So AC 
bisects PAB if and only if ∠CAP =∠CAB if and only if ∠CP′A′ =∠
CB′A′. 
 
      By fact (5), line PQ is sent to 
itself. Since circle O passes through 
C, by fact (4), circle O is sent to a 
line O′ parallel to PQ. 
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By fact (6), since H is tangent to circle O and is orthogonal to line PQ, H is sent 
to the semicircle H′ tangent to line O′ and has diameter P′Q′.  Since segment AB 
is tangent to circle O and is orthogonal to PQ, segment AB is sent to arc A′B′ on 
the semicircle tangent to line O′ and has diameter CB’.  Now observe that arc 
A′Q′ and arc A′C are symmetrical with respect to the perpendicular bisector of 
CQ′ so we get ∠CP′A′ =∠CB′A′. 
 
     In the solutions of the next two examples, we will consider the nine-point 
circle and the Euler line of a triangle.   

 
Example 5.  (1995 Russian Math Olympiad)  Given a semicircle with diameter 
AB and center O and a line, which intersects the semicircle at C and D and line 
AB at M (MB < MA, MD < MC). Let K be the second point of intersection of the 
circumcircles of triangles AOC and DOB. Prove that ∠MKO = 90

○
. 
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Solution.  Consider the inversion with center O 
and radius r = OA.  By fact (2), A, B, C, D are 
sent to themselves.  By fact (4), the circle 
through A, O, C is sent to line AC and the circle 
through D, O, B is sent to line DB.  Hence, the 
point K is sent to the intersection K′ of lines AC 
with DB and the point M is sent to the 
intersection M′ of line AB with the circumcircle 
of ∆OCD.  Then the line MK is sent to the 
circumcircle of OM′K′. 

To solve the problem, note by fact (7), ∠MKO = 90
○ 

if and only if ∠K′M′O = 
90
○
.  

      
     Since BC⊥AK′, AD⊥BK′ and O is the midpoint of AB, so the circumcircle of 
∆OCD is the nine-point circle of ∆ABK′, which intersects side AB again at the 
foot of perpendicular from K′ to AB.  This point is M′.  So ∠K′M′O = 90

○
.  
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Example 6.  (1995 Iranian Math Olympiad)  Let M, 
N and P be points of intersection of the incircle of 
triangle ABC with sides AB, BC and CA 
respectively.  Prove that the orthocenter of ∆MNP, 
the incenter of ∆ABC and the circumcenter of ∆ABC 
are collinear. 
 
Solution.  Note the incircle of ∆ABC is the 
circumcircle of ∆MNP.  So the first two points are 
on the Euler line of ∆MNP.  
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Consider inversion with respect to the incircle of ∆ABC with center I.  By fact 
(2), A, B, C are sent to the midpoints A′, B′, C′ of PM, MN, NP, respectively.  The 
circumcenter of ∆A′B′C′ is the center of the nine point circle of ∆MNP, which is 
on the Euler line of ∆MNP.  By fact (3), the circumcircle of ∆ABC is also on the 
Euler line of ∆MNP. 
 
      Next we will prove Feuerbach’s theorem by inversion. 
 
Feuerbach’s Theorem. For ∆ABC, the inscribed circle is internally tangent to 
the nine point circle and the three escribed circles are externally tangent to the 
nine point circle. 
 
Proof. As in the nine point circle, we let A’ be the midpoint of side BC and D be 
the foot of perpendicular from A to BC. Let Y and Ya be the feet of the 
perpendiculars to BC from the incenter I and excenter Ia respectively. Similarly 
we can define X, Xa, Z, Za for AB and CA. 
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Below we will show that  
 
(1) BY = CYa (so that A’Y = A’B−BY = A’C−CYa = A’Ya).  
 
      Now take inversion with center at A’ and r0 = A’Y = A’Ya. Since ∠IYA’ = 
90˚ =∠ IaYaA’, the incircle and the excircle are orthogonal to the circle of 
inversion and by fact (6), they are sent to themselves. 
 
      Let B0 and C0 be the mirror images of B and C with respect to the angle 
bisector of ∠BAC. Since BC is a common internal tangent to both the incircle 
and the excircle, by symmetry, B0C0 is also a common internal tangent to both 
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circles. Let S be the intersection of the angle bisector of ∠BAC and side BC. By 
symmetry, S is also on B0C0.  
 
      Next we claim that the inversion takes the nine point circle is to the line B0C0. 
This will be done below by showing  
 
(2) the inversion takes the nine point circle to a line parallel to line B0C0 and  
 
(3) the inversion takes the point D on the nine point to point S on B0C0.  
 
By fact (6), it follows that the nine point circle is also tangent to both circles. 
Similarly, the nine point circle is tangent to the incircle and each of the other two 
excircles. The proof of Feuerbach’s theorem will then be complete. 
 
For (1), note BY=BX, AX=AZ, CZ=CY. Let s be the semiperimeter of ∆ABC. 
Then s = AZ+ZC+BY = b+BY so that BY = s−b. Also, CYa = CZa, BYa = BXa, 
AZa = AXa. Then 2s = AC+CYa+BYa+BA = AZa+AXa = 2AZa. So CZa = AZa−b = 
s−b. Therefore, BY = s−b=CZa=CYa. 
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For (2), since the center A’ of inversion is on the 
nine point circle, by fact (4), the nine point circle is 
taken to a line parallel to the tangent line A’V to the 
nine point circle at A’. Now   ∠VA’B’=∠A’C’B’=∠ACB=∠AC0B0.  
Since ∠VA’B’ is the angle between the tangent line 
at A’ and line A’B’ (which is parallel to line AB) and ∠AC0B0 is the angle between line B0C0 and AB, so 
the tangent line at A’ is parallel to line B0C0. 

 
For (3), we have ∆SIY~∆SIaYa, which implies SY/SYa=r/ra. Similarly, 
∆AIX~∆AIaXa implies AI/AIa=r/ra. Also, lines AD, IY, IaYa are parallel, so 
AI/AIa=DY/DYa. Then  
 

(r0−A’S)/(r0+A’S)= SY/SYa=r/ra = AI/AIa= DY/DYa = (A’D−r0)/(A’D+r0).  
Now (r0−A’S)/(r0+A’S)=(A’D−r0)/(A’D+r0) implies A’S·A’D = r0

2
. Therefore, 

the inversion takes D to S. 
 

 
 



16. Pell’s Equation

Let d be a positive integer that is not a square. The equation x 2−dy2 = 1with
variables x, y over integers is calledPell’s Equation. It was Eulerwho attributed the
equation to John Pell (1611-1685), although Brahmagupta (7th century), Bhaskara
(12th century) and Fermat had studied the equation in details earlier.

A solution (x, y) of Pell’s equation is called positive if both x and y are
positive integers. Hence, positive solutions correspond to the lattice points in the
first quadrant that lie on the hyperbola x 2−dy2 = 1.A positive solution (x1, y1) is
called the least positive solution (or fundamental solution) if it satisfies x1 < x and
y1 < y for every other positive solution (x, y). (As the hyperbola x 2 − dy2 = 1 is
strictly increasing in the first quadrant, the conditions for being least are the same
as requiring x1 + y1

√
d < x + y

√
d.)

Theorem. Pell’s equation x2 − dy2 = 1 has infinitely many positive solutions. If
(x1, y1) is the least positive solution, then for n = 1, 2, 3, . . . , define xn+ yn

√
d =

(x1+y1
√
d)n. The pairs (xn, yn) are all the positive solutions of the Pell’s equation.

The xn’s and yn’s are strictly increasing to infinity and satisfy the recurrence
relations xn+2 = 2x1xn+1 − xn and yn+2 = 2x1yn+1 − yn.

We will comment on the proof. The least positive solution is obtained by
writing

√
d as a simple continued fraction. It turns out

√
d = a0 + 1

a1 + 1
a2+ 1

...

,

where a0 = [
√
d] and a1, a2, . . . is a periodic positive integer sequence. The

continued fraction will be denoted by 〈a0, a1, a2, . . .〉. The k-th convergent of
〈a0, a1, a2, . . .〉 is the number pk

qk
= 〈a0, a1, a2, . . . , ak〉 with pk, qk relatively

prime. Let a1, a2, . . . , am be the period for
√
d. The least positive solution of

Pell’s equation turns out to be

(x1, y1) =
{

(pm−1, qm−1) if m is even
(p2m−1, q2m−1) if m is odd

.
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For example,
√
3 = 〈1, 1, 2, 1, 2, . . .〉 and so m = 2, then 〈1, 1〉 = 2

1
. We check

22 − 3 · 12 = 1 and clearly, (2, 1) is the least positive solution of x 2 − 3y2 = 1.
Next,

√
2 = 〈1, 2, 2, . . .〉 and som = 1, then 〈1, 2〉 = 3

2
.We check 32−2 ·22 = 1

and again clearly (3, 2) is the least positive solution of x 2 − 2y2 = 1.
Next, if there is a positive solution (x, y) such that xn + yn

√
d < x + y

√
d <

xn+1 + yn+1
√
d, then consider u + v

√
d = (x + y

√
d)/(xn + yn

√
d). We will

get u + v
√
d < x1 + y1

√
d and u − v

√
d = (x − y

√
d)/(xn − yn

√
d) so that

u2 − dv2 = (u − v
√
d)(u + v

√
d) = 1, contradicting (x1, y1) being the least

positive solution.

To obtain the recurrence relations, note that (x1 + y1
√
d)2 = x21 + dy21 +

2x1y1
√
d = 2x21 − 1+ 2x1y1

√
d = 2x1(x1 + y1

√
d) − 1. So

xn+2 + yn+2
√
d = (x1 + y1

√
d)2(x1 + y1

√
d)n

= 2x1(x1 + y1
√
d)n+1 − (x1 + y1

√
d)n

= 2x1xn+1 − xn + (2x1yn+1 − yn)
√
d.

The related equation x2 − dy2 = −1 may not have a solution, for example,
x2 − 3y2 = −1 cannot hold as x2 − 3y2 ≡ x2 + y2 �≡ −1 (mod 4). However, if d
is a prime and d ≡ 1 (mod 4), then a theorem of Lagrange asserts that it will have
a solution. In general, if x2− dy2 = −1 has a least positive solution (x1, y1), then
all its positive solutions are pairs (x, y), where x + y

√
d = (x1 + y1

√
d)2n−1 for

some positive integer n.

In passing, we remark that some k-th convergent numbers are special. If
the length m of the period for

√
d is even, then x2 − dy2 = 1 has (xn, yn) =

(pnm−1, qnm−1) as all its positive solutions, but x2 − dy2 = −1 has no integer
solution. If m is odd, then x2 − dy2 = 1 has (pjm−1, yjm−1) with j even as all
its positive solutions and x2 − dy2 = −1 has (pjm−1, qjm−1) with j odd as all its
positive solutions.

Example 1. Prove that there are infinitely many triples of consecutive integers
each of which is a sum of two squares.

Solution. The first such triple is 8 = 22 + 22, 9 = 32 + 02, 10 = 32 + 12, which
suggests we consider triples x2 − 1, x2, x2 + 1. Since x2 − 2y2 = 1 has infinitely
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many positive solutions (x, y), we see that x 2 − 1 = y2 + y2, x2 = x2 + 02 and
x2 + 1 satisfy the requirement and there are infinitely many such triples.

Example 2. Find all triangles whoses sides are consecutive integers and areas are
also integers.

Solution. Let the sides be z − 1, z, z + 1. Then the semiperimeter s = 3z

2

and the area is A = z
√
3(z2 − 4)
4

. If A is an integer, then z cannot be odd, say

z = 2x, and z2 − 4 = 3w2. So 4x2 − 4 = 3w2, which implies w is even, say
w = 2y. Then x2 − 3y2 = 1, which has (x1, y1) = (2, 1) as the least positive
solution. So all positive solutions are (xn, yn), where xn + yn

√
3 = (2 +

√
3)n.

Now xn − yn
√
3 = (2−

√
3)n. Hence,

xn = (2+
√
3)n + (2−

√
3)n

2
and yn = (2+

√
3)n − (2−

√
3)n

2
√
3

.

The sides of the triangles are 2xn − 1, 2xn, 2xn + 1 and the areas are A = 3xn yn.

Example 3. Find all positive integers k,m such that k < m and

1+ 2+ · · · + k = (k + 1) + (k + 2) + · · · + m.

Solution. Adding 1 + 2 + · · · + k to both sides, we get 2k(k + 1) = m(m + 1),
which can be rewritten as (2m + 1)2 − 2(2k + 1)2 = −1. Now the equation
x2 − 2y2 = −1 has (1, 1) as its least positive solution. So its positive solutions
are pairs (xn, yn), where xn + yn

√
2 = (1+

√
2)2n−1. Then

xn = (1+
√
2)2n−1 + (1−

√
2)2n−1

2
and yn = (1+

√
2)2n−1 − (1−

√
2)2n−1

2
√
2

.

Since x2 − 2y2 = −1 implies x is odd, so x is of the form 2m + 1. Then
y2 = 2m2 + 2m + 1 implies y is odd, so y is of the form 2k + 1. Then (k,m) =( yn − 1
2

,
xn − 1
2

)
with n = 2, 3, 4, . . . are all the solutions.

71

Example 4. Prove that there are infinitely many positive integers n such that n2+1
divides n!.

Solution. The equation x2 − 5y2 = −1 has (2, 1) as the least positive solution.
So it has infinitely many positive solutions. Consider those solutions with y > 5.
Then 5 < y < 2y ≤ x as 4y2 ≤ 5y2 − 1 = x2. So 2(x2 + 1) = 5 · y · 2y divides
x!, which is more than we want.

Example 5. For the sequence an = [
√
n2 + (n + 1)2], prove that there are in-

finitely many n’s such that an − an−1 > 1 and an+1 − an = 1.

Solution. First consider the case n2 + (n + 1)2 = y2, which can be rewritten as
(2n + 1)2 − 2y2 = −1. As in example 3 above, x2 − 2y2 = −1 has infinitely
many positive solutions and each x is odd, say x = 2n + 1 for some n. For
these n’s, an = y and an−1 = [

√
(n − 1)2 + n2] = [

√
y2 − 4n]. The equation

y2 = n2 + (n + 1)2 implies n > 2 and an−1 ≤
√
y2 − 4n < y − 1 = an − 1. So

an − an−1 > 1 for these n’s.

Also, for these n’s, an+1 = [
√

(n + 1)2 + (n + 2)2] = [
√
y2 + 4n + 4]. As

n < y < 2n + 1, we easily get y + 1 <
√
y2 + 4n + 4 < y + 2. So an+1 − an =

(y + 1) − y = 1.

Example 6. (American Math Monthly E2606, proposed by R. S. Luthar) Show
that there are infinitely many integers n such that 2n + 1 and 3n + 1 are perfect
squares, and that such n must be multiples of 40.

Solution. Consider 2n + 1 = u2 and 3n + 1 = v2. On one hand, u2 + v2 ≡
2 (mod 5) implies u2, v2 ≡ 1 (mod 5), which means n is a multiple of 5.

On the other hand, we have 3u2−2v2 = 1. Setting u = x+2y and v = x+3y,
the equation becomes x2−6y2 = 1. It has infinitely many positive solutions. Since
3u2 − 2v2 = 1, u is odd, say u = 2k + 1. Then n = 2k2 + 2k is even. Since
3n+ 1 = v2, so v is odd, say v = 4m ± 1. Then 3n = 16m2 ± 8m, which implies
n is also a multiple of 8.

Example 7. Prove that the only positive integral solution of 5a − 3b = 2 is
a = b = 1.
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Solution. Clearly, if a or b is 1, then the other one is 1, too. Suppose (a, b) is a
solution with both a, b > 1.Considering (mod 4), we have 1−(−1)b ≡ 2(mod 4),
which implies b is odd. Considering (mod 3), we have (−1)a ≡ 2(mod 3), which
implies a is odd.

Setting x = 3b + 1 and y = 3(b−1)/25(a−1)/2, we get 15y2 = 3b5a = 3b(3b +
2) = (3b+1)2−1 = x2−1. So (x, y) is a positive solution of x 2−15y2 = 1. The
least positive solution is (4, 1). Then (x, y) = (xn, yn) for some positive integer n,
where xn+ yn

√
15 = (4+

√
15)n.After examinining the first few yn’s, we observe

that y3k are the only terms that are divisible by 3. However, they also seem to be
divisible by 7, hence cannot be of the form 3c5d .

To confirm this, we use the recurrence relations on yn. Since y1 = 1, y2 = 8
and yn+2 = 8yn+1− yn, taking yn (mod 3), we get the sequence 1, 2, 0, 1, 2, 0, . . .

and taking yn (mod 7), we get 1, 1, 0, −1, −1, 0, 1, 1, 0, −1, −1, 0, . . . .

Therefore, no y = yn is of the form 3c5d and a, b > 1 cannot be solution to
5a − 3b = 2.

Example 8. Show that the equation a2 + b3 = c4 has infinitely many solutions.

Solution. We will use the identity 13 + 23 + · · · + n3 = (n(n + 1)
2

)2
, which

is a standard exercise of mathematical induction. From the identity, we get( (n − 1)n
2

)2 + n3 = (n(n + 1)
2

)2
for n > 1. All we need to do now is to show

there are infinitely many positive integers n such that n(n + 1)/2 = k2 for some
positive integers k. Then (a, b, c) = ((n − 1)n/2, n, k) solves the problem.
Now n(n + 1)/2 = k2 can be rewritten as (2n + 1)2 − 2(2k)2 = 1.We know

x2 − 2y2 = 1 has infinitely many positive solutions. For any such (x, y), clearly
x is odd, say x = 2m + 1. Then y2 = 2m2 + 2m implies y is even. So any such
(x, y) is of the form (2n + 1, 2k). Therefore, there are infinitely many such n.

For a fixed nonzero integer N , as the case N = −1 shows, the generalized
equation x2 − dy2 = N may not have a solution. If it has a least positive solution
(x1, y1), then x2 − dy2 = N has infinitely many positive solutions given by
(xn, yn), where

xn + yn
√
d = (x1 + y1

√
d)(a + b

√
d)n−1
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and (a, b) is the least positive solution of x 2− dy2 = 1. However, in general these
do not give all positive solutions of x 2 − dy2 = N as the following example will
show.

Example 9. Consider the equation x 2 − 23y2 = −7. It has (x1, y1) = (4, 1)
as the least positive solution. The next two solutions are (19, 4) and (211, 44).
Now the least positive solution of x2 − 23y2 = 1 is (a, b) = (24, 5). Since
(4 +

√
23)(24 + 5

√
23) = 211 + 44

√
23, the solution (19, 4) is skipped by the

formula above.

In case x2 − dy2 = N has positive solutions, how do we get them all?
A solution (x, y) of x2 − dy2 = N is called primitive if x and y (and N ) are
relatively prime. For 0 ≤ s < |N |, we say the solution belong to class Cs if
x ≡ sy (mod |N |). As x, y are relatively prime to N , so is s. Hence, there are
at most φ(|N |) classes of primitive solutions, where φ(k) is Euler’s φ-function
denoting the number of positive integersm ≤ k that are relatively prime to k.Also,
for such s, (s2−d)y2 ≡ x2−dy2 ≡ 0 (mod |N |) and y, N relatively prime imply
s2 ≡ d (mod |N |).

Theorem. Let (a1, b1) be a Cs primitive solutions of x2 − dy2 = N . A pair
(a2, b2) is also a Cs primitive solution of x2−dy2 = N if and only if a2+b2

√
d =

(a1 + b1
√
d)(u + v

√
d) for some solution (u, v) of x2 − dy2 = 1.

Proof. If (a2, b2) is Cs primitive, define u + v
√
d = (a2 + b2

√
d)/(a1 + b1

√
d).

Then u = (a1a2 − db1b2)/N and v = (a1b2 − b1a2)/N . Also, u − v
√
d =

(a2 − b2
√
d)/(a1 − b1

√
d).Multiplying these two equations, we get u2 − dv2 =

N/N = 1.
To see u, v are integers, note a1a2 − db1b2 ≡ (s2 − d)b1b2 ≡ 0 (mod |N |),

which implies u is an integer. Since a1b2−b1a2 ≡ sb1b2−b1sb2 = 0 (mod |N |),
v is also an integer.

For the converse, multiplying the equation with its conjugate shows (a2, b2)
solves x2 − dy2 = N . From a2 = ua1 + dvb1 and b2 = ub1 + va1, we get
a1 = ua2 − dvb2 and b1 = ub2 − va2. Hence, common divisors of a2, b2 are
also common divisors of a1, b1. So a2, b2 are relatively prime. Finally, a2− sb2 ≡
(usb1+dvb1)−s(ub1+vsb1) = (d−s2)vb1 ≡ 0 (mod |N |) concludes the proof.
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Thus, all primitive solutions of x2 − dy2 = N can be obtained by finding a
solution (if any) in each class, then multiply them by solutions of x 2 − dy2 = 1.
For the nonprimitive solutions, we can factor the common divisors of a and b to
reduce N .

Example 10. (1995 IMO proposal by USA leader T. Andreescu) Find the smallest
positive integer n such that 19n + 1 and 95n + 1 are both integer squares.

Solution. Let 95n+1 = x2 and 19n+1 = y2, then x2−5y2 = −4.Now φ(4) = 2
and (1, 1), (11, 5) areC1,C3 primitive solutions, respectively. As (9, 4) is the least
positive solution of x2 − 5y2 = 1 and 9 + 4

√
5 = (2 +

√
5)2, so the primitive

positive solutions are pairs (x, y), where x + y
√
5 = (1 +

√
5)(2 +

√
5)2n−2 or

(11+ 5
√
5)(2+

√
5)2n−2.

Since the commondivisors of x, y divide 4, the nonprimitive positive solutions
are the cases x and y are even. This reduces to considering u2− 5v2 = −1, where
we take u = x/2 and v = y/2. The least positive solution for u2 − 5v2 = −1 is
(2, 1). So x + y

√
5 = 2(u + v

√
5) = 2(2+

√
5)2n−1.

In attempt to combine these solutions, we look at the powers of 1 +
√
5

coming from the least positive solutions (1, 1). The powers are 1 +
√
5, 6 +

2
√
5, 16 + 8

√
5 = 8(2 +

√
5), 56 + 24

√
5, 176 + 80

√
5 = 16(11 + 5

√
5), . . . .

Thus, the primitive positive solutions are (x, y) with x + y
√
5 = 2(1+

√
5

2

)6n−5
or 2

(1+
√
5

2

)6n−1
. The nonprimitive positive solutions are (x, y)with x+ y

√
5 =

2
(1+

√
5

2

)6n−3
. So the general positive solutions are (x, y) with

x + y
√
5 = 2(1+

√
5

2

)k
for odd k.

Then

y = 1√
5

((1+
√
5

2

)k − (1−
√
5

2

)k) = Fk,

where Fk is the k-th term of the famous Fibonacci sequence. Finally, y2 ≡
1 (mod 19) and k should be odd. The smallest such y = F17 = 1597, which leads
to n = (F217 − 1)/19 = 134232.
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Comments: For the readers not familiar with the Fibonacci sequence, it is defined
by F1 = 1, F2 = 1 and Fn+1 = Fn + Fn−1 for n > 1. By math induction, we can
check that they satisfyBinet’s formula Fn = (r n1−r n2 )/

√
5,where r1 = (1+

√
5)/2

and r2 = (1 −
√
5)/2 are the roots of the characteristic equation x 2 = x + 1.

(Check cases n = 1, 2 and in the induction step, just use r n+1i = r ni + r n−1i .)
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17. Mathematical Games (Part I)

An invariant is a quantity that does not change. A monovariant is a quantity
that keeps on increasing or keeps on decreasing. In some mathematical games,
winning often comes from understanding the invariants or the monovariants that
are controlling the games.

Examples. (1) (1974KievMath Olympiad) Numbers 1, 2, 3, . . . , 1974 are written
on a board. You are allowed to replace any two of these numbers by one number,
which is either the sum or the difference of these numbers. Show that after 1973
times of performing this operation, the only number left on the board cannot be 0.

Solution. There are 987 odd numbers on the board in the beginning. Every time
the operation is performed, the number of odd numbers left either stays the same
(when the numbers taken out are not both odd) or decreases by two (when the
numbers taken out are both odd). So the number of odd numbers left on the board
after each operation is always odd. So when there is one number left, it must be
odd, hence it cannot be 0.

(2) In an 8× 8 board, there are 32 white pieces and 32 black pieces, one piece in
each square. If a player can change all the white pieces to black and all the black
pieces to white in any row or column in a single move, then is it possible that after
finitely many moves, there will be exactly one black piece left on the board?

Solution. No. If there are exactly k black pieces in a row or column before a move
is made to that row or column, then after the move, the number of black pieces in
the row or column will become 8 − k, a change of (8 − k) − k = 8 − 2k black
pieces to the board. Since 8− 2k is even, the parity of the number of black pieces
stays the same before and after the move. Since at the start, there are 32 black
pieces, there cannot be 1 black piece left at any time.

(3) Four x’s and five o’s are written around the circle in an arbitrary order. If two
consecutive symbols are the same, then insert a new x between them, otherwise
insert a new o between them. Remove the old x’s and o’s. Keep on repeating this
operation. Is it possible to get nine o’s?
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Solution. If we let x = 1 and o = −1, then note that consecutive symbols are
replaced by their product. If we consider the product P of all nine values before
and after each operation, we will see that the new P is the square of the old P.
Hence, P will always equal 1 after an operation. So nine o’s yielding P = −1 can
never happen.

(4) There are three piles of stones numbering 19, 8 and 9, respectively. You are
allowed to choose two piles and transfer one stone from each of these two piles
to the third piles. After several of these operations, is it possible that each of the
three piles has 12 stones?

Solution.No. Let the number of stones in the three piles be a, b and c, respectively.
Consider (mod 3) of these numbers. In the beginning, they are 1, 2, 0. After one
operation, they become 0, 1, 2 no matter which two piles have stones transfer to
the third pile. So the remainders are always 0, 1, 2 in some order. Therefore, all
piles having 12 stones are impossible.

(5) Two boys play the following game with two piles of candies. In the first pile,
there are 12 candies and in the second pile, there are 13 candies. Each boy takes
turn to make a move consisting of eating two candies from one of the piles or
transfering a candy from the first pile to the second. The boy who cannot make a
move loses. Show that the boy who played second cannot lose. Can he win?

Solution. Consider S to be the number of candies in the second pile minus the
first. Initially, S = 13− 12 = 1. After each move, S increases or decreases by 2.
So S (mod 4) has the pattern 1, 3, 1, 3, . . . . Every time after the boy who played
first made a move , S (mod 4) would always be 3. Now a boy loses if and only if
there are no candies left in the first pile and one candy left in the second pile, then
S = 1 − 0 = 1. So the boy who played second can always make a move, hence
cannot lose.

Since either the total number of candies decreases or the number of candies
in the first pile decreases, so eventually the game must stop, so the boy who played
second must win.
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(6) Each member of a club has at most three enemies in the club. (Here enemies
are mutual.) Show that the members can be divided into two groups so that each
member in each group has at most one enemy in the group.

Solution. In the beginning, randomly divide the members into two groups. Con-
sider the number S of pairs of enemies in the same group. If a member has at
least two enemies in the same group, then the member has at most one enemy in
the other group. Transferring the member to the other group, we will decrease S
by at least one. Since S is a nonnegative integer, it cannot be decreased forever.
So after finitely many transfers, each member can have at most one enemy in the
same group.

Remarks. This method of proving is known as the method of infinite descent. It
showed that you cannot always decrease a quantity when it can only have finitely
many possible values.

(7) (1961 All-RussianMath Olympiad) Real numbers are written in anm×n table.
It is permissible to reverse the signs of all the numbers in any row or column. Prove
that after a number of these operations, we can make the sum of the numbers along
each line (row or column) nonnegative.

Solution. Let S be the sum of all the mn numbers in the table. Note that after an
operation, each number stays the name or turns to its negative. Hence there are at
most 2mn tables. So S can only have finitely many possible values. To make the
sum of the numbers in each line nonnegative, just look for a line whose numbers
have a negative sum. If no such line exists, then we are done. Otherwise, reverse
the sign of all the numbers in the line. Then S increases. Since S has finitely many
possible values, S can increase finitely many times. So eventually the sum of the
numbers in every line must be nonnegative.

(8) Given 2n points in the plane with no three of them collinear. Show that they can
be divided into n pairs such that the n segments joining each pair do not intersect.

Solution. In the beginning randomly pair the points and join the segments. Let S
be the sum of the lengths of the segments. (Note that since there are finitely many
ways of connecting these 2n points by n segments, there are finitely many possible
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values of S.) If two segments AB and CD intersect at O , then replace pairs AB
andCD by AC and BD. Since AB+CD = AO+OB+CO+OD > AC+BD
by the triangle inequality, whenever there is an intersection, doing this replacement
will always decrease S. Since there are only finitely many possible values for S,
so eventually there will not be any intersection.

Exercises

1. Every number from 1 to 1,000,000 is replaced by the sum of its digits. The
resulting numbers are repeatedly subjected to the same operation until all the
numbers have one digit. Will the number of ones in the end be greater or less
than the number of twos? (Hint: Show that the sum of digits of n is congruent
to n (mod 9).)

2. (1989 Hungarian Math Olympiad) In the vertices of a square, we placed some
matches. Intially there is one match at one vertex and no match at the other
three vertices. In one move, it is allowed to remove any number of matches at
one vertex and placed at the two adjacent vertices a total of twice the number
of matches removed. After finitely many moves, can the number of matches
be 1, 9, 8, 9 counting clockwise or counterclockwise at the four vertices?

*3. In each square of an 8 × 8 table an integer is written. We can choose an
arbitrary 3 × 3 or 4 × 4 subtable and increase all the numbers in it by one.
Is it possible to obtain numbers divisible by three in all squares of the 8 × 8
table after finitely many such operations? (Hint: Mark some squares so that
every 3× 3 or 4× 4 subtable will cover a multiple of 3 marked squares.)

*4. The numbers 1, 2, . . . , n are arranged in some order on a line. We can
exchange any two adjacent numbers. Prove that an odd number of such
exchanges produces an arrangement necessarily different from the initial one.

5. Several numbers are written around a circle. If four consecutive numbers
a, b, c, d satisfy (a− d)(b− c) > 0, we can exchange b and c. Prove that we
can perform this operation only finitely many times.

6. Each face of a cube has a number written on it, and not all the numbers are the
same. Each of the numbers is replaced by the arithmetic mean of the numbers
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written on the four adjacent faces. Is it possible to obtain the initial numbers
on the faces again after at least one such operations?

7. Finitely many squares of an infinite square grid drawn on white paper are
painted black. At each moment in time t = 1, 2, 3, . . . each square takes the
color of the majority of the following squares: the square itself and its top
and right-hand neighbors. Prove that some time later there will be no black
square at all.

8. In the plane, there are n points, no three collinear, and n lines, no two are
parallel. Prove that we can drop a perpendicular from each point to one of the
lines, one perpendicular per line, such that no two perpendiculars intersect.
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18. Mathematical Games (Part II)

There are many mathematical games involving strategies to win or to defend.
These games may involve number theoretical properties or geometrical decompo-
sitions or combinatorial reasonings. Some games may go on forever, while some
games come to a stop eventually. A winning strategy is a scheme that allows the
player to make moves to win the game no matter how the opponent plays. A de-
fensive strategy cuts off the opponent’s routes to winning. The following examples
illustrate some standard techniques.

Examples. (1) There is a table with a square top. Two players take turn putting a
dollar coin on the table. The player who cannot do so loses the game. Show that
the first player can always win.

Solution. The first player puts a coin at the center. If the second player can make
a move, the first player can put a coin at the position symmetrically opposite the
position where the second player placed his coin with respect to the center of
the table. Since the area of the available space is decreasing, the game must end
eventually. The first player will win.

(2) (Bachet’s Game) Initially, there are n checkers on the table, where n > 0. Two
persons take turn to remove at least 1 and at most k checkers each time from the
table. The last person who can remove any checker wins the game. For what
values of n will the first person have a winning strategy? For what values of n will
the second person have a winning strategy?

Solution. By testing simple cases of n, we can easily see that if n is not a multiple
of k + 1 in the beginning, then the first person has a winning strategy, otherwise
the second person has a winning strategy.

To prove this, let n be the numbers of checkers on the table. If n = (k+1)q+r
with 0 < r < k + 1, then the first person can win by removing r checkers each
time. (Note r > 0 every time at the first person’s turn since in the beginning it is
so and the second person starts with a multiple of k + 1 checkers each time and
can only remove 1 to k checkers.)

However, if n is a multiple of k + 1 in the beginning, then no matter how
many checkers the first person takes, the second person can now win by removing
r checkers every time.
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(3) (Game of Nim) There are 3 piles of checkers on the table. The first, second
and third piles have x, y and z checkers respectively in the beginning, where
x, y, z > 0. Two persons take turn choosing one of the three piles and removing
at least one to all checkers in that pile each time from the table. The last person
who can remove any checker wins the game. Who has a winning strategy?

Solution. In base 2 representations, let

x = (a1a2 · · · an)2, y = (b1b2 · · · bn)2, z = (c1c2 · · · cn)2, N = (d1d2 · · · dn)2,

where di ≡ ai +bi + ci (mod 2). (Here we may have to add zeros on the left of the
base 2 representations of x, y, z to ensure they have to the same number of digits.)
The first person has a winning strategy if and only if N is not 0, i.e. not all di ’s are
0.

To see this, suppose N is not 0. The winning strategy is to remove checkers
so N becomes 0. When the di ’s are not all zeros, look at the smallest i such that
di = 1, then one of ai , bi , ci equals 1, say ai = 1. Then remove checkers from the
first pile so that x has (eiei+1 · · · en)2 checkers left, where

ej =
{
aj if dj = 0
1− aj if dj = 1.

(For example, if x = (1000)2 and N = (1001)2, then change x to (0001)2.) Note
ei = 0 after the move so that the new x is less than the old x . Also, after the move,
N becomes 0 as all the dj = 1 before the move will become 0 by the definition of
ej . So the first person can always make a move. The second person will always
have N = 0 at his turn and making any move will result in at least one di not 0,
i.e. N �= 0. As the number of checkers is decreasing, eventually the second person
cannot make a move and will lose the game.

(4) Twenty girls are sitting around a table and are playing a game with n cards.
Initially, one girl holds all the cards. In each turn, if at least one girl holds at least
two cards, one of these girls must pass a card to each of her two neighbors. The
game ends if and only if each girl is holding at most one card.

(a) Prove that if n ≥ 20, then the game cannot end.
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(b) Prove that if n < 20, then the game must end eventually.

Solution. (a) If n > 20, then by pigeonhole principle, there is at least one girl
holding at least two cards every moment. So the game cannot end.

If n = 20, then label the girls G1,G2, . . . ,G20 in the clockwise direction
and let G1 be the girl holding all the cards initially. Define the current value of a
card to be i if it is being held by G i . Let S be the total value of the cards. Initially,
S = 20.
Consider before and after G i passes a card to each of her neighbors. If i = 1

then S increases by −1 − 1 + 2 + 20 = 20. If 1 < i < 20, then S does not
change because −i − i + (i − 1) + (i + 1) = 0. If i = 20, then S decreases by
20 because −20 − 20 + 1 + 19 = −20. So before and after moves, S is always
a multiple of 20. Assume the game will end. Then each girl holds a card and
S = 1 + 2 + · · · + 20 = 210, which is not a multiple of 20, a contradiction. So
the game cannot end.

(b) To see the game must end if n < 20, let’s have the two girls sign the card when
it is the first time one of them passes card to the other. Whenever one girl passes a
card to her neighbor, let’s require the girl to use the signed card between the pair
if available. So a signed card will be stuck between the pair who signed it. If
n < 20, there will be a pair of neighbors who never signed any card, hence never
exchange any card.

If the game can go on forever, record the number of times each girl passed
cards. Since the game can go on forever, not every girl passed card finitely many
time. Also, since there are n < 20 cards and 20 pairs of girls sitting next to each
other, there is a pair of girls who do not sign any card, hence have no exchange.
Moving clockwise one girl at a time from this pair, eventually there is a pair G i
and Gi+1 such that G i passed cards finitely many times and G i+1 passed cards
infinitely many times. This is clearly impossible since G i will eventually stopped
passing cards and would keep on receiving cards from G i+1.

(5) (1996 Irish Math Olympiad) On a 5× 9 rectangular chessboard, the following
game is played. Initially, a number of discs are randomly placed on some of the
squares, no square containing more than one disc. A turn consists of moving all
of the discs subject to the following rules:
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(i) each disc may be moved one square up, down, left or right;

(ii) if a disc moves up or down on one turn, it must move left or right on the next
turn, and vice versa;

(iii) at the end of each turn, no square can contain two or more discs.

The game stops if it becomes impossible to complete another turn. Prove that if
initially 33 discs are placed on the board, the game must eventually stop. Prove
also that it is possible to place 32 discs on the board so that the game can continue
forever.

Solution. If 32 discs are placed in the lower right 4 × 8 rectangle, they can all
move up, left, down, right, repeatedly. To show that a game with 33 discs must
stop eventually, label the board as shown below:

1 2 1 2 1 2 1 2 1
2 3 2 3 2 3 2 3 2
1 2 1 2 1 2 1 2 1
2 3 2 3 2 3 2 3 2
1 2 1 2 1 2 1 2 1

Note that there are eight 3’s. A disc on 1 goes to a 3 after two moves, a disc on
2 goes to a 1 or 3 immediately, and a disc on 3 goes to a 2 immediately. Thus if
k discs start on 1 and k > 8, the game stops because there are not enough 3’s to
accommodate these discs. Thus we assume k ≤ 8, in which case there are at most
sixteen discs with squares on 1’s or 3’s at the start, and so at least seventeen on
2’s. Of these seventeen, at most eight can move onto 3’s after one move, so at least
nine end up on 1’s. These discs will not all be able to move onto 3’s two moves
later. So the game will stop.

(6) (1995 Israeli Math Olympiad) Two players play a game on an infinite board
that consists of 1 × 1 squares. Player I chooses a square and marks it with an O.
Then, player II chooses another square and marks it with an X. They play until one
of the players marks a row or a column of 5 consecutive squares, and this player
wins the game. If no player can achieve this, the game is a tie. Show that player
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II can prevent player I from winning.

...
...

...
...

...
...

...
...

. . . 1 2 3 3 1 2 3 3 . . .

. . . 1 2 4 4 1 2 4 4 . . .

. . . 3 3 1 2 3 3 1 2 . . .

. . . 4 4 1 2 4 4 1 2 . . .

. . . 1 2 3 3 1 2 3 3 . . .

. . . 1 2 4 4 1 2 4 4 . . .

. . . 3 3 1 2 3 3 1 2 . . .

. . . 4 4 1 2 4 4 1 2 . . .
...

...
...

...
...

...
...

...

Solution. Label the squares as shown above. Note that each number occurs in a
pair. The 1’s and the 2’s are in vertical pairs and the 3’s and the 4’s are in horizontal
pairs. Whenever player I marks a square, player II will mark the other square in
the pair. Since any 5 consecutive vertical or horizontal squares must contain a pair
of the same numbers, so player I cannot win.

(7) (1999 USAMO) The Y2K Game is played on a 1× 2000 grid as follow. Two
players in turn write either an S or an O in an empty square. The first player
who produces three consecutive boxes that spell SOS wins. If all boxes are filled
without producing SOS then the game is a draw. Prove that the second player has
a winning strategy.

Solution. Call an empty square bad if playing an S or an O in that square will let
the next player gets SOS in the next move.

Key Observation: A square is bad if and only if it is in a block of 4 consecutive
squares of the form S**S, where * denotes an empty square.

(Proof. Clearly, the empty squares in S**S are bad. Conversely, if a square is bad,
then playing an O there will allow an SOS in the next move by the other player.
Thus the bad square must have an S on one side and an empty square on the other
side. Playing an S there will also lose the game in the next move, which means
there must be another S on the other side of the empty square.)
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Now the second player’s winning strategy is as follow: after the first player
made a move, play an S at least 4 squares away from either end of the grid and
from the first player’s first move. On the second move, the second player will play
an S three squares away from the second player’s first move so that the squares in
between are empty. (If the second move of the first player is next to or one square
away from the first move of the second player, then the second player will place
the second S on the other side.) After the second move of the second player, there
are 2 bad squares on the board. So eventually somebody will fill these squares and
the game will not be a draw.

On any subsequent move, when the second player plays, there will be an odd
number of empty squares and an even number of bad squares, so the second player
can always play a square that is not bad.

(8) (1993 IMO) On an infinite chessboard, a game is played as follow. At the start,
n2 pieces are arranged on the chessboard in an n × n block of adjoining squares,
one piece in each square. A move in the game is a jump in a horizontal or vertical
direction over an adjacent occupied square to an unoccupied square immediately
beyond. The piece that has been jumped over is then removed. Find those values
of n for which the game can end with only one piece remaining on the board.

Solution. Consider the pieces placed at the lattice points Z2 = {(x, y) : x, y ∈ Z}.
For k = 0, 1, 2, let Ck = {(x, y) ∈ Z2 : x + y ≡ k(mod 3)}. Let ak be the number
of pieces placed at lattice points in Ck .

A horizontal move takes a piece at (x, y) to an unoccupied point (x ± 2, y)
jumping over a piece at (x ± 1, y). After the move, each ak goes up or down by 1.
So each ak changes parity. If n is divisible by 3, then a0 = a1 = a2 = n2/3 in the
beginning. Hence at all time, the ak’s are of the same parity. So the game cannot
end with one piece left causing two ak’s 0 and the remaining 1.

If n is not divisible by 3, then the game can end. We show this by induction.
For n = 1 or 2, this is easily seen. For n ≥ 4, we introduce an L-trick to reduce
the n × n square pieces to (n − 3) × (n − 3) square pieces.

Consider pieces at (0, 0), (0, 1), (0, 2), (1, 0). The moves (1, 0) �→ (−1, 0),
(0, 2) �→ (0, 0), (−1, 0) �→ (1, 0) remove 3 consecutive pieces in a column and
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leave the fourth piece at its original lattice point. We can apply this trick repeatedly
to the 3×(n−3) pieces on the bottom left part of the n×n square from left to right,
then the (n−3)×3 pieces on the right side from bottom to top and finally the 3×3
pieces on top right part from right to left. This will leave (n− 3) × (n− 3) pieces.
Therefore, the n× n case follows from the (n− 3) × (n− 3) case, completing the
induction.

Exercises

1. In Bachet’s game, if the rule changes to each person can remove 1 or 2 or 4
or 8 or 16 or ... (a power of 2) checkers each time, who can win? (Of course,
the answer depends on the value of n.)

2. In Bachet’s game, if the rule changes to each person can remove one or a
prime number of checkers each time, who can win?

3. Initially there is a chip at the corner of an n× n board. A and B alternatively
move the chip one square to the left, right, up or down. They may not move
it to a square already visited. The loser is the one who cannot move.

Who wins if n is even? Who wins if n is odd? Who wins if the chip
starts on a square, which is a neighbor to a corner square?

4. Start with two piles of p and q chips, respectively. A and B move alternately.
A move consists in removing any pile and splitting the other piles into two
piles (of not necessarily equal number of chips). The loser is the one who
cannot make move any more. Who wins? (Hint: Depends on the parities of
p and q.)

5. A and B alternately color squares of a 4× 4 chessboard. The loser is the one
who first completes a colored 2× 2 subsquare. Who can force a win? Can B
force a draw?

6. A and B alternately move a knight on a 1994× 1994 chessboard. A makes
only horizontal moves (x, y) �→ (x±2, y±1), B makes only vertical moves
(x, y) �→ (x ± 1, y ± 2). A starts by choosing a square and making a move.
Visiting a square for a second time is not permitted. The loser is the one who
cannot move. Prove that A has a winning strategy.
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