1. Sums and Products

In math, very often we have some interesting numbers which we would like to find their sum or product. Below we will look at a few methods for doing these operations. (Here we will also consider integrals which we can view as summing uncountably many numbers.)

Pairing Method. Recall to find $S=1+2+\cdots+100$ we can say $S=100+$ $99+\cdots+1$ also and hence $2 S=(1+100)+(2+99)+\cdots+(100+1)=$ $100 \times 101=10100$ yielding $S=5050$. This suggest that in handling numbers we can try to pair them first and hope this can simplify the problem.

Examples. (1) (2000 APMO) Find $S=\sum_{i=0}^{101} \frac{x_{i}^{3}}{1-3 x_{i}+3 x_{i}^{2}}$ for $x_{i}=\frac{i}{101}$.
Solution. Note $1-3 x+3 x^{2}=(1-x)^{3}+x^{3}$. Let $f(x)=\frac{x^{3}}{(1-x)^{3}+x^{3}}$. Then $f(x)+f(1-x)=1$. Since $1-x_{i}=x_{101-i}$, we have

$$
2 S=\sum_{i=0}^{101}\left(f\left(x_{i}\right)+f\left(x_{101-i}\right)\right)=102 \quad \Longrightarrow \quad S=51
$$

(2) (2000 HKMO Math Camp) Express $\frac{\cos 1^{\circ}+\cos 2^{\circ}+\cdots+\cos 44^{\circ}}{\sin 1^{\circ}+\sin 2^{\circ}+\cdots+\sin 44^{\circ}}$ in the form $a+b \sqrt{c}$, where a, b and c are integers.

Solution 1. Recall $\cos a+\cos b=2 \cos \frac{a+b}{2} \cos \frac{a-b}{2}$ and $\sin a+\sin b=$ $2 \sin \frac{a+b}{2} \cos \frac{a-b}{2}$. Taking $a=(45-n)^{\circ}$ and $b=n^{\circ}$ for $n=1,2, \ldots, 22$, we have

$$
\begin{aligned}
\frac{\cos 1^{\circ}+\cos 2^{\circ}+\cdots+\cos 44^{\circ}}{\sin 1^{\circ}+\sin 2^{\circ}+\cdots+\sin 44^{\circ}} & =\frac{2 \cos \frac{45^{\circ}}{2}\left(\cos \frac{43^{\circ}}{2}+\cos \frac{41^{\circ}}{2}+\cdots+\cos \frac{1^{\circ}}{2}\right)}{2 \sin \frac{45^{\circ}}{2}\left(\cos \frac{43^{\circ}}{2}+\cos \frac{41^{\circ}}{2}+\cdots+\cos \frac{1^{\circ}}{2}\right)} \\
& =\frac{\cos \frac{45^{\circ}}{2}}{\sin \frac{45^{\circ}}{2}}=\sqrt{\frac{\sqrt{2}+1}{\sqrt{2}-1}}=1+\sqrt{2} .
\end{aligned}
$$

Solution 2. Since
$\cos n^{\circ}+\sin n^{\circ}=\sqrt{2}\left(\cos 45^{\circ} \cos n^{\circ}+\sin 45^{\circ} \sin n^{\circ}\right)=\sqrt{2} \cos (45-n)^{\circ}$,

$$
\begin{aligned}
& \left(\cos 1^{\circ}+\cos 2^{\circ}+\cdots+\cos 44^{\circ}\right)+\left(\sin 1^{\circ}+\sin 2^{\circ}+\cdots+\sin 44^{\circ}\right) \\
= & \sqrt{2}\left(\cos 44^{\circ}+\cos 43^{\circ}+\cdots+\cos 1^{\circ}\right) .
\end{aligned}
$$

Therefore, $\frac{\cos 1^{\circ}+\cos 2^{\circ}+\cdots+\cos 44^{\circ}}{\sin 1^{\circ}+\sin 2^{\circ}+\cdots+\sin 44^{\circ}}=\frac{1}{\sqrt{2}-1}=1+\sqrt{2}$.
(3) (1980 Putnam Exam) Evaluate $\int_{0}^{\pi / 2} \frac{d x}{1+(\tan x)^{\sqrt{2}}}$.

Solution. Let $r=\sqrt{2}$ and $I=\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{r} x}=\int_{0}^{\pi / 2} \frac{\cos ^{r} x d x}{\cos ^{r} x+\sin ^{r} x}$. Since $\cos \left(\frac{\pi}{2}-t\right)=\sin t$ and $\sin \left(\frac{\pi}{2}-t\right)=\cos t$, the change of variable $x=\frac{\pi}{2}-t$ will yield $I=\int_{0}^{\pi / 2} \frac{\sin ^{r} t d t}{\sin ^{r} t+\cos ^{r} t}$. So

$$
2 I=\int_{0}^{\pi / 2} \frac{\cos ^{r} x+\sin ^{r} x}{\cos ^{r} x+\sin ^{r} x} d x=\int_{0}^{\pi / 2} d x=\frac{\pi}{2} \quad \Longrightarrow \quad I=\frac{\pi}{4}
$$

Telescoping Method. A particularly simple type of sum everybody can do is of the form

$$
\left(a_{1}-a_{2}\right)+\left(a_{2}-a_{3}\right)+\cdots+\left(a_{n-1}-a_{n}\right)=a_{1}-a_{n}
$$

This type of sum is called a telescoping sum. Similarly, there are telescoping products, where the factors are of the form a_{i} / a_{i+1} and their product is a_{1} / a_{n}. Some summation or product problems are of these forms. So in summing, we should try to see if the terms can be put in the form $a_{i}-a_{i+1}$. Here are some examples.

Examples. (4) Simplify $\sin 1+\sin 2+\cdots+\sin n$.

Solution 1. Recall $\sin a \sin b=\frac{\cos (a-b)-\cos (a+b)}{2}$. Setting $b=\frac{1}{2}$, we get $\sin a=\frac{\cos \left(a-\frac{1}{2}\right)-\cos \left(a+\frac{1}{2}\right)}{2 \sin \frac{1}{2}}$. So

$$
\begin{aligned}
& \sin 1+\sin 2+\cdots+\sin n \\
= & \frac{\left(\cos \frac{1}{2}-\cos \frac{3}{2}\right)+\left(\cos \frac{3}{2}-\cos \frac{5}{2}\right)+\cdots+\left(\cos \left(n-\frac{1}{2}\right)-\cos \left(n+\frac{1}{2}\right)\right)}{2 \sin \frac{1}{2}} \\
= & \frac{\cos \frac{1}{2}-\cos \left(n+\frac{1}{2}\right)}{2 \sin \frac{1}{2}}
\end{aligned}
$$

Solution 2. (Use complex arithmetic) Let $z=\cos 1+i \sin 1$. By de Moivre's formula, $z^{k}=(\cos 1+i \sin 1)^{k}=\cos k+i \sin k$. Note $\sin 1+\sin 2+\cdots+\sin n=$ $\operatorname{Im}\left(z+z^{2}+\cdots+z^{n}\right)$. Now

$$
\begin{aligned}
z+z^{2}+\cdots+z^{n} & =\frac{z\left(z^{n}-1\right)}{z-1}=\frac{z^{1 / 2}\left(z^{n}-1\right)}{z^{1 / 2}-z^{-1 / 2}}=\frac{z^{n+1 / 2}-z^{1 / 2}}{2 i \sin (1 / 2)} \\
& =\frac{\left(\cos \left(n+\frac{1}{2}\right)-\cos \frac{1}{2}\right)+i\left(\sin \left(n+\frac{1}{2}\right)-\sin \frac{1}{2}\right)}{2 i \sin \frac{1}{2}} \\
& =\frac{\left(\sin \left(n+\frac{1}{2}\right)-\sin \frac{1}{2}\right)+i\left(\cos \frac{1}{2}-\cos \left(n+\frac{1}{2}\right)\right)}{2 \sin \frac{1}{2}}
\end{aligned}
$$

$$
\text { So } \sum_{k=1}^{n} \sin k=\frac{\cos \frac{1}{2}-\cos \left(n+\frac{1}{2}\right)}{2 \sin \frac{1}{2}} \text {. Also, } \sum_{k=1}^{n} \cos k=\frac{\sin \left(n+\frac{1}{2}\right)-\sin \frac{1}{2}}{2 \sin \frac{1}{2}} \text {. }
$$

(5) (1977 Putnam Exam) Evaluate $\prod_{n=2}^{\infty} \frac{n^{3}-1}{n^{3}+1} .\left(\right.$ Here $\prod_{n=2}^{\infty} a_{n}=\lim _{k \rightarrow \infty} a_{2} a_{3} \cdots a_{k}$.)

Solution. Note that

$$
\frac{n^{3}-1}{n^{3}+1}=\frac{(n-1)\left(n^{2}+n+1\right)}{(n+1)\left(n^{2}-n+1\right)}=\frac{(n-1)\left((n+1)^{2}-(n+1)+1\right)}{(n+1)\left(n^{2}-n+1\right)} .
$$

So for large k,
$\prod_{n=2}^{k} \frac{n^{3}-1}{n^{3}+1}=\left(\frac{1 \cdot 7}{3 \cdot 3}\right)\left(\frac{2 \cdot 13}{4 \cdot 7}\right)\left(\frac{3 \cdot 21}{5 \cdot 13}\right) \cdots\left(\frac{(k-1)\left(k^{2}+k+1\right)}{(k+1)\left(k^{2}-k+1\right)}\right)=\frac{2\left(k^{2}+k+1\right)}{3 k(k+1)}$.
Taking limit as $k \rightarrow \infty$, we get the answer is $\frac{2}{3}$.
(6) Show that $2 \sqrt{101}-2<\sum_{n=1}^{100} \frac{1}{\sqrt{n}}<20$.

Solution. (Note it may be difficult to find the exact sum. We have to bound the terms from above and below.) To get telescoping effects, we use

$$
\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2 \sqrt{n}}<\frac{1}{\sqrt{n}+\sqrt{n-1}}=\sqrt{n}-\sqrt{n-1}
$$

Summing from $n=1$ to 100 , then multiplying by 2 , we get the inequalities.

Binomial Sums. For sums involving binomial coefficients, we will rely on the binomial theorem and sometimes a bit of calculus to find the answers. Trivially, from $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$, we get $2^{n}=\sum_{k=0}^{n}\binom{n}{k}$ by setting $x=1$ and $0=\sum_{n=0}^{k}(-1)^{k}\binom{n}{k}$ by setting $x=-1$. These equations explain why the sum of the n-th row of the Pascal triangle is 2^{n} and the alternate sum is 0 . Below we will look at more examples.

Examples. (7) Simplify $\sum_{k=0}^{n}\binom{n}{k}^{2}$.

Solution. Since $\binom{n}{k}=\binom{n}{n-k}$, the sum is the same as $\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}$. Note this sum is the coefficient of x^{n} in

$$
\begin{aligned}
& \left(1+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+x^{n}\right)\left(1+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+x^{n}\right) \\
= & (1+x)^{n}(1+x)^{n}=(1+x)^{2 n}=1+\cdots+\binom{2 n}{n} x^{n}+\cdots+x^{2 n} .
\end{aligned}
$$

Therefore, $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$. (Remark: By looking at the coefficients of x^{j} on both sides of the identity $(1+x)^{m}(1+x)^{n}=(1+x)^{m+n}$, we will get the more general identity

$$
\sum_{k=0}^{j}\binom{m}{k}\binom{n}{j-k}=\binom{m+n}{j} .
$$

(8) (1962 Putnam Exam) Evaluate in closed form $\sum_{k=0}^{n} k^{2}\binom{n}{k}$.

Solution 1. For $n \geq k \geq 2,\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n}{k}\binom{n-1}{k-1}=\frac{n(n-1)}{k(k-1)}\binom{n-2}{k-2}$. So

$$
\begin{aligned}
\sum_{k=0}^{n} k^{2}\binom{n}{k} & =n+\sum_{k=2}^{n}(k(k-1)+k)\binom{n}{k} \\
& =n+\sum_{k=2}^{n}\left(n(n-1)\binom{n-2}{k-2}+n\binom{n-1}{k-1}\right) \\
& =n+n(n-1) 2^{n-2}+n\left(2^{n-1}-1\right)=n(n+1) 2^{n-2} .
\end{aligned}
$$

The cases $n=0$ and 1 are easily checked to be the same.
Solution 2. (Use calculus) Differentiating both sides of $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$, we get $n(1+x)^{n-1}=\sum_{k=0}^{n} k\binom{n}{k} x^{k-1}$. Multiplying both sides by x, then differentiating
both sides again, we get $n(1+x)^{n-1}+n(n-1) x(1+x)^{n-2}=\sum_{k=0}^{n} k^{2}\binom{n}{k} x^{k-1}$.
Setting $x=1$, we get $\sum_{k=0}^{n} k^{2}\binom{n}{k}=n 2^{n-1}+n(n-1) 2^{n-2}=n(n+1) 2^{n-2}$.

Fubini's Principle. When we have m rows of n numbers, to find the sum of these $m n$ numbers, we can sum each row first then add up the row sums. This will be the same as summing each column first then add up the column sums. This simple fact is known as Fubini's Principle. There is a similar statement for the product of the $m n$ numbers. In short, we have

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=\sum_{j=1}^{n} \sum_{i=1}^{m} a_{i j} \quad \text { and } \quad \prod_{i=1}^{m} \prod_{j=1}^{n} a_{i j}=\prod_{j=1}^{n} \prod_{i=1}^{m} a_{i j}
$$

Historically the original Fubini's principle was about interchanging the order of double integrals, namely if $|f|$ is integrable on the domain, then

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=\int_{c}^{d} \int_{a}^{b} f(x, y) d y d x
$$

Examples. (9) For a $n \times n$ chessboard with n odd, each square is written a +1 or a -1 . Let p_{i} be the product of the numbers in the i-th row and q_{j} be the product of the numbers in the j-th column. Show that $p_{1}+p_{2}+\cdots+p_{n}+q_{1}+q_{2}+\cdots+q_{n} \neq 0$.

Solution. By Fubini's principle, $p_{1} p_{2} \cdots p_{n}=q_{1} q_{2} \cdots q_{n}$. Note each p_{i} or q_{j} is ± 1. Suppose there are $s(-1)$'s among $p_{1}, p_{2}, \cdots, p_{n}$ and $t(-1)$'s among $q_{1}, q_{2}, \cdots, q_{n}$. Then either s and t are both odd or both even. Now

$$
\begin{aligned}
p_{1}+p_{2}+\cdots+p_{n}+q_{1}+q_{2}+\cdots+q_{n} & =-s+(n-s)-t+(n-t) \\
& =2(n-s-t) \neq 0
\end{aligned}
$$

because $n-s-t$ is odd.
Note: If two integer variables are either both odd or both even, then we say they are of the same parity.
(10) (1982 Putnam Exam) Evaluate $\int_{0}^{\infty} \frac{\operatorname{Arctan}(\pi x)-\operatorname{Arctan} x}{x} d x$.

Solution.

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\operatorname{Arctan}(\pi x)-\operatorname{Arctan} x}{x} d x & =\left.\int_{0}^{\infty} \frac{1}{x} \operatorname{Arctan}(u x)\right|_{u=1} ^{u=\pi} d x \\
& =\int_{0}^{\infty} \int_{1}^{\pi} \frac{1}{1+(x u)^{2}} d u d x \\
& =\int_{1}^{\pi} \int_{0}^{\infty} \frac{1}{1+(x u)^{2}} d x d u \\
& =\int_{1}^{\pi} \frac{\pi}{2 u} d u=\frac{\pi}{2} \ln \pi
\end{aligned}
$$

The interchange is valid since the integrand of the double integral is nonnegative and continuous on the domain and the integral is finite.
(11) Let n be a positive integer and p be a prime. Find the highest power of p dividing n !.
Solution. Write $1 \times 2 \times \cdots \times n$. For $k=1,2, \ldots, n$, if the highest power of p dividing k is j, then write j 's in a column below the factor k in $1 \times 2 \times \cdots \times n$. (If p does not divide k, then $j=0$, so do not write any 1.) The total number of 1 's below $1 \times 2 \times \cdots \times n$ is the highest power of p dividing $n!$. Summing the column sums is difficult, but summing the row sums is easy. In the first row, there is one 1 in every p consecutive integers, so the first row sum is $[n / p]$. In the second row, there is one 1 in every p^{2} consecutive integers, so the second row sum is $\left[n / p^{2}\right]$. Keep going. The i-th row sum is $\left[n / p^{i}\right]$. So the total number of 1 's is

$$
[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots
$$

This is the highest power of p dividing $n!$.
(12) (1987 IMO) Let $P_{n}(k)$ be the number of permutations of $1,2,3, \ldots, n$ which have exactly k fixed points. Prove that $\sum_{k=0}^{n} k P_{n}(k)=n!$. (A fixed point is a number that is not moved by the permutation.)

Solution. There are n ! permutations of $1,2,3, \ldots, n$. Call them $f_{1}, f_{2}, \ldots, f_{n}$!. Write each in a separate row. For each permutation, replace each fixed point of f by 1 and replace all other numbers in the permutation by 0 . Then the row sum gives the number of fixed points of f. Now $\sum_{k=0}^{n} k P_{n}(k)$ is the sum of the row sums, grouped according to the $P_{n}(k)$ rows that have the same row sum k. By Fubini's principle, this is also the sum of the column sums. For the j-th column, the number of 1 's is the number of times j is a fixed point among the n ! permutations. If j is fixed, then the number of ways of permuting the other $n-1$ numbers is $P_{n-1}^{n-1}=(n-1)$!. So the column sum is $(n-1)$! for each of the n columns.
Therefore, the sum of column sums is $n(n-1)!=n!$. This is $\sum_{k=0}^{n} k P_{n}(k)$.

Exercises

1. Find $\frac{1}{1+\cot 1^{\circ}}+\frac{1}{1+\cot 5^{\circ}}+\frac{1}{1+\cot 9^{\circ}}+\cdots+\frac{1}{1+\cot 85^{\circ}}+\frac{1}{1+\cot 89^{\circ}}$.
2. (1988 Singapore MO) Compute

$$
\frac{1}{2 \sqrt{1}+1 \sqrt{2}}+\frac{1}{3 \sqrt{2}+2 \sqrt{3}}+\cdots+\frac{1}{100 \sqrt{99}+99 \sqrt{100}}
$$

3. For n a positive integer and $0<x \leq \frac{\pi}{2}$, prove that $\cot \frac{x}{2^{n}}-\cot x \geq n$.
4. (1990 Hungarian MO) For positive integer n, show that

$$
\sin ^{3} \frac{x}{3}+3 \sin ^{3} \frac{x}{3^{2}}+\cdots+3^{n-1} \sin ^{3} \frac{x}{3^{n}}=\frac{1}{4}\left(3^{n} \sin \frac{x}{3^{n}}-\sin x\right)
$$

5. For a positive integer n, show that $\sum_{k=0}^{[n / 4]}\binom{n}{4 k}=2^{n-2}+(\sqrt{2})^{n-2} \cos \frac{n \pi}{4}$.
*6. Prove that $\tan ^{2} 1^{\circ}+\tan ^{2} 3^{\circ}+\tan ^{2} 5^{\circ}+\cdots+\tan ^{2} 89^{\circ}=4005$. (Hint: Find a polynomial of degree 45 having roots $\tan ^{2} 1^{\circ}, \tan ^{2} 3^{\circ}, \tan ^{2} 5^{\circ}, \ldots, \tan ^{2} 89^{\circ}$.)
*7. (1990 Austrian-Polish Math Competition) Let $n>1$ be an integer and let $f_{1}, f_{2}, \ldots, f_{n!}$ be the n ! permutations of $1,2, \ldots, n$. (Each f_{i} is a bijective function from $\{1,2, \ldots, n\}$ to itself.) For each permutation f_{i}, let us define $S\left(f_{i}\right)=\sum_{k=1}^{n}\left|f_{i}(k)-k\right|$. Find $\frac{1}{n!} \sum_{i=1}^{n!} S\left(f_{i}\right)$.
*8. (1991 Canadian MO) Let n be a fixed positive integer. Find the sum of all positive integers with the following property: In base 2 , it has exactly $2 n$ digits consisting of $n 1$'s and $n 0$'s. (The leftmost digit cannot be 0 .)

2. Inequalities (Part I)

We often compare numbers or math expressions, such as in finding maxima or minima or in applying the sandwich theorem. So we need to know some useful inequalities. Here we will look at some of these and see how they can be applied.

AM-GM-HM Inequality. For $a_{1}, a_{2}, \ldots, a_{n}>0$,
$A M=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq G M=\sqrt[n]{a_{1} a_{2} \cdots a_{n}} \geq H M=\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}}$.
Either equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
Examples. (1) By the AM-GM inequality, for $x>0, x+\frac{1}{x} \geq 2 \sqrt{x \cdot \frac{1}{x}}=2$ with equalilty if and only if $x=1$.
(2) By the AM-HM inequality, if $a_{1}, a_{2}, \ldots, a_{n}>0$, then

$$
\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right) \geq n^{2}
$$

(3) If $a, b, c>0$ and $a b c=1$, find the minimum of $(a+b+c)(a b+b c+c a)$.

Solution. By the AM-GM inequality,

$$
\frac{a+b+c}{3} \geq \sqrt[3]{a b c}=1 \quad \text { and } \quad \frac{a b+b c+c a}{3} \geq \sqrt[3]{(a b)(b c)(c a)}=1
$$

So $(a+b+c)(a b+b c+c a) \geq 9$ with equality if and only if $a=b=c=1$. Therefore, the minimum is 9 .
(4) For positive integer n, show that $\left(1+\frac{1}{n}\right)^{n} \leq\left(1+\frac{1}{n+1}\right)^{n+1}$.

Solution. Let $a_{1}=a_{2}=\cdots=a_{n}=1+\frac{1}{n}, a_{n+1}=1$. By the AM-GM inequality,

$$
A M=\frac{n\left(1+\frac{1}{n}\right)+1}{n+1}=1+\frac{1}{n+1} \geq G M=\sqrt[n+1]{\left(1+\frac{1}{n}\right)^{n} \cdot 1} .
$$

Taking the $(n+1)$-st power of both sides, we get $\left(1+\frac{1}{n+1}\right)^{n+1} \geq\left(1+\frac{1}{n}\right)^{n}$.
(5) (1964 IMO) Let a, b, c be the sides of a triangle. Prove that

$$
a^{2}(b+c-a)+b^{2}(c+a-b)+c^{2}(a+b-c) \leq 3 a b c
$$

Solution. Let $x=\frac{a+b-c}{2}, y=\frac{b+c-a}{2}, z=\frac{c+a-b}{2}$, then $x, y, z>0$ and $a=z+x, b=x+y, c=y+z$. The inequality to be proved becomes

$$
(z+x)^{2} 2 y+(x+y)^{2} 2 z+(y+z)^{2} 2 x \leq 3(z+x)(x+y)(y+z)
$$

This is equivalent to $x^{2} y+y^{2} z+z^{2} x+x y^{2}+y z^{2}+z x^{2} \geq 6 x y z$, which is true because $x^{2}+y^{2} z+z^{2} x+x y^{2}+y z^{2}+z x^{2} \geq 6 \sqrt[6]{x^{6} y^{6} z^{6}}=6 x y z$ by the AM-GM inequality.

Cauchy-Schwarz Inequality. For real numbers $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$,

$$
\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right)
$$

Equality holds if and only if $a_{i} b_{j}=a_{j} b_{i}$ for all $i, j=1, \ldots, n$.
Examples. (6) Find the maximum and minimum of $a \cos \theta+b \sin \theta$, where $0 \leq \theta<2 \pi$.

Solution. By the Cauchy-Schwarz inequality,

$$
(a \cos \theta+b \sin \theta)^{2} \leq\left(a^{2}+b^{2}\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=a^{2}+b^{2}
$$

So $-\sqrt{a^{2}+b^{2}} \leq a \cos \theta+b \sin \theta \leq \sqrt{a^{2}+b^{2}}$. Equality holds if and only if $a \sin \theta=b \cos \theta$, i.e. $\tan \theta=b / a$. There are two such θ 's in $[0,2 \pi)$ corresponding to the left and right equalities. So the maximum is $\sqrt{a^{2}+b^{2}}$ and the minimum is $-\sqrt{a^{2}+b^{2}}$.
(7) (1978 USAMO) For real numbers a, b, c, d, e such that $a+b+c+d+e=8$ and $a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=16$, find the maximum of e.

Solution. By the Cauchy-Schwarz inequality,

$$
(a+b+c+d)^{2} \leq\left(1^{2}+1^{2}+1^{2}+1^{2}\right)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
$$

So $(8-e)^{2} \leq 4\left(16-e^{2}\right)$. Expanding and simplifying, we get $e(5 e-16) \leq 0$. This means $0 \leq e \leq 16 / 5$. Examining the equality case of the Cauchy-Schwarz inequality, we see that when $a=b=c=d=6 / 5, e$ will attain the maximum value of $16 / 5$.
(8) (1995 IMO) If $a, b, c>0$ and $a b c=1$, then prove that

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2} .
$$

Solution. Substituting $x=\frac{1}{a}=b c, y=\frac{1}{b}=c a, z=\frac{1}{c}=a b$, the inequality be-
comes

$$
\frac{x^{2}}{z+y}+\frac{y^{2}}{x+z}+\frac{z^{2}}{y+x} \geq \frac{3}{2}
$$

Now $x+y+z=\frac{x}{\sqrt{z+y}} \sqrt{z+y}+\frac{y}{\sqrt{x+z}} \sqrt{x+z}+\frac{z}{\sqrt{y+x}} \sqrt{y+x}$. By the Cauchy-Schwarz inequality, we get

$$
(x+y+z)^{2} \leq\left(\frac{x^{2}}{z+y}+\frac{y^{2}}{x+z}+\frac{z^{2}}{y+x}\right) \underbrace{((z+y)+(x+z)+(y+x))}_{=2(x+y+z)}
$$

Using the last inequality and the AM-GM inequality, we get

$$
\frac{x^{2}}{z+y}+\frac{y^{2}}{x+z}+\frac{z^{2}}{y+x} \geq \frac{x+y+z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2}=\frac{3}{2} .
$$

Rearrangement (or Permutation) Inequality. If $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$, then
$a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \geq a_{1} b_{r_{1}}+a_{2} b_{r_{2}}+\cdots+a_{n} b_{r_{n}} \geq a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}$,
where $b_{r_{1}}, b_{r_{2}}, \ldots, b_{r_{n}}$ is a permutation of $b_{1}, b_{2}, \ldots, b_{n}$.
Example. (9) (1978 IMO) Let $c_{1}, c_{2}, \ldots, c_{n}$ be distinct positive integers. Prove that

$$
c_{1}+\frac{c_{2}}{2^{2}}+\cdots+\frac{c_{n}}{n^{2}} \geq 1+\frac{1}{2}+\cdots+\frac{1}{n} .
$$

Solution. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the c_{i} 's arranged in increasing order. Since the a_{i} 's are distinct positive integers, we have $a_{1} \geq 1, a_{2} \geq 2, \ldots, a_{n} \geq n$. Now, since $a_{1}<a_{2}<\cdots<a_{n}$ and $1>\frac{1}{2^{2}}>\cdots>\frac{1}{n^{2}}$, by the rearrangement inequality, we get

$$
c_{1}+\frac{c_{2}}{2^{2}}+\cdots+\frac{c_{n}}{n^{2}} \geq a_{1}+\frac{a_{2}}{2^{2}}+\cdots+\frac{a_{n}}{n^{2}} \geq 1+\frac{2}{2^{2}}+\cdots+\frac{n}{n^{2}} .
$$

(10) Redo example (8) using the rearrangement inequality.

Solution. (Due to Ho Wing Yip) We define x, y, z as in example (10). Without loss of generality, we may assume $x \geq y \geq z$ because the inequality is symmetric. Then $x y z=1, x^{2} \geq y^{2} \geq z^{2}$ and $\frac{1}{z+y} \geq \frac{1}{x+z} \geq \frac{1}{y+x}$. By the rearrangement
inequality, inequality,

$$
\begin{aligned}
& \frac{x^{2}}{z+y}+\frac{y^{2}}{x+z}+\frac{z^{2}}{y+x} \geq \frac{x^{2}}{y+x}+\frac{y^{2}}{z+y}+\frac{z^{2}}{x+z} \\
& \frac{x^{2}}{z+y}+\frac{y^{2}}{x+z}+\frac{z^{2}}{y+x} \geq \frac{x^{2}}{x+z}+\frac{y^{2}}{y+x}+\frac{z^{2}}{z+y} .
\end{aligned}
$$

Adding these inequalities and dividing by 2 , we get

$$
\frac{x^{2}}{z+y}+\frac{y^{2}}{x+z}+\frac{z^{2}}{y+x} \geq \frac{1}{2}\left(\frac{y^{2}+x^{2}}{y+x}+\frac{z^{2}+y^{2}}{z+y}+\frac{x^{2}+z^{2}}{x+z}\right) .
$$

Applying the simple inequality $a^{2}+b^{2} \geq(a+b)^{2} / 2$ to the numerators of the right sides, then the AM-GM inequality, we get

$$
\begin{aligned}
\frac{x^{2}}{z+y}+\frac{y^{2}}{x+z}+\frac{z^{2}}{y+x} & \geq \frac{1}{2}\left(\frac{y+x}{2}+\frac{z+y}{2}+\frac{x+z}{2}\right) \\
& =\frac{x+y+z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2}=\frac{3}{2} .
\end{aligned}
$$

Chebysev's Inequality. If $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$, then

$$
\begin{aligned}
a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} & \geq \frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(b_{1}+b_{2}+\cdots+b_{n}\right)}{n} \\
& \geq a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1} .
\end{aligned}
$$

Either equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$ or $b_{1}=b_{2}=\cdots=b_{n}$.
Examples. (11)(1974 USAMO) For $a, b, c>0$, prove that $a^{a} b^{b} c^{c} \geq(a b c)^{(a+b+c) / 3}$.
Solution. By symmetry, we may assume $a \geq b \geq c$. Then $\log a \geq \log b \geq \log c$. By Chebysev's inequality,

$$
\begin{gathered}
\log \left(a^{a} b^{b} c^{c}\right)=a \log a+b \log b+c \log c \\
\geq \frac{(a+b+c)(\log a+\log b+\log c)}{3}=\log (a b c)^{\frac{a+b+c}{3}} .
\end{gathered}
$$

The desired inequality follows by exponentiation.
(12) If $0 \leq a_{k}<1$ for $k=1,2, \ldots, n$ and $S=a_{1}+a_{2}+\cdots+a_{n}$, then prove that

$$
\sum_{k=1}^{n} \frac{a_{k}}{1-a_{k}} \geq \frac{n S}{n-S}
$$

Solution. Without loss of generality, we may assume $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$.
Then $0<1-a_{1} \leq 1-a_{2} \leq \cdots \leq 1-a_{n}$ and $\frac{a_{1}}{1-a_{1}} \geq \frac{a_{2}}{1-a_{2}} \geq \cdots \geq \frac{a_{n}}{1-a_{n}}$. By Chebysev's inequality,

$$
\begin{aligned}
S & =\frac{a_{1}}{1-a_{1}}\left(1-a_{1}\right)+\frac{a_{2}}{1-a_{2}}\left(1-a_{2}\right)+\cdots+\frac{a_{n}}{1-a_{n}}\left(1-a_{n}\right) \\
& \leq \frac{1}{n} \sum_{k=1}^{n} \frac{a_{k}}{1-a_{k}} \sum_{k=1}^{n}\left(1-a_{k}\right)=\frac{n-S}{n} \sum_{k=1}^{n} \frac{a_{k}}{1-a_{k}} .
\end{aligned}
$$

The result follows.

In math as well as in statistics, we often need to take averages (or means) of numbers. Other than AM, GM, HM, there are so-called power means and symmetric means, which include AM and GM as special cases.

Power Mean Inequality. For $a_{1}, a_{2}, \ldots, a_{n}>0$ and $s<t$,

$$
M_{s}=\left(\frac{a_{1}^{s}+a_{2}^{s}+\cdots+a_{n}^{s}}{n}\right)^{1 / s} \leq M_{t}=\left(\frac{a_{1}^{t}+a_{2}^{t}+\cdots+a_{n}^{t}}{n}\right)^{1 / t}
$$

Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
Remarks. Clearly, $M_{1}=A M$ and $M_{-1}=H M$. Now $M_{2}=\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}}$ is called the root-mean-square (RMS) of the numbers. It appears in statistics and physics. Also, taking limits, it can be shown that $M_{+\infty}$ is $M A X=$ $\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, M_{0}$ is $G M$ and $M_{-\infty}$ is $M I N=\min \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. So we have

$$
M A X \geq R M S \geq A M \geq G M \geq H M \geq M I N
$$

Maclaurin's Symmetric Mean Inequality. For $a_{1}, a_{2}, \ldots, a_{n}>0$,

$$
A M=S_{1} \geq S_{2}^{1 / 2} \geq \cdots \geq S_{n}^{1 / n}=G M
$$

where S_{j} is the average of all possible products of $a_{1}, a_{2}, \ldots, a_{n}$ taken j at a time Any one of the equalities holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.

Remarks. To be clear on the meaning of S_{j}, take $n=4$. In that case, we have

$$
\begin{gathered}
S_{1}=\frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}, \quad S_{2}=\frac{a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}}{6}, \\
S_{3}=\frac{a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+a_{1} a_{3} a_{4}+a_{2} a_{3} a_{4}}{4} \text { and } S_{4}=a_{1} a_{2} a_{3} a_{4} .
\end{gathered}
$$

Examples. (13) Show that $x^{5}+y^{5}+z^{5} \leq x^{5} \sqrt{\frac{x^{2}}{y z}}+y^{5} \sqrt{\frac{y^{2}}{z x}}+z^{5} \sqrt{\frac{z^{2}}{x y}}$ for positive x, y, z.

Solution. Let $a=\sqrt{x}, b=\sqrt{y}, c=\sqrt{z}$, then the inequality becomes

$$
a^{10}+b^{10}+c^{10} \leq \frac{a^{13}+b^{13}+c^{13}}{a b c} .
$$

Now $a^{13}+b^{13}+c^{13}=3 M_{13}^{13}=3 M_{13}^{10} M_{13}^{3} \geq 3 M_{10}^{10} M_{0}^{3}=\left(a^{10}+b^{10}+c^{10}\right) a b c$.
(14) If $a, b, c>0$, then prove that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{a^{8}+b^{8}+c^{8}}{a^{3} b^{3} c^{3}}$.

Solution. The inequality is equivalent to

$$
a^{8}+b^{8}+c^{8} \geq a^{3} b^{3} c^{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=(a b c)^{2}(b c+c a+a b)
$$

By the power mean inequality and the symmetric mean inequality,

$$
\begin{aligned}
a^{8}+b^{8}+c^{8}=3 M_{8}^{8} & \geq 3 M_{1}^{8}=3 S_{1}^{8}=3 S_{1}^{6} S_{1}^{2} \\
& \geq\left(S_{3}^{1 / 3}\right)^{6} 3\left(S_{2}^{1 / 2}\right)^{2}=(a b c)^{2}(b c+c a+a b)
\end{aligned}
$$

Multiplying by 3 on both sides, we are done
(15) If $a_{1}, a_{2}, \ldots, a_{n} \geq 0$ and $\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right)=2^{n}$, then show that $a_{1} a_{2} \cdots a_{n} \leq 1$.

Solution. By the symmetric mean inequality,

$$
\begin{aligned}
2^{n} & =\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right) \\
& =1+n S_{1}+\binom{n}{2} S_{2}+\cdots+\binom{n}{n-1} S_{n-1}+S_{n} \\
& \geq 1+n S_{n}^{1 / n}+\binom{n}{2} S_{n}^{2 / n}+\cdots+\binom{n}{n-1} S_{n}^{(n-1) / n}+S_{n}=\left(1+S_{n}^{1 / n}\right)^{n}
\end{aligned}
$$

So $2 \geq 1+S_{n}^{1 / n}$. Then $a_{1} a_{2} \cdots a_{n}=S_{n} \leq 1$.

Exercises

1. Redo example (11).
2. Redo example (13).
3. Redo example (15).
4. For $x_{1}, x_{2}, \ldots, x_{n}>0$, show that $\frac{x_{1}^{2}}{x_{2}}+\frac{x_{2}^{2}}{x_{3}}+\cdots+\frac{x_{n}^{2}}{x_{1}} \geq x_{1}+x_{2}+\cdots+x_{n}$.
5. For $0<a, b, c<1$ and $a+b+c=2$, show that $8(1-a)(1-b)(1-c) \leq a b c$.
6. If $a, b, c, d>0$ and $c^{2}+d^{2}=\left(a^{2}+b^{2}\right)^{3}$, then show that $\frac{a^{3}}{c}+\frac{b^{3}}{d} \geq 1$.
7. For $a_{1}, a_{2}, \ldots, a_{n}>0$ and $a_{1}+a_{2}+\cdots+a_{n}=1$, find the minimum of

$$
\left(a_{1}+\frac{1}{a_{1}}\right)^{2}+\left(a_{2}+\frac{1}{a_{2}}\right)^{2}+\cdots+\left(a_{n}+\frac{1}{a_{n}}\right)^{2} .
$$

8. If $a, b, c, d>0$ and $S=a^{2}+b^{2}+c^{2}+d^{2}$, then show that

$$
\frac{a^{3}+b^{3}+c^{3}}{a+b+c}+\frac{a^{3}+b^{3}+d^{3}}{a+b+d}+\frac{a^{3}+c^{3}+d^{3}}{a+c+d}+\frac{b^{3}+c^{3}+d^{3}}{b+c+d} \geq S
$$

9. If $x_{1}, x_{2}, \ldots, x_{n}>0$ and $x_{1}+x_{2}+\cdots+x_{n}=1$, then show that

$$
\sum_{k=1}^{n} \frac{x_{k}}{\sqrt{1-x_{k}}} \geq \frac{1}{\sqrt{n-1}} \sum_{k=1}^{n} \sqrt{x_{k}} .
$$

10. Let a, b, c be the sides of a triangle. Show that

$$
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0 .
$$

3. Inequalities (Part II)

For inequalities involving functions, convexity is very important.
Definitions. A function f is convex on an interval I if

$$
f\left(\frac{x_{1}+x_{2}}{2}\right) \leq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2} \quad \text { for every } x_{1}, x_{2} \in I
$$

Also, f is strictly convex on I if f is convex on I and equality holds only when $x_{1}=x_{2}$ above.

A function f is concave on an interval I if the function $-f$ is convex on I. (In that case, $f\left(\frac{x_{1}+x_{2}}{2}\right) \geq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}$ for every $x_{1}, x_{2} \in I$.) Similiarly, f is strictly convex on I if $-f$ is strictly convex on I.

Second Derivative Test. Let $a<b$ and I be an interval containing (a, b). Let f be continuous on I and twice differentiable on (a, b). If $f^{\prime \prime}(x) \geq 0$ on (a, b), then f is convex on I. If $f^{\prime \prime}(x)>0$ on (a, b), then f is strictly convex on I. The statements for concave and strictly concave functions are similar by reversing the inequality signs.

For functions defined on intervals containing endpoints, continuity at the endpoints and nonnegative second derivatives inside the interval are sufficient for the functions to be convex on the intervals. Similar statements for strictly convex functions on such intervals are true.

Using the second derivative test, we can check that the following are examples of strictly convex functions on intervals:

$$
\begin{aligned}
& x^{p} \text { on }[0, \infty) \text { for } p>1, \quad x^{p} \text { on }(0, \infty) \text { for } p<0, \\
& \quad a^{x} \text { on }(-\infty, \infty) \text { for } a>1, \quad \tan x \text { on }\left[0, \frac{\pi}{2}\right)
\end{aligned}
$$

The following are examples of strictly concave functions on intervals:

$$
\begin{gathered}
x^{p} \text { on }[0, \infty) \text { for } 0<p<1, \quad \log _{a} x \text { on }(0, \infty) \text { for } a>1, \\
\cos x \text { on }[-\pi / 2, \pi / 2], \quad \sin x \text { on }[0, \pi]
\end{gathered}
$$

The most important inequality concerning these functions is the following.
Jensen's Inequality. If f is convex on I and $x_{1}, x_{2}, \ldots, x_{n} \in I$, then

$$
f\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right) \leq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n}
$$

For strictly convex functions, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
Generalized Jensen's Inequality. If f is convex and continuous on $I, x_{1}, \ldots, x_{n} \in$ I and $0<t_{1}, t_{2}, \ldots, t_{n}<1$ with $t_{1}+t_{2}+\cdots+t_{n}=1$, then

$$
f\left(t_{1} x_{1}+t_{2} x_{2}+\cdots+t_{n} x_{n}\right) \leq t_{1} f\left(x_{1}\right)+t_{2} f\left(x_{2}\right)+\cdots+t_{n} f\left(x_{n}\right)
$$

(with the same equality condition for strictly convex functions). For concave functions, all inequality signs reverse.

Examples. (1) For a triangle $A B C$, show that $\sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}$ and determine when equality holds.

Solution. Since $f(x)=\sin x$ is strictly concave on $[0, \pi]$, so
$\sin A+\sin B+\sin C=f(A)+f(B)+f(C)$

$$
\leq 3 f\left(\frac{A+B+C}{3}\right)=3 \sin \left(\frac{A+B+C}{3}\right)=\frac{3 \sqrt{3}}{2}
$$

Equality holds if and only if $A=B=C=\pi / 3$, i.e. $\triangle A B C$ is equilateral.
(2) If $a, b, c>0$ and $a+b+c=1$, then find the minimum of

$$
\left(a+\frac{1}{a}\right)^{10}+\left(b+\frac{1}{b}\right)^{10}+\left(c+\frac{1}{c}\right)^{10}
$$

Solution. Note $0<a, b, c<1$. Let $f(x)=\left(x+\frac{1}{x}\right)^{10}$ on $I=(0,1)$, then f is strictly convex on I because

$$
f^{\prime \prime}(x)=90\left(x+\frac{1}{x}\right)^{8}\left(1-\frac{1}{x^{2}}\right)^{2}+10\left(x+\frac{1}{x}\right)^{9}\left(\frac{2}{x^{3}}\right)>0 \quad \text { for } x \in I
$$

By Jensen's inequality,

$$
\begin{aligned}
\frac{10^{10}}{3^{9}} & =3 f\left(\frac{1}{3}\right)=3 f\left(\frac{a+b+c}{3}\right) \\
& \leq f(a)+f(b)+f(c)=\left(a+\frac{1}{a}\right)^{10}+\left(b+\frac{1}{b}\right)^{10}+\left(c+\frac{1}{c}\right)^{10}
\end{aligned}
$$

Therefore, the minimum is $\frac{10^{10}}{3^{9}}$, attained when $a=b=c=\frac{1}{3}$.
(3) Prove the AM-GM inequality.

Solution. If $a_{1}, a_{2}, \ldots, a_{n}>0$, then since $f(x)=\log x$ is strictly concave on $(0, \infty)$, by Jensen's inequality,
$\log \left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right) \geq \frac{\log a_{1}+\log a_{2}+\cdots+\log a_{n}}{n}=\log \left(\sqrt[n]{a_{1} a_{2} \cdots a_{n}}\right)$.
Exponentiating both sides, we get the AM-GM inequality.
Remarks. If we use the generalized Jensen's inequality instead, we can get the weighted AM-GM inequality, which states that if $a_{1}, \cdots, a_{n}>0$ and $0<$ $t_{1}, \cdots, t_{n}<1$ satisfying $t_{1}+\cdots+t_{n}=1$, then $t_{1} a_{1}+\cdots+t_{n} a_{n} \geq a_{1}^{t_{1}} \cdots a_{n}^{t_{n}}$ with equality if and only if $a_{1}=\cdots=a_{n}$.
(4) Prove Hölder's inequality, which states that if $p, q>1, \frac{1}{p}+\frac{1}{q}=1$ and $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ are real numbers, then

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq\left(\sum_{i+1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}
$$

(Note the case $p=q=2$ is the Cauchy-Schwarz inequality.)
Solution. Let $A=\sum_{i=1}^{n}\left|a_{i}\right|^{p}$ and $B=\sum_{i=1}^{n}\left|b_{i}\right|^{q}$. If A or B is 0 , then either all a_{i} 's or all b_{i} 's are 0 , which will make both sides of the inequality 0 . So we need only
consider the case $A \neq 0$ and $B \neq 0$. Let $t_{1}=\frac{1}{p}$ and $t_{2}=\frac{1}{q}$, then $0<t_{1}, t_{2}<1$ and $t_{1}+t_{2}=1$. Let $x_{i}=\frac{\left|a_{i}\right|^{p}}{A}$ and $y_{i}=\frac{\left|b_{i}\right|^{q}}{B}$, then $\sum_{i=1}^{n} x_{i}=1$ and $\sum_{i=1}^{n} y_{i}=1$. Since $f(x)=e^{x}$ is strictly convex on $(-\infty, \infty)$, by the generalized Jensen's inequality,

$$
x_{i}^{1 / p} y_{i}^{1 / q}=f\left(t_{1} \ln x_{i}+t_{2} \ln y_{i}\right) \leq t_{1} f\left(\ln x_{i}\right)+t_{2} f\left(\ln y_{i}\right)=\frac{x_{i}}{p}+\frac{y_{i}}{q}
$$

Adding these for $i=1, \ldots, n$, we get

$$
\sum_{i=1}^{n} \frac{\left|a_{i}\right|\left|b_{i}\right|}{A^{1 / p} B^{1 / q}}=\sum_{i=1}^{n} x_{i}^{1 / p} y_{i}^{1 / q} \leq \frac{1}{p} \sum_{i=1}^{n} x_{i}+\frac{1}{q} \sum_{i=1}^{n} y_{i}=1 .
$$

Therefore, $\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \sum_{i=1}^{n}\left|a_{i}\right|\left|b_{i}\right| \leq A^{1 / p} B^{1 / q}=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}$.

Next we will introduce a generalization of Jensen's inequality.
Definition. If $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ satisfy the conditions

$$
x_{1} \geq x_{2} \geq \cdots \geq x_{n}, \quad y_{1} \geq y_{2} \geq \cdots \geq y_{n}
$$

$x_{1} \geq y_{1}, \quad x_{1}+x_{2} \geq y_{1}+y_{2}, \quad \ldots, \quad x_{1}+\cdots+x_{n-1} \geq y_{1}+\cdots+y_{n-1}$ and

$$
x_{1}+\cdots+x_{n}=y_{1}+\cdots+y_{n}
$$

then we say $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ majorizes $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and write

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \succ\left(y_{1}, y_{2}, \ldots, y_{n}\right) .
$$

Majorization Inequality. If the function f is convex on the interval $I=[a, b]$ and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \succ\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ for $x_{i}, y_{i} \in I$, then

$$
f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right) \geq f\left(y_{1}\right)+f\left(y_{2}\right)+\cdots+f\left(y_{n}\right)
$$

For strictly convex functions, equality holds if and only if $x_{i}=y_{i}$ for $i=$ $1,2, \ldots, n$. The statements for concave functions can be obtained by reversing inequality signs.

Examples. (5) For an acute triangle $A B C$, show that

$$
1 \leq \cos A+\cos B+\cos C \leq \frac{3}{2}
$$

and determine when equality holds
Solution. Without loss of generality, assume $A \geq B \geq C$. Then $A \geq \pi / 3$ and $C \leq \pi / 3$. Since

$$
\frac{\pi}{2} \geq A \geq \frac{\pi}{3}, \quad \pi \geq A+B(=\pi-C) \geq \frac{2 \pi}{3}
$$

we have $(\pi / 2, \pi / 2,0) \succ(A, B, C) \succ(\pi / 3, \pi / 3, \pi / 3)$. Since $f(x)=\cos x$ is strictly concave on $I=[0, \pi / 2]$, by the majorization inequality,

$$
\begin{aligned}
1 & =f\left(\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)+f(0) \\
& \leq f(A)+f(B)+f(C)=\cos A+\cos B+\cos C \\
& \leq f\left(\frac{\pi}{3}\right)+f\left(\frac{\pi}{3}\right)+f\left(\frac{\pi}{3}\right)=\frac{3}{2} .
\end{aligned}
$$

For the first inequality, equality cannot hold (as two of the angles cannot both be right angles). For the second inequality, equality holds if and only if the triangle is equilateral.
(6) If $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$, then $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \succ(x, x, \ldots, x)$, where x is the arithmetic mean of $x_{1}, x_{2}, \ldots, x_{n}$. (Applying this to the majorization inequality, we get Jensen's inequality.)

Solution. For $k=1,2, \ldots, n-1$, we have to show $x_{1}+\cdots+x_{k} \geq k x$. Since $(n-k)\left(x_{1}+\cdots+x_{k}\right) \geq(n-k) k x_{k} \geq k(n-k) x_{k+1} \geq k\left(x_{k+1}+\cdots x_{n}\right)$,
so $(n-k)\left(x_{1}+\cdots+x_{k}\right) \geq k\left(x_{k+1}+\cdots+x_{n}\right)$. Adding $k\left(x_{1}+\cdots+x_{k}\right)$ to both sides we get $n\left(x_{1}+\cdots+x_{k}\right) \geq k\left(x_{1}+\cdots+x_{n}\right)=k n x$. Therefore, $x_{1}+\cdots+x_{k} \geq k x$.
(7) Find the maximum of $a^{12}+b^{12}+c^{12}$ if $-1 \leq a, b, c \leq 1$ and $a+b+c=-\frac{1}{2}$.

Solution. Note the continuous function $f(x)=x^{12}$ is convex on $[-1,1]$ because $f^{\prime \prime}(x)=132 x^{10} \geq 0$ on $(-1,1)$. If $1 \geq a \geq b \geq c \geq-1$ and $a+b+c=-\frac{1}{2}$, then we claim that $\left(1,-\frac{1}{2},-1\right) \succ(a, b, c)$. This is because

$$
1 \geq a \quad \text { and } \quad \frac{1}{2}=1-\frac{1}{2} \geq-c-\frac{1}{2}=a+b
$$

So by the majorization inequality,
$a^{12}+b^{12}+c^{12}=f(a)+f(a)+f(c) \leq f(1)+f\left(-\frac{1}{2}\right)+f(-1)=2+\frac{1}{2^{12}}$.
The maximum value $2+\frac{1}{2^{12}}$ is attained when $a=1, b=-\frac{1}{2}$ and $c=-1$.
In some problems, the functions we need to consider may not be convex or concave on the entire intervals! Here is an example.
(8) (1999 IMO) Let n be a fixed integer, with $n \geq 2$.
(a) Determine the least constant C such that the inequality

$$
\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{1 \leq i \leq n} x_{i}\right)^{4}
$$

holds for all real numbers $x_{1}, x_{2}, \ldots, x_{n} \geq 0$.
(b) For this constant C, determine when equality holds.

Solution. Consider the case $n=2$ first. Let $x_{1}=m+h$ and $x_{2}=m-h$, (i.e. $m=\left(x_{1}+x_{2}\right) / 2$ and $\left.h=\left(x_{1}-x_{2}\right) / 2\right)$, then

$$
x_{1} x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)=2\left(m^{4}-h^{4}\right) \leq 2 m^{4}=\frac{1}{8}\left(x_{1}+x_{2}\right)^{4}
$$

with equality if and only if $h=0$, i.e. $x_{1}=x_{2}$
For the case $n>2$, let $a_{i}=x_{i} /\left(x_{1}+\cdots+x_{n}\right)$ for $i=1, \ldots, n$, then $a_{1}+\cdots+a_{n}=1$. So $a_{i} \in[0,1]$. In terms of a_{i} 's, the inequality to be proved becomes

$$
\sum_{1 \leq i<j \leq n} a_{i} a_{j}\left(a_{i}^{2}+a_{j}^{2}\right) \leq C
$$

The left side can be expanded and regrouped to give

$$
\sum_{i=1}^{n} a_{i}^{3}\left(a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n}\right)=\sum_{i=1}^{n} a_{i}^{3}\left(1-a_{i}\right)
$$

Unfortunately, $f(x)=x^{3}(1-x)=x^{3}-x^{4}$ is strictly convex only on $\left[0, \frac{1}{2}\right]$ as

$$
f^{\prime \prime}(x)=6 x-12 x^{2}=6 x(1-2 x)>0 \text { on }\left(0, \frac{1}{2}\right)
$$

Since the inequality is symmetric in the a_{i} 's, we may assume $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$.
If $a_{1} \leq \frac{1}{2}$, then since $\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right) \succ\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, by the majorization inequality,

$$
f\left(a_{1}\right)+f\left(a_{2}\right)+\cdots+f\left(a_{n}\right) \leq f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)+f(0)+\cdots+f(0)=\frac{1}{8}
$$

If $a_{1}>\frac{1}{2}$, then $1-a_{1}, a_{2}, \ldots, a_{n} \in\left[0, \frac{1}{2}\right)$. Since $\left(1-a_{1}, 0, \ldots, 0\right) \succ\left(a_{2}, \ldots, a_{n}\right)$,
by the majorization inequality and case $n=2$, we have

$$
\begin{aligned}
f\left(a_{1}\right)+f\left(a_{2}\right)+\cdots+f\left(a_{n}\right) & \leq f\left(a_{1}\right)+f\left(1-a_{1}\right)+f(0)+\cdots+f(0) \\
& =f\left(a_{1}\right)+f\left(1-a_{1}\right) \leq \frac{1}{8}
\end{aligned}
$$

Equality holds if and only if two of the variables are equal and the other $n-2$ variables all equal 0 .

Exercises

1. Use the definition of convex function to give a proof of Jensen's inequality for the case $n=4$. Then use the case $n=4$ to prove the case $n=3$.
2. Use Jensen's inequality to prove $a^{a} b^{b} c^{c} \geq(a b c)^{(a+b+c) / 3}$ for all $a, b, c>0$.
3. Let $x_{1}, \ldots, x_{n} \in[0,1]$ and $a_{1}, \ldots, a_{n}>0$ be such that $a_{1}+\cdots+a_{n}=1$. Prove that

$$
\sum_{i=1}^{n} \frac{a_{i}}{1+x_{i}} \leq \frac{1}{1+x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}}
$$

and determine when equality holds.
4. Use Hölder's inequality to prove that if $a, b, c, d>0$ and $c^{2}+d^{2}=\left(a^{2}+b^{2}\right)^{3}$, then $\frac{a^{3}}{c}+\frac{b^{3}}{d} \geq 1$.
*5. Let P be a point inside triangle $A B C$ such that $\angle P A B=\angle P B C=$ $\angle P C A=\alpha$. Show that $\alpha \leq 30^{\circ}$. (Hint: Apply sine law to three triangles.)
6. Suppose acute triangle $A B C$ has two angles less than or equal to 60°. Show that

$$
\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \geq \sin \frac{\pi}{4} \sin \frac{\pi}{6} \sin \frac{\pi}{12} .
$$

7. Redo example (8) using AM-GM inequality.
8. Let $x, y, z>1, x y z=4096$ and $\max (x, y, z) \leq 32$. Find the maximum and minimum of $x+y+z$.
9. Prove that if $a, b \geq 0$, then

$$
\sqrt[3]{a+\sqrt[3]{a}}+\sqrt[3]{b+\sqrt[3]{b}} \leq \sqrt[3]{a+\sqrt[3]{b}}+\sqrt[3]{b+\sqrt[3]{a}}
$$

10. (1998 Balkan Math Olympiad, case $n=5$) Let $0 \leq a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq a_{5}$. Prove that

$$
\sqrt[5]{a_{1}}-\sqrt[5]{a_{2}}+\sqrt[5]{a_{3}}-\sqrt[5]{a_{4}}+\sqrt[5]{a_{5}} \leq \sqrt[5]{a_{1}-a_{2}+a_{3}-a_{4}+a_{5}}
$$

Inequalities (Part III)

§1. Tangent Line Method

Below we will give some examples, where finding the equation of a tangent line is the critical step to solving the problems.

Example 1. Let $a, b, c, d>0$ and $a+b+c+d=1$. Prove that

$$
6\left(a^{3}+b^{3}+c^{3}+d^{3}\right) \geq\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+1 / 8
$$

Solution. We have $0<a, b, c, d<1$. Let $f(x)=6 x^{3}-x^{2}$. Then we have to prove $f(a)+f(b)+f(c)+f(d) \geq 1 / 8$ (Thoughts: Since there is equality when $a=b=c=d=$ $1 / 4$, we consider the graph of $f(x)$ and its tangent line at $x=1 / 4$. By a simple sketch, it seems the tangent line is below the graph of $f(x)$ on the interval $(0,1)$. By calculus, the equation of the tangent line at $x=1 / 4$ is $y=(5 x-1) / 8$.)

We claim that for $0<x<1, f(x)=6 x^{3}-x^{2} \geq(5 x-1) / 8$. This is equivalent to $48 x^{3}-8 x^{2}-5 x+1 \geq 0$. (Thought: Since the graphs intersect at $x=1 / 4$, we expect $4 x-1$ is a factor.) Indeed, $48 x^{3}-8 x^{2}-5 x+1=(4 x-1)^{2}(3 x+1) \geq 0$ for $0<x<1$. So the claim is true.

Therefore,

$$
f(a)+f(b)+f(c)+f(d) \geq 5(a+b+c+d) / 8-4 / 8=1 / 8
$$

Example 2. (2003 USA Math Olympiad) Let $a, b, c>0$. Prove that

$$
\frac{(2 a+b+c)^{2}}{2 a^{2}+(b+c)^{2}}+\frac{(2 b+c+a)^{2}}{2 b^{2}+(c+a)^{2}}+\frac{(2 c+a+b)^{2}}{2 c^{2}+(a+b)^{2}} \leq 8
$$

Solution. Setting $a^{\prime}=a /(a+b+c), b^{\prime}=b /(a+b+c), c^{\prime}=c /(a+b+c)$ if necessary, we may assume $0<a, b, c<1$ and $a+b+c=1$. Then the first term on the left side of the inequality is equal to

$$
f(a)=\frac{(a+1)^{2}}{2 a^{2}+(1-a)^{2}}=\frac{a^{2}+2 a+1}{3 a^{2}-2 a+1}
$$

(Note: When $a=b=c=1 / 3$, there is equality. A simple sketch of $f(x)$ on $[0,1]$ shows the curve is below the tangent line at $x=1 / 3$, which has the equation $y=\frac{12 x+4}{3}$.) So we claim that $\frac{a^{2}+2 a+1}{3 a^{2}-2 a+1} \leq \frac{12 a+4}{3}$ for $0<a<1$.

Multiplying out, we see this is equivalent to $36 a^{3}-15 a^{2}-2 a+1 \geq 0$ for $0<a$ <1. (Note: Since the curve and the line intersect at $a=1 / 3$, we expect $3 a-1$ is a factor.) Indeed, $36 a^{3}-15 a^{2}-2 a+1=(3 a-1)^{2}(4 a+1) \geq 0$ for $0<a<1$. Finally adding the similar inequalities for b and c, we get the desired inequality.

Example 3. (1997 Japanese Math Olympiad) Let $a, b, c>0$. Prove that

$$
\frac{(b+c-a)^{2}}{(b+c)^{2}+a^{2}}+\frac{(c+a-b)^{2}}{(c+a)^{2}+b^{2}}+\frac{(a+b-c)^{2}}{(a+b)^{2}+c^{2}} \geq \frac{3}{5}
$$

Solution. (Due to Titu Andreescu and Gabriel Dospinescu) As in the last example, we may assume $0<a, b, c<1$ and $a+b+c=1$. Then the first term on the left become $\frac{(1-2 a)^{2}}{(1-a)^{2}+a^{2}}=2-\frac{2}{1+(1-2 a)^{2}}$.

Let $x_{1}=1-2 a, x_{2}=1-2 b, x_{3}=1-2 c$, then $x_{1}+x_{2}+x_{3}=1$, but $-1<x_{1}, x_{2}, x_{3}<1$. In terms of x_{1}, x_{2}, x_{3}, the desired inequality is

$$
\frac{1}{1+x_{1}^{2}}+\frac{1}{1+x_{2}^{2}}+\frac{1}{1+x_{3}^{2}} \leq \frac{27}{10} .
$$

(Note: As in the last example, we consider the equation of the tangent line to $f(x)$ $=1 /\left(1+x^{2}\right)$ at $x=1 / 3$, which is $y=27(-x+2) / 50$.)

So we claim that $f(x) \leq 27(-x+2) / 50$ for $-1<x<1$. This is equivalent to $(3 x-1)^{2}(4-3 x) \geq 0$. Hence the claim is true for $-1<x<1$. Then $f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right) \leq$ $27 / 10$ and the desired inequality follows.

Exercise. (2008 CWMO) Let a, b, c be real numbers with $a+b+c=3$. Prove that

$$
\frac{1}{5 a^{2}-4 a+11}+\frac{1}{5 b^{2}-4 b+11}+\frac{1}{5 c^{2}-4 c+11} \leq \frac{1}{4}
$$

§2. Schur's Inequality

Sometimes in proving an inequality, we do not see any easy way. It will be good to know some brute force methods in such situation. Below we will introduce a simple inequality that turns out to be useful in proving inequalities by brute force.

Schur's Inequality. For any $x, y, z \geq 0$ and real r,

$$
x^{r}(x-y)(x-z)+y^{r}(y-x)(y-z)+z^{r}(z-x)(z-y) \geq 0
$$

Equality holds if and only if $x=y=z$ or two of x, y, z are equal and the third is 0 .
Proof. Observe that the inequality is symmetric in x, y, z. So without loss of generality, we may assume $x \geq y \geq z$. Then $a=x-y \geq 0$ and $b=y-z \geq 0$. Now the left hand side of the inequality can be written as

$$
x^{r} a(a+b)-y^{r} a b+z^{r} b(a+b)=x^{r} a^{2}+\left(x^{r}-y^{r}+z^{r}\right) a b+z^{r} b^{2}
$$

If $r \geq 0$, then $x^{r} \geq y^{r}$. If $r<0$, then $z^{r} \geq y^{r}$. So $x^{r}-y^{r}+z^{r} \geq 0$ and Schur's inequality follows. Now $a>0$ implies $x>y \geq 0$ and $x^{r} a^{2}>0$. So, equality holds in Schur's inequality if and only if $a=0$ and $z^{r} b^{2}=0$, that is $x=y$ and either $y=z$ or $z=0$.

In using the Schur's inequality, we often expand out expressions. So to simplify writing, we introduce the symmetric sum notation $\sum_{v m} f(x, y, z)$ to denote

$$
f(x, y, z)+f(x, z, y)+f(y, z, x)+f(y, x, z)+f(z, x, y)+f(z, y, x) .
$$

For example, $\sum_{s, m} x^{3}=2 x^{3}+2 y^{3}+2 z^{3}, \sum_{s y m} x^{2} y=x^{2} y+x^{2} z+y^{2} z+y^{2} x+z^{2} x+z^{2} y$ and $\sum_{s y m} x y z=$ $6 x y z$. Similarly, for a function of n variables, the symmetric sum is the sum of all $n!$ terms, where we take all possible permutations of the n variables.

After expanding the $r=1$ case of Schur's inequality, we get

$$
x^{3}+y^{3}+z^{3}-\left(x^{2} y+x^{2} z+y^{2} x+y^{2} z+z^{2} x+z^{2} y\right)+3 x y z \geq 0
$$

In symmetric sum notation, it is $\sum_{\text {sym }}\left(x^{3}-2 x^{2} y+x y z\right) \geq 0$.

By expanding both sides and rearranging terms, each of the following inequalities is equivalent to the $r=1$ case of Schur's inequality. These are common disguises.
a) $x^{3}+y^{3}+z^{3}+3 x y z \geq x y(x+y)+y z(y+z)+z x(z+x)$,
b) $x y z \geq(x+y-z)(y+z-x)(z+x-y)$,
c) $4(x+y+z)(x y+y z+z x) \leq(x+y+z)^{3}+9 x y z$.

Example 1. (2000 IMO) Let $a, b, c>0$ and $a b c=1$. Prove that

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1 .
$$

Solution. Let $x=a, y=1, z=1 / b=a c$. Then $a=x / y, b=y / z$ and $c=z / x$. Substituting these into the desired inequality, we get

$$
\frac{(x-y+z)}{y} \frac{(y-z+x)}{z} \frac{(z-x+y)}{x} \leq 1,
$$

which is disguise b) of the $r=1$ case of Schur's inequality.
Example 2. (1984 IMO) Prove that

$$
0 \leq y z+z x+x y-2 x y z \leq 7 / 27,
$$

where x, y, z are nonnegative real numbers such that $x+y+z=1$.
Solution. In Schur's inequality, all terms are of the same degree. So we first change the desired inequality to one where all terms are of the same degree. Since $x+y+z=1$, the desired inequality is the same as

$$
0 \leq(x+y+z)(y z+z x+x y)-2 x y z \leq \frac{7(x+y+z)^{3}}{27}
$$

Expanding the middle expression, we get $x y z+\sum_{y y m} x^{2} y$, which is nonnegative and the left inequality is proved. Expanding the rightmost expression and subtracting the middle expression, we get

$$
\begin{equation*}
\frac{7}{54} \sum_{s y m}\left(x^{3}-\frac{12}{7} x^{2} y+\frac{5}{7} x y z\right) \tag{1}
\end{equation*}
$$

By Schur's inequality, we have

$$
\begin{equation*}
\sum_{s y m}\left(x^{3}-2 x^{2} y+x y z\right) \geq 0 \tag{2}
\end{equation*}
$$

Note $\left(x^{3}-\frac{12}{7} x^{2} y+\frac{5}{7} x y z\right)-\left(x^{3}-2 x^{2} y+x y z\right)=\frac{2}{7}\left(x^{2} y-x y z\right)$. By the AM-GM inequality, we have $\sum_{s y m} x^{2} y \geq 6\left(x^{6} y^{6} z^{6}\right)^{1 / 6}=\sum_{s y m} x y z$, which is the same as

$$
\begin{equation*}
\sum_{s y m}\left(x^{2} y-x y z\right) \geq 0 \tag{3}
\end{equation*}
$$

Multiplying (3) by $2 / 7$ and adding it to (2), we see the symmetric sum in (1) is nonnegative. This yields the inequality on the right.

Example 3. (2004 APMO) Prove that

$$
\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 9(a b+b c+c a)
$$

for any positive real numbers a, b, c.
Solution. Expanding and expressing in symmetric sum notation, the desired inequality is $(a b c)^{2}+\sum_{s m m}\left(a^{2} b^{2}+2 a^{2}\right)+8 \geq \frac{9}{2} \sum_{s m m} a b$.

Since $a^{2}+b^{2} \geq 2 a b$, we get $\sum_{y y m} a^{2} \geq \sum_{y m m} a b$. Also, from $a^{2} b^{2}+1 \geq 2 a b$, we get $\sum_{s y m} a^{2} b^{2}+6 \geq 2 \sum_{s, y m} a b$. Using these, the problem is reduced to showing

$$
(a b c)^{2}+2 \geq \sum_{\text {sym }}\left(a b-\frac{1}{2} a^{2}\right)
$$

To prove this, we apply the AM-GM inequality twice and disguise c) of the $r=1$ case of Schur's inequality as follow:

$$
\begin{aligned}
(a b c)^{2}+2 & \geq 3(a b c)^{2 / 3} \geq 9 a b c /(a+b+c) \\
& \geq 4(a b+b c+c a)-(a+b+c)^{2} \\
& =2(a b+b c+c a)-\left(a^{2}+b^{2}+c^{2}\right)=\sum_{y m}\left(a b-\frac{1}{2} a^{2}\right)
\end{aligned}
$$

Example 4. (2000 USA Team Selection Test) Prove that for any positive real numbers a, b, c, the following inequality holds

$$
\frac{a+b+c}{3}-\sqrt[3]{a b c} \leq \max \left\{(\sqrt{a}-\sqrt{b})^{2},(\sqrt{b}-\sqrt{c})^{2},(\sqrt{c}-\sqrt{a})^{2}\right\}
$$

Solution. From the last part of the solution of example 3, we get

$$
3(x y z)^{2 / 3} \geq 2(x y+y z+z x)-\left(x^{2}+y^{2}+z^{2}\right)
$$

for any $x, y, z>0$. (Note: this used Schur's inequality.) Let $x=\sqrt{a}, y=\sqrt{b}$ and $z=\sqrt{c}$. Arranging terms, we get

$$
\begin{aligned}
a+b+c-3 \sqrt[3]{a b c} & \leq 2(a+b+c-\sqrt{a b}-\sqrt{b c}-\sqrt{c a}) \\
& =(\sqrt{a}-\sqrt{b})^{2}+(\sqrt{b}-\sqrt{c})^{2}+(\sqrt{c}-\sqrt{a})^{2} \\
& \leq 3 \max \left\{(\sqrt{a}-\sqrt{b})^{2},(\sqrt{b}-\sqrt{c})^{2},(\sqrt{c}-\sqrt{a})^{2}\right\}
\end{aligned}
$$

Dividing by 3 , we get the desired inequality.
Example 5. (2003 USA Team Selection Test) Let a, b, c be real numbers in the interval ($0, \pi / 2$). Prove that

$$
\frac{\sin a \sin (a-b) \sin (a-c)}{\sin (b+c)}+\frac{\sin b \sin (b-c) \sin (b-a)}{\sin (c+a)}+\frac{\sin c \sin (c-a) \sin (c-b)}{\sin (a+b)} \geq 0 .
$$

Solution. Observe that $\sin (u-v) \sin (u+v)=(\cos 2 v-\cos 2 u) / 2=\sin ^{2} u-\sin ^{2} v$. Let $x=\sin ^{2} a, y=\sin ^{2} b, z=\sin ^{2} c$. In adding up the terms, the left side of the inequality becomes

$$
\frac{\sqrt{x}(x-y)(x-z)+\sqrt{y}(y-z)(y-x)+\sqrt{z}(z-x)(z-y)}{\sin (b+c) \sin (c+a) \sin (a+b)}
$$

This is nonnegative by the $r=1 / 2$ case of Schur's inequality.

§3. Muirhead's Inequality

Muirhead's inequality is an important generalization of the AM-GM inequality. It is a powerful tool for solving inequality problem. First we give a definition which is a generalization of arithmetic and geometric means.

Definition. Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers and $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{R}^{n}$. The p-mean of $x_{1}, x_{2}, \ldots, x_{n}$ is defined by

$$
[p]=\frac{1}{n!} \sum_{\sigma \in S_{n}} x_{\sigma(1)}^{p_{1}} x_{\sigma(2)}^{p_{2}} \cdots x_{\sigma(n)}^{p_{n}},
$$

where S_{n} is the set of all permutations of $\{1,2, \ldots, n\}$. (The summation sign means to sum n ! terms, one term for each permutation σ in S_{n}.)

For example, $[(1,0, \ldots, 0)]=\frac{1}{n!} \sum_{\sigma \in S_{n}} x_{\sigma(1)}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the arithmetic mean of x_{1}, x_{2}, \ldots, x_{n} and $\left[\left(\frac{1}{n}, \frac{1}{n}, \cdots, \frac{1}{n}\right)\right]=x_{1}^{1 / n} x_{2}^{1 / n} \cdots x_{n}^{1 / n}$ is their geometric mean.

Theorem (Muirhead's Inequality). Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers and $p, q \in \mathbb{R}^{n}$. If $p \succ q$, then $[p] \geq[q]$. Furthermore, for $p \neq q$, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$.

Since $(1,0, \ldots, 0) \succ(1 / n, 1 / n, \ldots, 1 / n)$, the AM-GM inequality is a corollary of Muirhead's inequality.

Example 1. For any $a, b, c>0$, prove that

$$
(a+b)(b+c)(c+a) \geq 8 a b c
$$

Solution. Expanding both sides, the desired inequality is

$$
a^{2} b+a^{2} c+b^{2} c+b^{2} a+c^{2} a+c^{2} b \geq 6 a b c
$$

or $[(2,1,0)] \geq[(1,1,1)]$. This is Muirhead's inequality for $(2,1,0) \succ(1,1,1)$.

For the next example, we would like to point out a useful trick. When the product of $x_{1}, x_{2}, \ldots, x_{n}$ is 1 , we have

$$
\left[\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right]=\left[\left(p_{1}-r, p_{2}-r, \ldots, p_{n}-r\right)\right]
$$

for any real number r.
Example 2. (1995 IMO) For any $a, b, c>0$ with $a b c=1$, prove that

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2}
$$

Solution. Multiplying by the common denominator and expanding both sides, the desired inequality is

$$
\begin{aligned}
& \quad 2\left(a^{4} b^{4}+b^{4} c^{4}+c^{4} a^{4}\right)+2\left(a^{4} b^{3} c+a^{4} c^{3} b+b^{4} c^{3} a+b^{4} a^{3} c+c^{4} a^{3} b+c^{4} b^{3} a\right) \\
& \quad+2\left(a^{3} b^{3} c^{2}+b^{3} c^{3} a^{2}+c^{3} a^{3} b^{2}\right) \\
& \geq \\
& \geq 3\left(a^{5} b^{4} c^{3}+a^{5} c^{4} b^{3}+b^{5} c^{4} a^{3}+b^{5} a^{4} c^{3}+c^{5} a^{4} b^{3}+c^{5} b^{4} a^{3}\right)+6 a^{4} b^{4} c^{4}
\end{aligned}
$$

This is equivalent to $[(4,4,0)]+2[(4,3,1)]+[(3,3,2)] \geq 3[(5,4,3)]+[(4,4,4)]$. Note $4+4+0=4+3+1=3+3+2=8$, but $5+4+3=4+4+4=12$. So we can set $r=4 / 3$ and use the trick above to get $[(5,4,3)]=[(11 / 3,8 / 3,5 / 3)]$ and also $[(4,4,4)]=$ [(8/3,8/3,8/3)].

Observe that $(4,4,0) \succ(11 / 3,8 / 3,5 / 3),(4,3,1) \succ(11 / 3,8 / 3,5 / 3)$ and $(3,3,2) \succ$ $(8 / 3,8 / 3,8 / 3)$. So applying Muirhead's inequality to these three majorizations and adding the inequalities, we get the desired inequality.
Example 3. (1990 IMO Shortlisted Problem) For any $x, y, z>0$ with $x y z=1$, prove that

$$
\frac{x^{3}}{(1+y)(1+z)}+\frac{y^{3}}{(1+z)(1+x)}+\frac{z^{3}}{(1+x)(1+y)} \geq \frac{3}{4} .
$$

Solution. Multiplying by the common denominator and expanding both sides, the desired inequality is

$$
4\left(x^{4}+y^{4}+z^{4}+x^{3}+y^{3}+z^{3}\right) \geq 3(1+x+y+z+x y+y z+z x+x y z)
$$

$$
\text { or } 4[(4,0,0)]+4[(3,0,0)] \geq[(0,0,0)]+3[(1,0,0)]+3[(1,1,0)]+[(1,1,1)] .
$$

For this, we apply Muirhead's inequality and the trick as follow:

$$
\begin{array}{ll}
& {[(4,0,0)] \geq[(4 / 3,4 / 3,4 / 3)]=[(0,0,0)],} \\
& 3[(4,0,0)] \geq 3[(2,1,1)]=3[(1,0,0)], \\
& 3[(3,0,0)] \geq 3[(4 / 3,4 / 3,1 / 3)]=3[(1,1,0)] \\
\text { and } & {[(3,0,0)] \geq[(1,1,1)] .}
\end{array}
$$

Adding these, we get the desired inequality.
Remark. For the following example, we will modify the trick above. In case $x y z$ ≥ 1, we have $\left[\left(p_{1}, p_{2}, p_{3}\right)\right] \geq\left[\left(p_{1}-r, p_{2}-r, p_{3}-r\right)\right]$ for every $r \geq 0$. Also, we will use the following

Fact. For $p, q \in \mathbb{R}^{n}$, we have $\frac{[p]+[q]}{2} \geq\left[\frac{p+q}{2}\right]$. (This is due to the AM-GM inequality $\frac{x_{\sigma(1)}^{p_{1}} \cdots x_{\sigma(n)}^{p_{n}}+x_{\sigma(1)}^{q_{1}} \cdots x_{\sigma(n)}^{q_{n}}}{2} \geq x_{\sigma(1)}^{\left(p_{1}+q_{1}\right) / 2} \cdots x_{\sigma(n)}^{\left(p_{n}+q_{n}\right) / 2}$. Summing over $\sigma \epsilon S_{n}$ and dividing by $n!$, we get the inequality.)

Example 4. (2005IMO) For any $x, y, z>0$ with $x y z \geq 1$, prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0 .
$$

Solution. Multiplying by the common denominator and expanding both sides, the desired inequality is equivalent to $[(9,0,0)]+4[(7,5,0)]+[(5,2,2)]+[(5,5,5)] \geq$ $[(6,0,0)]+[(5,5,2)]+2[(5,4,0)]+2[(4,2,0)]+[(2,2,2)]$.

To prove this, we note that
(1) $[(9,0,0)] \geq[(7,1,1)] \geq[(6,0,0)]$
(2) $[(7,5,0)] \geq[(5,5,2)]$
(3) $2[(7,5,0)] \geq 2[(6,5,1)] \geq 2[(5,4,0)]$
(4) $[(7,5,0)]+[(5,2,2)] \geq 2[(6,7 / 2,1)] \geq 2[(9 / 2,2,-1 / 2)] \geq 2[(4,2,0)]$
(5) $[(5,5,5)] \geq[(2,2,2)]$,
where (1) and (3) are by Muirhead's inequality and the remark, (2) is by Muirhead's inequality, (4) is by the fact, Muirhead's inequality and the remark and (5) is by the remark.

Considering the sum of the leftmost parts of these inequalities is greater than or equal to the sum of the rightmost parts of these inequalities, we get the desired inequalities.

Alternate Solution. Since

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}-\frac{x^{5}-x^{2}}{x^{3}\left(x^{2}+y^{2}+z^{2}\right)}=\frac{\left(x^{3}-1\right)^{2}\left(y^{2}+z^{2}\right)}{x\left(x^{2}+y^{2}+z^{2}\right)\left(x^{5}+y^{2}+z^{2}\right)} \geq 0 \text {, }
$$

we have

$$
\begin{aligned}
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} & \geq \frac{x^{5}-x^{2}}{x^{3}\left(x^{2}+y^{2}+z^{2}\right)}+\frac{y^{5}-y^{2}}{y^{3}\left(y^{2}+z^{2}+x^{2}\right)}+\frac{z^{5}-z^{2}}{z^{3}\left(z^{2}+x^{2}+y^{2}\right)} \\
& \geq \frac{1}{x^{2}+y^{2}+z^{2}}\left(x^{2}-\frac{1}{x}+y^{2}-\frac{1}{y}+z^{2}-\frac{1}{z}\right) \\
& \geq \frac{1}{x^{2}+y^{2}+z^{2}}\left(x^{2}+y^{2}+z^{2}-y z-z x-x y\right) \\
& =\frac{(x-y)^{2}+(y-z)^{2}+(z-x)^{2}}{2\left(x^{2}+y^{2}+z^{2}\right)} \geq 0 .
\end{aligned}
$$

Proofs of Muirhead's Inequality

Let $p \succ q$ and $p \neq q$. From $i=1$ to n, the first nonzero $p_{i}-q_{i}$ is positive. So there will be a negative $p_{i}-q_{i}$ later. It follows that there are $j<k$ such that $p_{j}>q_{j}$, $p_{k}<q_{k}$ and $p_{i}=q_{i}$ for any possible i between j, k.

Let $b=\left(p_{j}+p_{k}\right) / 2, d=\left(p_{j}-p_{k}\right) / 2$ so that $[b-d, b+d]=\left[p_{k}, p_{j}\right] \supset\left[q_{k}, q_{j}\right]$. Let c be the maximum of $\left|q_{j}-b\right|$ and $\left|q_{k}-b\right|$, then $0 \leq d<c$. Let $r=\left(r_{1}, \ldots, r_{n}\right)$ be defined by $r_{i}=p_{i}$ except $r_{j}=b+c$ and $r_{k}=b-c$. By the definition of c, either $r_{j}=q_{j}$ or $r_{k}=q_{k}$. Also, by the definitions of b, c, d, we get $p \succ r, p \neq r$ and $r \succ q$. Now

$$
25-9
$$

$$
n!([p]-[r])=\sum_{\sigma \in S_{n}} x_{\sigma}\left(x_{\sigma(j)}^{p_{j}} x_{\sigma(k)}^{p_{k}}-x_{\sigma(j)}^{r_{j}} x_{\sigma(k)}^{r_{k}}\right)=\sum_{\sigma \in S_{n}} x_{\sigma}\left(u^{b+d} v^{b-d}-u^{b+c} v^{b-c}\right)
$$

where x_{σ} is the product of $x_{\sigma(i)}^{p_{i}}$ for $i \neq j, k$ and $u=x_{\sigma(j)}, v=x_{\sigma(k)}$. For each permutation σ, there is a permutation ρ such that $\sigma(i)=\rho(i)$ for $i \neq j, k$ and $\sigma(j)=$ $\rho(k), \sigma(k)=\rho(j)$. In the above sum, if we pair the terms for σ and ρ, then $x_{\sigma}=x_{\rho}$ and combining the parenthetical factors for the σ and ρ terms, we have

$$
\left(u^{b+d} v^{b-d}-u^{b+c} v^{b-c}\right)+\left(v^{b+d} u^{b-d}-v^{b+c} u^{b-c}\right)=u^{b-d} v^{b-d}\left(u^{d+c}-v^{d+c}\right)\left(u^{d-c}-v^{d-c}\right) \geq 0 .
$$

So the above sum is nonnegative. Then $[p] \geq[r]$.
Equality holds if and only if $u=v$ for all pairs of σ and ρ, which means $x_{1}=$ $x_{2}=\cdots=x_{n}$. Finally we recall r has at least one more coordinate in agreement with q than p. So repeating this process finitely many times, we will eventually get the case $r=q$. Then we are done.

4. Functional Equations

A functional equation is an equation whose variables are ranging over functions. Hence, we are seeking all possible functions satisfying the equation. We will let \mathbb{Z} denote the set of all integers, \mathbb{Z}^{+}or \mathbb{N} denote the positive integers, \mathbb{N}_{0} denote the nonnegative integers, \mathbb{Q} denotes the rational numbers, \mathbb{R} denotes the real numbers, \mathbb{R}^{+}denote the positive real numbers and \mathbb{C} denote the complex numbers.

In simple cases, a functional equation can be solved by introducing some substitutions to yield more informations or additional equations.
Example. (1) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x^{2} f(x)+f(1-x)=2 x-x^{4}
$$

for all $x \in \mathbb{R}$.
Solution. Replacing x by $1-x$, we have $(1-x)^{2} f(1-x)+f(x)=2(1-x)-$ $(1-x)^{4}$. Since $f(1-x)=2 x-x^{4}-x^{2} f(x)$ by the given equation, we have $(1-x)^{2}\left(2 x-x^{4}-x^{2} f(x)\right)+f(x)=2(1-x)-(1-x)^{4}$. Solving for $f(x)$, we have

$$
f(x)=\frac{2(1-x)-(1-x)^{4}-(1-x)^{2}\left(2 x-x^{4}\right)}{1-x^{2}(1-x)^{2}}=1-x^{2}
$$

Check: For $f(x)=1-x^{2}, x^{2} f(x)+f(1-x)=x^{2}\left(1-x^{2}\right)+\left(1-(1-x)^{2}\right)=$ $2 x-x^{4}$.

For certain type of functional equations, a standard approach to solving the problem is to determine some special values (such as $f(0)$ or $f(1)$), then inductively determine $f(n)$ for $n \in \mathbb{N}_{0}$, follow by reciprocal values $f\left(\frac{1}{n}\right)$ and use density to find all $f(x), x \in \mathbb{R}$. The following are examples of such approach.
Example. (2) Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that

$$
f(x+y)=f(x)+f(y) \quad \text { (Cauchy Equation) }
$$

for all $x, y \in \mathbb{Q}$.
Solution. Step 1 Taking $x=0=y$, we get $f(0)=f(0)+f(0) \Rightarrow f(0)=0$.

Step 2 We will prove $f(k x)=k f(x)$ for $k \in \mathbb{N}, x \in \mathbb{Q}$ by induction. This is true for $k=1$. Assume this is true for k. Taking $y=k x$, we get

$$
f(x+k x)=f(x)+f(k x)=f(x)+k f(x)=(k+1) f(x) .
$$

Step 3 Taking $y=-x$, we get $0=f(0)=f(x+(-x))=f(x)+f(-x) \Rightarrow$ $f(-x)=-f(x)$. So $f(-k x)=-f(k x)=-k f(x)$ for $k \in \mathbb{N}$. Therefore, $f(k x)=k f(x)$ for $k \in \mathbb{Z}, x \in \mathbb{Q}$.
Step 4 Taking $x=\frac{1}{k}$, we get $f(1)=f\left(k \frac{1}{k}\right)=k f\left(\frac{1}{k}\right) \Rightarrow f\left(\frac{1}{k}\right)=\frac{1}{k} f(1)$.
Step 5 For $m \in \mathbb{Z}, n \in \mathbb{N}, f\left(\frac{m}{n}\right)=m f\left(\frac{1}{n}\right)=\frac{m}{n} f(1)$. Therefore, $f(x)=c x$ with $c(=f(1)) \in \mathbb{Q}$.
Check: For $f(x)=c x$ with $c \in \mathbb{Q}, f(x+y)=c(x+y)=c x+c y=f(x)+f(y)$.
In dealing with functions on \mathbb{R}, after finding the function on \mathbb{Q}, we can often finish the problem by using the following fact.

Density of Rational Numbers. For every real number x, there are rational numbers p_{1}, p_{2}, \ldots increase to x and there are rational numbers q_{1}, q_{2}, \ldots decrease to x. We denote this by $p_{n} \nearrow x$ and $q_{n} \searrow x$ as $n \rightarrow+\infty$.

It follows from decimal representation of real numbers. For example, $\pi=$ $3.14159 \ldots$ is the limits of $3, \frac{31}{10}, \frac{314}{100}, \frac{3141}{1000}, \ldots$ and also $4, \frac{32}{10}, \frac{315}{100}, \frac{3142}{1000}, \ldots$

Example. (3) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$ and $f(x) \geq 0$ for $x \geq 0$.
Solution. Step 1 By example 2, $f(x)=x f(1)$ for $x \in \mathbb{Q}$.
$\underline{\text { Step } 2}$ If $x \geq y$, then $x-y \geq 0$. So

$$
f(x)=f((x-y)+y)=f(x-y)+f(y) \geq f(y) .
$$

So, f is increasing.
Step 3 If $x \in \mathbb{R}$, then by the density of rational numbers, there are $p_{n}, q_{n} \in \mathbb{Q}$ such that $p_{n} \leq x \leq q_{n}, p_{n} \nearrow x$ and $q_{n} \searrow x$ as $n \rightarrow+\infty$. So by steps 1 and 2 , $p_{n} f(1)=f\left(p_{n}\right) \leq f(x) \leq f\left(q_{n}\right)=q_{n} f(1)$. As $n \rightarrow+\infty, p_{n} f(1) \nearrow x f(1)$
and $q_{n} f(1) \searrow x f(1)$. So $p_{n} f(1)$ and $q_{n} f(1)$ will squeeze $f(x)$ to $x f(1)$. We get $f(x)=x f(1)$ for all $x \in \mathbb{R}$. Therefore, $f(x)=c x$ with $c(=f(1)) \geq 0$.
Check: For $f(x)=c x$ with $c \geq 0, f(x+y)=c(x+y)=c x+c y=f(x)+f(y)$ and $f(x)=c x \geq 0$ for $x \geq 0$.

Remarks. (1) In example 3, if we replace the condition " $f(x) \geq 0$ for $x \geq 0$ " by " f is monotone", then the answer is essentially the same, namely $f(x)=c x$ with $c=f(1)$. Also, if the condition " $f(x) \geq 0$ for $x \geq 0$ " is replaced by " f is continuous at 0 ", then steps 2 and 3 in example 3 are not necessary. We can take rational $p_{n} \nearrow x$ and take limit of $p_{n} f(1)=f\left(p_{n}\right)=f\left(p_{n}-x\right)+f(x)$ to get $x f(1)=f(x)$ since $p_{n}-x \nearrow 0$.
(2) The Cauchy equation $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$ has noncontinuous solutions (in particular, solutions not of the form $f(x)=c x$). This requires the concept of a Hamel basis of the vector space \mathbb{R} over \mathbb{Q} from linear algebra.

The following are some useful facts related to the Cauchy equation.
Fact 1. Let $A=\mathbb{R},[0, \infty)$ or $(0, \infty)$. If $f: A \rightarrow \mathbb{R}$ satisfies $f(x+y)=$ $f(x)+f(y)$ and $f(x y)=f(x) f(y)$ for all $x, y \in A$, then either $f(x)=0$ for all $x \in A$ or $f(x)=x$ for all $x \in A$.
Proof. By example 2, we have $f(x)=f(1)=x$ for all $x \in \mathbb{Q}$. If $f(1)=0$, then $f(x)=f(x \cdot 1)=f(x) f(1)=0$ for all $x \in A$. Otherwise, we have $f(1) \neq 0$. since $f(1)=f(1) f(1)$, we get $f(1)=1$. Then $f(x)=x$ for all $x \in A \cap \mathbb{Q}$.

If $y \geq 0$, then $f(y)=f(\sqrt{y}) f(\sqrt{y})=f(\sqrt{y})^{2} \geq 0$ and $f(x+y)=$ $f(x)+f(y) \geq f(x)$, which implies f is increasing. Now for any $x \in A \backslash \mathbb{Q}$, by the density of rational numbers, there are $p_{n}, q_{n} \in \mathbb{Q}$ such that $p_{n}<x<q_{n}$, $p_{n} \nearrow x$ and $q_{n} \searrow x$ as $n \rightarrow+\infty$. As f is increasing, we have $p_{n}=f\left(p_{n}\right) \leq$ $f(x) \leq f\left(q_{n}\right)=q_{n}$. Taking limits, the sandwich theorem gives $f(x)=x$ for all $x \in A$.

Fact 2. If a function $f:(0, \infty) \rightarrow \mathbb{R}$ satisfies $f(x y)=f(x) f(y)$ for all $x, y>0$ and f is monotone, then either $f(x)=0$ for all $x>0$ or there exists c such that $f(x)=x^{c}$ for all $x>0$.

Proof. For $x>0, f(x)=f(\sqrt{x})^{2} \geq 0$. Also, $f(1)=f(1) f(1)$ implies $f(1)=$ 0 or 1 . If $f(1)=0$, then $f(x)=f(x) f(1)=0$ for all $x>0$. If $f(1)=1$, then
$f(x)>0$ for all $x>0\left(\right.$ since $f(x)=0$ implies $f(1)=f\left(x \frac{1}{x}\right)=f(x) f\left(\frac{1}{x}\right)=0$, which would lead to a contradiction).

$$
\text { Define } g: \mathbb{R} \rightarrow \mathbb{R} \text { by } g(w)=\ln f\left(e^{w}\right) \text {. Then }
$$

$g(x+y)=\ln f\left(e^{x+y}\right)=\ln f\left(e^{x}\right) f\left(e^{y}\right)=\ln f\left(e^{x}\right)+\ln f\left(e^{y}\right)=g(x)+g(y)$.
Since f is monotone, it follows that g is also monotone. Then $g(w)=c w$ for all w. Therefore, $f(x)=x^{c}$ for all $x>0$.

As an application of these facts, we look at the following example.
Example. (4) (2002 IMO) Find all functions f from the set \mathbb{R} of real numbers to itself such that

$$
(f(x)+f(z))(f(y)+f(t))=f(x y-z t)+f(x t+y z)
$$

for all x, y, z, t in \mathbb{R}.
Solution. (Due to Yu Hok Pun, 2002 Hong Kong IMO team member, gold medalist) Suppose $f(x)=c$ for all x. Then the equation implies $4 c^{2}=2 c$. So c can only be 0 or $\frac{1}{2}$. Reversing steps, we can also check $f(x)=0$ for all x or $f(x)=\frac{1}{2}$ for all x are solutions.

Suppose the equation is satisfied by a nonconstant function f. Setting $x=0$ and $z=0$, we get $2 f(0)(f(y)+f(t))=2 f(0)$, which implies $f(0)=0$ or $f(y)+f(t)=1$ for all y, t. In the latter case, setting $y=t$, we get the constant function $f(y)=\frac{1}{2}$ for all y. Hence we may assume $f(0)=0$.

Setting $y=1, z=0, t=0$, we get $f(x) f(1)=f(x)$. Since $f(x)$ is not the zero function, $f(1)=1$. Setting $z=0, t=0$, we get $f(x) f(y)=f(x y)$ for all xy. In particular, $f(w)=f(\sqrt{w})^{2} \geq 0$ for $w>0$.

Setting $x=0, y=1$ and $t=1$, we have $2 f(1) f(z)=f(-z)+f(z)$, which implies $f(-z)=f(z)$ for all z. So f is even.

Define the function $g:(0, \infty) \rightarrow \mathbb{R}$ by $g(w)=f(\sqrt{w}) \geq 0$. Then for all $x, y>0$,

$$
g(x y)=f(\sqrt{x y})=f(\sqrt{x} \sqrt{y})=f(\sqrt{x}) f(\sqrt{y})=g(x) g(y)
$$

Next f is even implies $g\left(x^{2}\right)=f(x)$ for all x. Setting $z=y, t=x$ in the given equation, we get

$$
\left(g\left(x^{2}\right)+g\left(y^{2}\right)\right)^{2}=g\left(\left(x^{2}+y^{2}\right)^{2}\right)=g\left(x^{2}+y^{2}\right)^{2}
$$

for all x, y. Taking square roots and letting $a=x^{2}, b=y^{2}$, we get $g(a+b)=$ $g(a)+g(b)$ for all $a, b>0$.

By fact 1 , we have $g(w)=w$ for all $w>0$. Since $f(0)=0$ and f is even, it follows $f(x)=g\left(x^{2}\right)=x^{2}$ for all x.
Check: If $f(x)=x^{2}$, then the equation reduces to

$$
\left(x^{2}+z^{2}\right)\left(y^{2}+t^{2}\right)=(x y-z t)^{2}+(x t+y z)^{2}
$$

which is a well known identity and can easily be checked by expansion or seen from $|p|^{2}|q|^{2}=|p q|^{2}$, where $p=x+i z, q=y+i t \in \mathbb{C}$.

The concept of a fixed point is another useful idea in attacking a functional equations. Knowing all the fixed points are important in certain types of functional equations.
Definitions. w is a fixed point of a function f if w is in the domain of f and $f(w)=w$. Let $f^{(1)}=f$ and $f^{(n)}=f \circ f^{(n-1)}$ for $n=2,3,4, \ldots$, the function $f^{(n)}$ is called the n-th iterate of f.
(5) (1983 IMO) Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f(x f(y))=y f(x)$ for all $x, y \in \mathbb{R}^{+}$and as $x \rightarrow+\infty, f(x) \rightarrow 0$.
Solution. Step 1 Taking $x=1=y$, we get $f(f(1))=f(1)$. Taking $x=1, y=$ $f(1)$, we get $f(f(f(1)))=f(1)^{2}$. Then

$$
f(1)^{2}=f(f(f(1)))=f(f(1))=f(1) \Rightarrow f(1)=1
$$

since $f(1) \in \mathbb{R}^{+}$. So 1 is a fixed point of f.
Step 2 Taking $y=x$, we get $f(x f(x))=x f(x)$. So $w=x f(x)$ is a fixed point of f for every $x \in \mathbb{R}^{+}$.
Step 3 Suppose f has a fixed point $x>1$. By step $2, x f(x)=x^{2}$ is also a fixed point, $x^{2} f\left(x^{2}\right)=x^{4}$ is also a fixed point, So $x^{2^{n}}$,s are fixed points. Since
$x>1, x^{2^{n}} \rightarrow+\infty$, but $f\left(x^{2^{n}}\right)=x^{2^{n}} \rightarrow+\infty$, not 0 . This contradicts $f(x) \rightarrow 0$ as $x \rightarrow+\infty$. So f does not have any fixed point $x>1$.

Step 4 Suppose f has a fixed point $x \in(0,1)$. Then

$$
1=f\left(\frac{1}{x} x\right)=f\left(\frac{1}{x} f(x)\right)=x f\left(\frac{1}{x}\right) \Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{x}
$$

i.e. f has a fixed point $\frac{1}{x}>1$, contradicting step 3. So f does not have any fixed point $x \in(0,1)$.
$\underline{\text { Step } 5}$ Steps 1, 3, 4 showed the only fixed point of f is 1 . By step 2 , we get $\overline{x f(x)}=1 \Rightarrow f(x)=\frac{1}{x}$ for all $x \in \mathbb{R}^{+}$.
Check: For $f(x)=\frac{1}{x}, f(x f(y))=f\left(\frac{x}{y}\right)=\frac{y}{x}=y f(x)$. As $x \rightarrow+\infty, f(x)=$ $\frac{1}{x} \rightarrow 0$.
(6) (1996 IMO) Find all functions $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ such that $f(m+f(n))=$ $f(f(m))+f(n)$ for all $m, n \in \mathbb{N}_{0}$.

Solution. Step 1 Taking $m=0=n$, we get $f(f(0))=f(f(0))+f(0) \Rightarrow$ $f(0)=0$. Taking $m=0$, we get $f(f(n))=f(n)$, i.e. $f(n)$ is a fixed point of f for every $n \in \mathbb{N}_{0}$. Also the equation becomes $f(m+f(n))=f(m)+f(n)$.
Step 2 If w is a fixed point of f, then we will show $k w$ is a fixed point of f for all $k \in \mathbb{N}_{0}$. The cases $k=0,1$ are known. Suppose $k w$ is a fixed point, then $f(k w+w)=f(k w+f(w))=f(k w)+f(w)=k w+w$ and so $(k+1) w$ is also a fixed point.

Step 3 If 0 is the only fixed point of f, then $f(n)=0$ for all $n \in \mathbb{N}_{0}$ by step 1 . Obviously, the zero function is a solution.

Otherwise, f has a least fixed point $w>0$. We will show the only fixed points are $k w, k \in \mathbb{N}_{0}$. Suppose x is a fixed point. By the division algorithm, $x=k w+r$, where $0 \leq r<w$. We have

$$
x=f(x)=f(r+k w)=f(r+f(k w))=f(r)+f(k w)=f(r)+k w .
$$

So $f(r)=x-k w=r$. Since w is the least positive fixed point, $r=0$ and $x=k w$.

Since $f(n)$ is a fixed point for all $n \in \mathbb{N}_{0}$ by step $1, f(n)=c_{n} w$ for some $c_{n} \in \mathbb{N}_{0}$. We have $c_{0}=0$.

Step 4 For $n \in \mathbb{N}_{0}$, by the division algorithm, $n=k w+r, 0 \leq r<w$. We have

$$
\begin{aligned}
f(n) & =f(r+k w)=f(r+f(k w))=f(r)+f(k w) \\
& =c_{r} w+k w=\left(c_{r}+k\right) w=\left(c_{r}+\left[\frac{n}{w}\right]\right) w .
\end{aligned}
$$

Check: For each $w>0$, let $c_{0}=0$ and let $c_{1}, \ldots, c_{w-1} \in \mathbb{N}_{0}$ be arbitrary. The functions $f(n)=\left(c_{r}+\left[\frac{n}{w}\right]\right) w$, where r is the remainder of n divided by w, (and the zero function) are all the solutions. Write $m=k w+r, n=l w+s$ with $0 \leq r, s<w$. Then
$f(m+f(n))=f\left(r+k w+\left(c_{s}+l\right) w\right)=c_{r} w+k w+c_{s} w+l w=f(f(m))+f(n)$.

Let S_{n} be the set of fixed points of $f^{(n)}$. Observe that if x is a fixed point of $f^{(n)}$, then $f(x)$ is also a fixed point of $f^{(n)}$ because $f^{(n)}(f(x))=f^{(n+1)}(x)=$ $f\left(f^{(n)}(x)\right)=f(x)$. So f takes S_{n} to itself. Also f is injective on S_{n} because if $f(a)=f(b)$ for $a, b \in S_{n}$, then $a=f^{(n)}(a)=f^{(n-1)}(f(a))=f^{(n-1)}(f(b))=$ $f^{(n)}(b)=b$. This means that if S_{n} is a finite set, then f is a permutation of S_{n}.

Since $g(x)=x$ implies $g^{(2)}(x)=g(g((x))=g(x)=x$, so the fixed points of g are also fixed points of $g^{(2)}$. Letting $g=f, f^{(2)}, f^{(4)}, f^{(8)}, \ldots$, respectively, we get $S_{1} \subseteq S_{2} \subseteq S_{4} \subseteq S_{8} \subseteq \cdots$.

Example. (7) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(f(x))=x^{2}-2$ for all $x \in \mathbb{R}$.
Solution. Assume such f exists. It turns out S_{2} and S_{4} are useful for this problem. The fixed points of $f^{(2)}$ are the roots of $x=x^{2}-2$, i.e. $S_{2}=\{-1,2\}$. The fixed points of $f^{(4)}$ are the roots of $x=x^{4}-4 x^{2}+2$. i.e. $S_{4}=\left\{-1,2, \frac{-1 \pm \sqrt{5}}{2}\right\}$. Let $c=\frac{-1+\sqrt{5}}{2}, d=\frac{-1-\sqrt{5}}{2}$. Since f permutes S_{2} and $c, d \in S_{4} \backslash S_{2}, f(c)=c$ or d. If $f(c)=c$, then $f^{(2)}(c)=c$ implies c is a fixed point of $f^{(2)}$, which is not
true. So $f(c)=d$ and hence $f(d)=c$. Then $c=f(d)=f(f(c))=f^{(2)}(c)$, again a contradiction. So no such f can exist.

The above examples showed traditional or systematical ways of solving functional equations. The following examples show some other approaches to deal with these equations.

Example. (8) Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(f(m)+f(n))=m+n$ for all $m, n \in \mathbb{N}$.

Solution. Clearly, the identity function $f(x)=x$ is a solution. We will show that is the only solution.

To show $f(1)=1$, suppose $f(1)=t>1$. Let $s=f(t-1)>0$. Observe that if $f(m)=n$, then $f(2 n)=f(f(m)+f(m))=2 m$. So $f(2 t)=2$ and $f(2 s)=2 t-2$. Then $2 s+2 t=f(f(2 s)+f(2 t))=f(2 t)=2 \Rightarrow t<1$, a contradiction. Therefore, $f(1)=1$.

Inductively, suppose $f(n)=n$. Then $f(n+1)=f(f(n)+f(1))=n+1$ Therefore, $f(n)=n$ for all $n \in \mathbb{N}$ by mathematical induction.
(9) (1987 IMO) Prove that there is no function $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ such that $f(f(n))=$ $n+1987$.
Solution. Suppose there is such a function f. Then f is injective, i.e. $f(a)=$ $f(b) \Rightarrow a+1987=f(f(a))=f(f(b))=b+1987 \Rightarrow a=b$.

Suppose $f(n)$ misses exactly k distinct values c_{1}, \ldots, c_{k} in \mathbb{N}_{0}, i.e. $f(n) \neq$ c_{1}, \ldots, c_{k} for all $n \in \mathbb{N}_{0}$. Then $f(f(n))$ misses the $2 k$ distinct values c_{1}, \ldots, c_{k} and $f\left(c_{1}\right), \ldots, f\left(c_{k}\right)$ in \mathbb{N}_{0}. (The $f\left(c_{j}\right)$'s are distinct because f is injective.) Now if $w \neq c_{1}, \ldots, c_{k}, f\left(c_{1}\right), \ldots, f\left(c_{k}\right)$, then there is $m \in \mathbb{N}_{0}$ such that $f(m)=w$. Since $w \neq f\left(c_{j}\right), m \neq c_{j}$, so there is $n \in \mathbb{N}_{0}$ such that $f(n)=m$, then $f(f(n))=$ w. This shows $f(f(n))$ misses only the $2 k$ values $c_{1}, \ldots, c_{k}, f\left(c_{1}\right), \ldots, f\left(c_{k}\right)$ and no others. Since $n+1987$ misses the 1987 values $0,1, \ldots, 1986$ and $2 k \neq 1987$, this is a contradiction.
(10) (1999 IMO) Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all $x, y \in \mathbb{R}$.
Solution. Let $c=f(0)$. Setting $x=y=0$, we get $f(-c)=f(c)+c-1$. So $c \neq 0$. Let A be the range of f, then for $x=f(y) \in A$, we have $c=f(0)=$ $f(x)+x^{2}+f(x)-1$. Solving for $f(x)$, this gives $f(x)=\frac{c+1}{2}-\frac{x^{2}}{2}$.

Next, if we set $y=0$, we get

$$
\{f(x-c)-f(x): x \in \mathbb{R}\}=\{c x+f(c)-1: x \in \mathbb{R}\}=\mathbb{R}
$$

because $c \neq 0$. This means $A-A=\left\{y_{1}-y_{2}: y_{1}, y_{2} \in A\right\}=\mathbb{R}$.
Now for an arbitrary $x \in \mathbb{R}$, let $y_{1}, y_{2} \in A$ be such that $y_{1}-y_{2}=x$. Then

$$
\begin{aligned}
f(x) & =f\left(y_{1}-y_{2}\right)=f\left(y_{2}\right)+y_{1} y_{2}+f\left(y_{1}\right)-1 \\
& =\frac{c+1}{2}-\frac{y_{2}^{2}}{2}+y_{1} y_{2}+\frac{c+1}{2}-\frac{y_{1}^{2}}{2}-1 \\
& =c-\frac{\left(y_{1}-y_{2}\right)^{2}}{2}=c-\frac{x^{2}}{2} .
\end{aligned}
$$

Since for $x \in A, f(x)=\frac{c+1}{2}-\frac{x^{2}}{2}$, so $c=1$. Hence, $f(x)=1-\frac{x^{2}}{2}$ for all x.
Check: For $f(x)=1-\frac{x^{2}}{2}$, both sides equal $\frac{1}{2}+\frac{y^{2}}{2}-\frac{y^{4}}{8}+x-\frac{x y^{2}}{2}-\frac{x^{2}}{2}$.

Exercises

1. Find all functions $f: \mathbb{N}_{0} \rightarrow \mathbb{Q}$ such that $f(1) \neq 0$ and

$$
f\left(x+y^{2}\right)=f(x)+2(f(y))^{2} \quad \text { for all } x, y \in \mathbb{N}_{0} .
$$

2. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ such that $f(1)=2$ and

$$
f(x y)=f(x) f(y)-f(x+y)+1 \quad \text { for all } x, y \in \mathbb{Q} .
$$

3. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ such that

$$
f(x) f(y)=f(x+y) \quad \text { for all } x, y \in \mathbb{Q} .
$$

4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(a) $f(x+y)=f(x)+f(y)+2 x y$ for all $x, y \in \mathbb{R}$ and
(b) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$.
(Hint: For $n \in \mathbb{N}$, consider $y=x, y=2 x, \ldots, y=(n-1) x$.)
5. (1986 IMO) Find all functions $f:[0, \infty) \rightarrow[0, \infty)$ such that
(a) $f(x f(y)) f(y)=f(x+y)$ for $x, y \geq 0$ and
(b) $f(2)=0$ and $f(x) \neq 0$ for $0 \leq x<2$.
6. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$is such that

$$
f\left(\sqrt{x^{2}+y^{2}}\right)=f(x) f(y) \quad \text { for every } x, y \in \mathbb{R} .
$$

Find $f(x)$ for $x \in \mathbb{Q}$ in terms of $f(1)$.
*7. (1990 IMO) Let \mathbb{Q}^{+}be the set of positive rational numbers. Construct a function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$such that

$$
f(x f(y))=\frac{f(x)}{y} \quad \text { for all } x, y \in \mathbb{Q}^{+} .
$$

*8. (1994 IMO) Let S be the set of real numbers greater than -1 . Find all functions $f: S \rightarrow S$ such that
(a) $f(x+f(y)+x f(y))=y+f(x)+y f(x)$ for all $x, y \in S$ and
(b) $\frac{f(x)}{x}$ is strictly increasing for $-1<x<0$ and for $0<x$.
(Hint: Show f can only have a fixed point at 0 .)
*9. (1992 IMO) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+f(y)\right)=y+(f(x))^{2} \quad \text { for all } x, y \in \mathbb{R}
$$

(Hint: Assume $f(0)=0$, then show $x>0 \Rightarrow f(x)>0$, and f is increasing.)
*10. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that $f(2)=2$ and

$$
f\left(\frac{x+y}{x-y}\right)=\frac{f(x)+f(y)}{f(x)-f(y)} \quad \text { for } x \neq y
$$

(Hint: Try $y=c x$ for different $c \in \mathbb{Q}$ and $y=x-2$.)

5. Number Theory

§1 Divisibility

Definitions. (i) If a, b, c are integers such that $a=b c$ and $b \neq 0$, then we say b divides a and denote this by $b \mid a$. (For example, 2 divides 6 , so we write $2 \mid 6$.)
(ii) A positive integer $p>1$ is a prime number if 1 and p are the only positive integers dividing p. If a positive integer $n>1$ is not prime, it is a composite number.

There is a famous proof of the fact that there are infinitely many prime numbers. It goes as follow. Suppose there are only finitely many prime numbers, say they are $p_{1}, p_{2}, \ldots, p_{n}$. Then the number $M=p_{1} p_{2} \cdots p_{n}+1$ is greater than $p_{1}, p_{2}, \ldots, p_{n}$. So M cannot be prime, hence there is a prime number p_{i} dividing M. However, p_{i} also divides $M-1$. Hence p_{i} will divide $M-(M-1)=1$, a contradiction.

Fundamental Theorem of Arithmetic (or Prime Factorization Theorem). Every positive integer n can be written as the product of prime powers $n=$ $2^{e_{1}} 3^{e_{2}} 5^{e_{3}} 7^{e_{4}} \ldots p_{k}^{e_{k}}$, where the e_{i} 's are nonnegative integers, in one and only one way (except for reordering of the primes).

Examples. $90=2^{1} 3^{2} 5^{1}$ and $924=2^{2} 3^{1} 7^{1} 11^{1}$.
Questions. Do positive rational numbers have prime factorizations? (Yes, if exponents are allowed to be any integers.) Do positive real numbers have prime factorizations (allowing rational exponents)? (No, π does not.)

Corollaries. (1) $m=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}}$ divides $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ if and only if $0 \leq d_{i} \leq e_{i}$ for $i=1,2, \cdots, k$.
(2) The number $n=2^{e_{1}} 3^{e_{2}} \cdots p_{k}^{e_{k}}$ has exactly $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)$ positive divisors.
(3) A positive integer n is the m-th power of a positive integer b (i.e. $n=b^{m}$) if and only if in the prime factorization of $n=2^{e_{1}} 3^{e_{2}} 5^{e_{3}} \ldots p_{k}^{e_{k}}$, every e_{i} is a multiple of m.

Examples. (1) Since $90=2^{1} 3^{2} 5^{1}$, it has $(1+1)(2+1)(1+1)=12$ positive divisors. They are $2^{d_{1}} 3^{d_{2}} 5^{d_{3}}$, where $d_{1}=0,1, d_{2}=0,1,2$ and $d_{3}=0,1$.
(2) Suppose n is a positive integer such that $2 n$ has 28 positive divisors and $3 n$ has 30 positive divisors. How many positive divisors does $6 n$ have?

Solution. Write $n=2^{e_{1}} 3^{e_{2}} \cdots p_{k}^{e_{k}}$. Then $\left(e_{1}+2\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)=28$ and $\left(e_{1}+1\right)\left(e_{2}+2\right) \cdots\left(e_{k}+1\right)=30$. Now $a=\left(e_{3}+1\right) \cdots\left(e_{k}+1\right)$ divides 28 and 30 , so it must be 1 or 2 . If $a=1$, then $\left(e_{1}+2\right)\left(e_{2}+1\right)=28$ and $\left(e_{1}+1\right)\left(e_{2}+2\right)=30$, which have the unique solution $e_{1}=5, e_{2}=3$. It follows $6 n$ has $\left(e_{1}+2\right)\left(e_{2}+2\right) a=35$ positive divisors. If $a=2$, then $\left(e_{1}+2\right)\left(e_{2}+1\right)=14$ and $\left(e_{1}+1\right)\left(e_{2}+2\right)=15$, which have no integer solutions by simple checking.
(3) (1985 IMO) Given a set M of 1985 distinct positive integers, none of which has a prime divisor greater than 26 . Prove that M contains at least one subset of four distinct elements whose product is the fourth power of an integer.
Solution. Let $M=\left\{n_{1}, n_{2}, n_{3}, \ldots, n_{1985}\right\}$. Taking prime factorizations, suppose $n_{i}=2^{e_{1, i},} 3^{e_{2, i}} 5^{e_{3, i}} \cdots 23^{e_{9, i}}$. Since 23 is the ninth prime number, there are $2^{9}=512$ possible parity (i.e. odd-even) patterns for the numbers $e_{i, 1}, e_{2, i}, e_{3, i}, \ldots, e_{9, i}$. So among any 513 of them, there will be two (say n_{i}, n_{j}) with the same pattern. Then $n_{i} n_{j}=b_{i j}^{2}$. Note $b_{i j}$ cannot have any prime divisor greater than 26.

Remove these pairs one at a time. Since $1985-2 \times 512=961>513$, there are at least 513 pairs. Consider the $b_{i j}$'s for these pairs. There will be two (say $b_{i j}, b_{k l}$) such that $b_{i j} b_{k l}=c^{2}$. Then $n_{i} n_{j} n_{k} n_{l}=b_{i j}^{2} b_{k l}^{2}=c^{4}$.

Definitions. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers, not all zeros

(i) The greatest common divisor (or highest common factor) of $a_{1}, a_{2}, \ldots, a_{n}$ is the largest positive integer dividing all of them. We denote this number by ($a_{1}, a_{2}, \ldots, a_{n}$) or $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. If $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, then we say $a_{1}, a_{2}, \ldots, a_{n}$ are coprime or relatively prime. In particular, two coprime integers have no common prime divisors!
(ii) The least common multiple of $a_{1}, a_{2}, \ldots, a_{n}$ is the least positive integer which is a multiple of each of them. We denote this number by $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or $\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Example. (4) $(6,8)=2,[6,8]=24 ;(6,8,9)=1,[6,8,9]=72$.
Theorem. If $a_{i}=2^{e_{1, i}} 3^{e_{2, i}} \ldots p_{k}^{e_{k, i}}$, then

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=2^{\min \left\{e_{1, i}\right\}} 3^{\min \left\{e_{2}, i\right.} \cdots p_{k}^{\min \left\{e_{k, i}\right\}}
$$

and

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]=2^{\max \left\{e_{1, i}\right\}} 3^{\max \left\{e_{2, i}\right\}} \cdots p_{k}^{\max \left\{e_{k, i}\right\}} .
$$

For $n=2,\left(a_{1}, a_{2}\right)\left[a_{1}, a_{2}\right]=a_{1} a_{2}$. (The last equation need not be true for more than 2 numbers.)

Example. (5) $6=2^{1} 3^{1}, 8=2^{3} 3^{0}$, so $(6,8)=2^{1} 3^{0}=2,[6,8]=2^{3} 3^{1}=24$.
Prime factorization is difficult for large numbers. So to find gcd's, we can also use the following fact.

Euclidean Algorithm. If a, b are integers not both zeros, then $(a, b)=(a-$ $b m, b)=(a, b-a n)$ for any positive integers m, n. In particular, if $a>b>0$ and $a=b m+r$, then $(a, b)=(r, b)$.

Examples. (6) $(2445,652)=(489,652)=(489,163)=163$.
(7) (IMO 1959) Prove that the fraction $\frac{21 n+4}{14 n+3}$ is irreducible for every natural number n.
Solution. $(21 n+4,14 n+3)=(7 n+1,14 n+3)=(7 n+1,1)=1$.
The following are some useful facts about relatively prime integers.
(1) For nonnegative integers a, b not both zeros, (a, b) is the least positive integer of the form $a m+b n$, where m, n are integers. In particular, if $(a, b)=1$, then there are integers m, n such that $a m+b n=1$.

Reasons. Clearly (a, b) divides positive numbers of the form $a m+b n$, hence $(a, b) \leq a m+b n$. By symmetry, we may assume $a \geq b$. We will induct on a. If $a=1$, then $b=0$ or 1 and $(a, b)=1=a \cdot 1+b \cdot 0$. Suppose this is true for all cases $a<a_{0}$. By Euclidean algoritnm, $\left(a_{0}, b\right)=(r, b)$, where $a_{0}=b q+r, 0 \leq r<b$. Since $b<a_{0}$, by the inductive hypothesis, there are integers m, n such that $\left(a_{0}, b\right)=(r, b)=r m+b n=\left(a_{0}-b q\right) m+b n=$ $a_{0} m+b(n-q m)$. So the case $a=a_{0}$ is true.
(2) If $n \mid a b$ and $(a, n)=1$, then $n \mid b$. (This is because $a r+n s=1$ for some integers r, s so that $n \mid(a b) r+n(s b)=b$.) In particular, if p is prime and $p \mid a b$, then $p \mid a$ or $p \mid b$. From this, we get that if $(a, n)=1$ and $(b, n)=1$, then $(a b, n)=1$.
(3) If $n^{k}=a b$ and $(a, b)=1$, then each of a and b is the k-th power of an integer. (This follows from taking prime factorization of n and using the second part of the last fact.)

§2 Modulo Arithmetic.

Division Algorithm. Let b be a positive integer. For any integer a, there are integers q, r such that $a=b q+r$ and $0 \leq r<b$. (r is called the remainder of a upon division by b. Remainders are always nonnegative.)

Note that when 19 is divided by 5 , the remainder is 4 , but when -19 is divided by 5 , the remainder is 1 because $-19=5(-4)+1$. When the integers $\ldots,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7, \ldots$ is divided by 5 , the respective remainders form the periodic sequence

$$
\ldots, 4,0,1,2,3,4,0,1,2,3,4,0,1,2, \ldots .
$$

Definitions. (i) We say a is congruent to a^{\prime} modulo b and denote this by $a \equiv$ $a^{\prime}(\bmod b)$ if and only if a and a^{\prime} have the same remainder upon division by b.
(ii) For a positive integer n, a complete set of residues modulo n is a set of n integers $r_{1}, r_{2}, \ldots, r_{n}$ such that every integer is congruent to exactly one of $r_{1}, r_{2}, \ldots, r_{n}$ modulo n. (For example, $0,1,2, \ldots, n-1$ form a complete set of residues modulo n for every positive integer n.)

Basic Properties. (i) $a \equiv a^{\prime}(\bmod b)$ if and only if $b \mid a-a^{\prime}$. (Often this is used as the definition of the congruent relation.)
(ii) If $a \equiv a^{\prime}(\bmod b)$ and $c \equiv c^{\prime}(\bmod b)$, then $a+c \equiv a^{\prime}+c^{\prime}(\bmod b), a-c \equiv$ $a^{\prime}-c^{\prime}(\bmod b), a c \equiv a^{\prime} c^{\prime}(\bmod b), a^{n} \equiv a^{\prime n}(\bmod b)$ and $P(a) \equiv P\left(a^{\prime}\right)(\bmod b)$ for any polynomial $P(x)$ with integer coefficients.

Example. (8) Find the remainder of 1978^{20} upon division by $5^{3}=125$.
Solution. $1978^{20}=(2000-22)^{20} \equiv(-22)^{20}=484^{10} \equiv(-16)^{10}=256^{5} \equiv$ $6^{5}=2^{5} 3^{5} \equiv 32(-7) \equiv 26(\bmod 125)$.

Other than finding remainders, modulo arithmetic is also useful in many situations. For example, $(\bmod 2)$ is good for parity check. The fact that a number
is divisible by 3 if and only if the sum of digits is divisible by 3 can be easily explained by
$a_{n} 10^{n}+a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0} \equiv a_{n}+a_{n-1}+\cdots+a_{1}+a_{0}(\bmod 3)$.
In working with squares, $(\bmod 4)$ is useful in doing parity check since $(2 n)^{2}=$ $4 n^{2} \equiv 0(\bmod 4)$ and $(2 n+1)^{2}=4 n^{2}+4 n+1 \equiv 1(\bmod 4)$. Similarly for cubes, we have $k^{3} \equiv-1,0$ or $1(\bmod 9)$ according to $k \equiv-1,0,1(\bmod 3)$ respectively. For fourth powers, $k^{4} \equiv 0$ or $1(\bmod 16)$ according to k is even or odd respectively. Also, as in the reasoning above for $(\bmod 3)$, one can show that every nonnegative integer in base 10 is congruent to the sum of its digits $(\bmod 9)$. To determine the units digits, we use $(\bmod 10)$.

The following facts are very useful in dealing with some problems.
Further Properties. (iii) (Cancellation Property) If $a m \equiv a m^{\prime}(\bmod b)$ and $(a, b)=1$, then $b \mid a\left(m-m^{\prime}\right)$, so $b \mid m-m^{\prime}$, i.e. $m \equiv m^{\prime}(\bmod b)$.
(iv) (Existence of Multiplicative Inverse) If $(a, b)=1$, then there exists a unique $m(\bmod b)$ such that $a m \equiv 1(\bmod b)$. We may denote this m by a^{-1}. (Reasons. Since $(a, b)=1$, there exist integers m, n such that $1=(a, b)=a m+b n \equiv$ $a m(\bmod b)$. If $a m^{\prime} \equiv 1(\bmod b)$, then $m \equiv m^{\prime}(\bmod b)$ by the cancellation property.)
(v) For a positive integer c, if $(a, b)=1$, then we define $a^{-c} \equiv\left(a^{-1}\right)^{c}(\bmod b)$. Since $a^{c}\left(a^{-1}\right)^{c} \equiv 1(\bmod b)$, so we also have $a^{-m} \equiv\left(a^{c}\right)^{-1}(\bmod b)$. From this, we can check that $a^{r+s} \equiv a^{r} a^{s}(\bmod b)$ and $\left(a^{r}\right)^{s} \equiv a^{r s}(\bmod b)$ for all integers r, s.
(vi) For nonnegative integers a, b not both zeros, if $r^{a} \equiv 1(\bmod s)$ and $r^{b} \equiv$ $1(\bmod s)$, then there are integers m, n isuch that $r^{(a, b)}=r^{a m+b n}=\left(r^{a}\right)^{m}\left(r^{b}\right)^{n} \equiv$ $1(\bmod s)$.

Fermat's Little Theorem. If p is prime and $(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$. (This means that $a^{p-2} \equiv a^{-1}(\bmod p)$ because $a\left(a^{p-2}\right) \equiv 1(\bmod p)$.)

Euler's Theorem. If $(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$, where the Euler ϕ function $\phi(n)$ is the number of positive integers less than or equal to n, which are relatively prime to n. (For a prime $p, \phi(p)=p-1$ and hence Euler's theorem generalizes Fermat's little theorem.)

To understand the reasons behind these theorems, we will define a reduced set of residues modulo n to be a set of $\phi(n)$ integers $r_{1}, r_{2}, \ldots, r_{\phi(n)}$ such that every integer relatively prime to n is congruent to exactly one of $r_{1}, r_{2}, \ldots, r_{\phi(n)}$ modulo n. To prove Euler's theorem, we note that if $r_{1}, r_{2}, \ldots, r_{\phi(n)}$ is a reduced set of residues modulo n and $(a, n)=1$, then $a r_{1}, a r_{2}, \ldots, a r_{\phi(n)}$ are relatively prime to n and they also form a reduced set of residues modulo n. (This is because $r_{i}=r_{j}$ if and only if $a r_{i} \equiv a r_{j}(\bmod n)$ by the properties above.) So each $a r_{i}$ is congruent to a unique r_{j} modulo n and hence

$$
a^{\phi(n)} r_{1} r_{2} \cdots r_{\phi(n)}=\left(a r_{1}\right)\left(a r_{2}\right) \cdots\left(a r_{\phi(n)}\right) \equiv r_{1} r_{2} \cdots r_{\phi(n)}(\bmod n)
$$

Since $\left(r_{1} r_{2} \cdots r_{\phi(n)}, n\right)=1$, applying the cancellation property, we get $a^{\phi(n)} \equiv 1$ $(\bmod n)$.

Wilson's Theorem. If p is a prime number, then $(p-1)!\equiv-1(\bmod p)$. (The converse is also true, if $n>4$ is composite, then $(n-1)!\equiv 0(\bmod n)$.)

Reasons. The case $p=2$ is clear. Let $p>2$ be prime and $1 \leq a<p$, then $(a, p)=1$ implies $a, 2 a, \ldots, a(p-1)$ form a reduced set of residues modulo p and hence there is a unique b such that $1 \leq b<p$ and $a b \equiv 1(\bmod p)$. We have $a=b$ if and only if p divides $a^{2}-1=(a-1)(a+1)$, that is $a=1$ or $p-1$. Hence, for the $p-3$ integers $2,3, \ldots, p-2$, we can form $(p-3) / 2$ pairs a, b with $a b \equiv 1(\bmod p)$. Then $(p-1)!\equiv 1 \cdot 1^{(p-3) / 2}(p-1) \equiv-1(\bmod p)$.

For the converse of Wilson's theorem, if $n>4$ is composite, then let p be a prime dividing n and supoose $n \neq p^{2}$. Then $p<n$ and $n / p<n$ so that $p \neq n / p$ and $n=p(n / p)$ divides $(n-1)$!. If $n=p^{2}$, then $p \neq 2$ and $p<2 p<p^{2}=n$ so again n divides $2 p^{2}=p(2 p)$, which divides $(n-1)$!.

Examples. (9) $\phi(1)=1$. If p is prime, then $1,2,3, \ldots, p-1$ are re;atively prime to p and so $\phi(p)=p-1$. (Again, this means Fermat's little theorem is a special case of Euler's theorem). For $k \geq 1, p$ prime, since the numbers $p, 2 p, 3 p, \ldots, p^{k}$ are the only numbers less than p^{k} not relatively prime to p^{k}, so $\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}\left(1-\frac{1}{p}\right)$.
(10) Let us find the units digit of $7^{7^{7}}$. Note $\phi(10)=4$, since only $1,3,7,9$ are less than or equal to 10 and relatively prime to 10 . Since $(7,10)=1$, so $7^{\phi(10)}=$
$7^{4} \equiv 1(\bmod 10)$ by Euler's theorem. Now $7^{7} \equiv(-1)^{7} \equiv 3(\bmod 4)$ and so $7^{7^{7}}=7^{4 n+3}=\left(7^{4}\right)^{n} 7^{3} \equiv 1^{n} 7^{3}=343 \equiv 3(\bmod 10)$. So the units digit of $7^{7^{7}}$ is 3 .

Chinese Remainder Theorem. Let $m_{1}, m_{2}, \ldots, m_{k}$ be positive integers such that $\left(m_{i}, m_{j}\right)=1$ for every pair $i \neq j$. Then the equations $x \equiv b_{1}\left(\bmod m_{1}\right), x \equiv$ $b_{2}\left(\bmod m_{2}\right), \ldots, x \equiv b_{k}\left(\bmod m_{k}\right)$ have a common solution. In fact, every two solutions are congruent $\left(\bmod m_{1} m_{2} \cdots m_{k}\right)$ and we say the solution is unique $\left(\bmod m_{1} m_{2} \cdots m_{k}\right)$.

Reasons. One solution x can be found as follow: let $M_{j}=\frac{m_{1} m_{2} \ldots m_{k}}{m_{j}}$, then

$$
x=M_{1}^{\phi\left(m_{1}\right)} b_{1}+M_{2}^{\phi\left(m_{2}\right)} b_{2}+\cdots+M_{k}^{\phi\left(m_{k}\right)} b_{k}
$$

is a solution since $m_{i} \mid M_{j}$ for $i \neq j,\left(M_{i}, m_{i}\right)=1$ imply $x \equiv M_{i}^{\phi\left(m_{i}\right)} b_{i} \equiv$ $b_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$ by Euler's theorem. Next, to show the solution is unique $\left(\bmod m_{1} m_{2} \cdots m_{k}\right)$, let $x^{\prime} \equiv b_{i}\left(\bmod m_{i}\right)$ also. Then $x-x^{\prime} \equiv 0\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, i.e. $x-x^{\prime}$ is a common multiple of the m_{i} 's. Since $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$, so their lcm $m_{1} m_{2} \cdots m_{k} \mid x-x^{\prime}$. Then $x \equiv x^{\prime}\left(\bmod m_{1} m_{2} \cdots m_{k}\right)$.)

Computation Formulas. If $(a, b)=1$, then $\phi(a b)=\phi(a) \phi(b)$. If $n=$ $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ and $e_{i} \geq 1$ for $i=1,2, \ldots, k$, then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
$$

Reasons. For the first statement, observe that if $1 \leq x \leq a b$ and $(x, a b)=1$, then $(x, a)=1$ and $(x, b)=1$. So the remainders r, s of x upon divisions by a, b are relatively prime to a, b, respectively by the Euclidean algorithm. Conversely, if $1 \leq r \leq a,(a, r)=1$ and $1 \leq s \leq b,(b, s)=1$, then $x \equiv r(\bmod a)$ and $x \equiv$ $s(\bmod b)$ have a unique solution less than or equal to $a b$ by the Chinese remainder theorem. Thus, the pairing $x \leftrightarrow(r, s)$ is a one-to-one correspondence. The second statement follows from the first statement and the fact $\phi\left(p_{i}^{k}\right)=p_{i}^{k}\left(1-\frac{1}{p_{i}}\right)$.

Examples. (11) $\phi(100)=\phi\left(2^{2} 5^{2}\right)=100\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=40$.
(12) To solve the system $x \equiv 3(\bmod 7), x \equiv 2(\bmod 5)$, we may use the formula in the paragraph below the Chinese remainder theorem to get $x \equiv 5^{\phi(7)} 3+7^{\phi(5)} 2=$
$5^{6} 3+7^{4} 2 \equiv 17(\bmod 35)$. (However, in general the formula may involve large numbers.) Alternatively, we can solve as follow: $x \equiv 3(\bmod 7) \Leftrightarrow x=7 n+3$,

$$
\begin{gathered}
x \equiv 2(\bmod 5) \Leftrightarrow 7 n+3 \equiv 2(\bmod 5) \Leftrightarrow 7 n \equiv-1 \equiv 4(\bmod 5) \Leftrightarrow \\
n \equiv 3(7 n) \equiv 2(\bmod 5) \Leftrightarrow n=5 k+2 .
\end{gathered}
$$

Then $x=7(5 k+2)+3=35 k+17($ or $x \equiv 17(\bmod 35)$.
(13) (IMO 1989) Prove that for each positive integer n there exist n consecutive positive integers, none of which is an integral power of a prime number.
Solution. Let $p_{1}, p_{2}, \ldots, p_{2 n-1}, p_{2 n}$ be $2 n$ distinct prime numbers. Now by the Chinese remainder theorem,

$$
x \equiv-1\left(\bmod p_{1} p_{2}\right), \quad x \equiv-2\left(\bmod p_{3} p_{4}\right), \quad \ldots, \quad x \equiv-n\left(\bmod p_{2 n-1} p_{2 n}\right)
$$

have a common solution. Then each of the numbers $x+1, x+2, \ldots, x+n$ is divisible by two different prime numbers. Hence each cannot be a prime power.
(14) If q is a prime factor of $a^{2}+b^{2}$ and $q \equiv 3(\bmod 4)$, then $q \mid a$ and $q \mid b$. (This fact is sometimes useful, for example in exercises 11 and 22.)

Solution. Suppose q does not divide a, say. Then $(q, a)=1$. Let $c=a^{q-2}$, then $a c=a^{q-1} \equiv 1(\bmod q)$ by Fermat's little theorem. Now $q \mid a^{2}+b^{2}$ implies $b^{2} \equiv-a^{2}(\bmod q)$, so $(b c)^{2} \equiv-1(\bmod q)$. Then q does not divide $b c$ and $(b c)^{q-1} \equiv(-1)^{(q-1) / 2}=-1(\bmod q)$, contradicting Fermat's little theorem. So $q \mid a$ and similarly $q \mid b$.
(15) (1978 IMO) Let m and n be natural numbers with $1 \leq m<n$. In their decimal representations, the last three digits of 1978^{m} are equal, respectively, to the last three digits of 1978^{n}. Find m and n such that $m+n$ has its least value.

Solution. Since the last three digits are equal, so $1978^{n} \equiv 1978^{m}(\bmod 1000)$, i.e.

$$
1000=2^{3} 5^{3} \mid 1978^{n}-1978^{m}=1978^{m}\left(1978^{n-m}-1\right)
$$

So, $2^{3} \mid 1978^{m}$ (because $1978^{n-m}-1$ is odd) and the least m is 3 . Let $d=n-m$. The problem now is to look for the least positive integer d such that $5^{3} \mid 1978^{d}-1$ (i.e. $1978^{d} \equiv 1\left(\bmod 5^{3}\right)$.) Since $\phi\left(5^{3}\right)=100$, so $1978^{100} \equiv 1\left(\bmod 5^{3}\right)$ by Euler's theorem. Thus the least such d is at most 100 .

Suppose the least $d<100$. Let $100=d q+r$ with $0 \leq r<d$, then $1978^{r} \equiv\left(1978^{d}\right)^{q} 1978^{r}=1978^{100} \equiv 1\left(\bmod 5^{3}\right)$. Since d is to be the least such exponent, r must be 0 . Then $d \mid 100$. Also, $5 \mid 1978^{d}-1$, so $1 \equiv 1978^{d} \equiv 3^{d}(\bmod 5)$. The only such d 's are multiples of 4 . So $d=4$ or 20 . However, example (8) shows that $1978^{20} \not \equiv 1\left(\bmod 5^{3}\right)$. (This also shows that $1978^{4} \not \equiv 1\left(\bmod 5^{3}\right)$ because $1978^{4} \equiv 1\left(\bmod 5^{3}\right)$ implies $1978^{20}=\left(1978^{4}\right)^{5} \equiv 1\left(\bmod 5^{3}\right)$.) So $d \geq 100$. Therefore the least $d=100$ and the least $m+n=d+2 m=106$ when $m=3$ and $n=d+m=103$.

Exercises

1. For each of the following statements, determine if each is true or false. If true, give an explanation. If false, provide a counterexample.
(a) If p is a prime number and $p \mid n^{k}$, then $p^{k} \mid n^{k}$.
(b) If $(a b, c)=1$, then $(a, c)=1$ and $(b, c)=1$.
(c) If $a^{2} \equiv b^{2}\left(\bmod c^{2}\right)$, then $a \equiv b(\bmod c)$.
2. As in the last exercise, determine if each of the following statement is true or false. Provide reason or counterexample.
(a) If p is an odd prime, then $\phi\left(p^{2}-1\right)=\phi(p-1) \phi(p+1)$. How about $\phi\left(p^{2}-4\right)=\phi(p-2) \phi(p+2) ?$
(b) If $n>1$, then show that the sequence $n, \phi(n), \phi(\phi(n)), \phi(\phi(\phi(n)))$, $\phi(\phi(\phi(\phi(n)))), \ldots$ must be all 1's after the n-th term.
3. If p is a prime number, show that p divides the binomial coefficients $C_{n}^{p}=$ $\frac{p!}{n!(p-n)!}$ for $n=1,2, \ldots, p-1$.
4. Find all intergers x such that $x \equiv 1(\bmod 2), x \equiv 2(\bmod 3)$ and $x \equiv$ $3(\bmod 5)$.
5. Compute the last 2 digits of $7^{7^{7}}$.(Hint: Consider $(\bmod 4)$ and $\left.(\bmod 25).\right)$
6. (1972 USAMO) Prove that for any positive integers a, b, c,

$$
\frac{[a, b, c]^{2}}{[a, b][b, c][c, a]}=\frac{(a, b, c)^{2}}{(a, b)(b, c)(c, a)}
$$

7. Show that the greatest power of a prime number p dividing $n!$ is

$$
\sum_{k=1}^{\infty}\left[\frac{n}{p^{k}}\right]=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\cdots,
$$

where $[x]$ is the greatest integer less than or equal to x.
8 (1972 IMO 1972) Let m and n be arbitrary non-negative integers. Prove that

$$
\frac{(2 m)!(2 n)!}{m!n!(m+n)!}
$$

is an integer. (Hint: One solution uses the last exercise. Another solution is to get a recurrence relation.)
9. Do there exist 21 consecutive positive integers each of which is divisible by one or more primes p from the interval $2 \leq p \leq 13$?
10. Show that there are infinitely many prime numbers of the form $4 n-1$. (Hint: Modify the proof that there are infinitely many prime numbers.)
11. Show that there are infinitely many prime numbers of the form $4 n+1$. (Hint: Use example 14.)

Remarks. There is a famous theorem called Dirichlet's Theorem on Prime Progression, which states that for every pair of relatively prime positive integers a, b, the arithmetic progression $a, a+b, a+2 b, a+3 b, \ldots$ must contain infinitely many prime numbers.

Another famous theorem known as Chebysev's theorem asserts that for every $x>1$, there is always a prime number p between x and $2 x$. This is
also called Bertrand's Postulate because it was experimentally verified by Bertrand for x from 1 to $1,000,000$ before Chebysev proved it.

§3 Divisibility Problems

Examples. (16) (1998 IMO) Determine all pairs (a, b) of positive integers such that $a b^{2}+b+7$ divides $a^{2} b+a+b$.

Solution. Considering the expressions as polynomials of a and treating b as constant, it is natural to begin as follow. If $a b^{2}+b+7$ divides $a^{2} b+a+b$, then $a b^{2}+b+7$ divides

$$
a\left(a b^{2}+b+7\right)-b\left(a^{2} b+a+b\right)=7 a-b^{2} .
$$

If $7 a-b^{2}=0$, then 7 divides b and so $b=7 k, a=7 k^{2}$ for some positive integer k. It is easy to check these pairs $(a, b)=\left(7 k^{2}, 7 k\right)$ satisfy the condition.

If $7 a-b^{2}<0$, then $a b^{2}+b+7 \leq\left|7 a-b^{2}\right|=-7 a+b^{2}$, but this contradicts $-7 a+b^{2}<b^{2}<a b^{2}+b+7$.

If $7 a-b^{2}>0$, then $a b^{2}+b+7 \leq 7 a-b^{2}$. If $b \geq 3$, then $a b^{2}+b+7>$ $9 a>7 a>7 a-b^{2}$, a contradiction. So b can only be 1 or 2 . If $b=1$, then $a+8$ divides $7 a-1=7(a+8)-57$. So $a+8$ divides 57 , which implies $a=11$ or 49 . If $b=2$, then $4 a+9$ divides $7 a-4$. Since $7 a-4<2(4 a+9)=8 a+18$, we get $7 a-4=4 a+9$, which has no integer solution. Finally, $(a, b)=(11,1)$ and $(49,1)$ are easily checked to be solutions.
(17) (1988 IMO) Let a and b be positive integers such that $a b+1$ divides $a^{2}+b^{2}$. Show that $\frac{a^{2}+b^{2}}{a b+1}$ is the square of an integer.
Solution. Let $k=\left(a^{2}+b^{2}\right) /(a b+1)$. Assume there exists a case k is an integer, but not a perfect square. Among all such cases, consider the case when $\max \{a, b\}$ is least possible. Note $a=b$ implies $0<k=2 a^{2} /\left(a^{2}+1\right)<2$ so that $k=1$. Hence, by symmetry, we may assume $a>b$. Now $x^{2}+b^{2}-k(x b+1)=0$ has a as a root. The other root is the integer $c=k b-a=\left(b^{2}-k\right) / a$. Now $c b+1=\left(c^{2}+b^{2}\right) / k>0$ and $c=\left(b^{2}-k\right) / a \neq 0$ imply c is a positive integer.

Also, $c=\left(b^{2}-k\right) / a<\left(a^{2}-k\right) / a<a$. Now $k=\left(c^{2}+b^{2}\right) /(c b+1)$ is a nonsquare integer and $\max \{b, c\}<a=\max \{a, b\}$ contradict $\max \{a, b\}$ is least possible. Therefore, all such k 's are perfect squares.
Remarks. Considering to the roots of a quadratic expression is a useful trick in some number theory problems!
(18) (2003 IMO) Determine all pairs of positive integers (a, b) such that $\frac{a^{2}}{2 a b^{2}-b^{3}+1}$ is a positive integer.
Solution. Let $k=a^{2} /\left(2 a b^{2}-b^{3}+1\right)$ be a positive integer. Then $a^{2}-2 k b^{2} a+$ $k b^{3}-k=0$. (Note it is possible to consider roots. However, the following is a variation that is also useful.) Multiplying by 4 and completing squares, we get $\left(2 a-2 k b^{2}\right)^{2}=\left(2 k b^{2}-b\right)^{2}+\left(4 k-b^{2}\right)$. Let $M=2 a-2 k b^{2}$ and $N=2 k b^{2}-b$, then $M^{2}=N^{2}+\left(4 k-b^{2}\right)$.

If $4 k-b^{2}=0$, then b is even and $M= \pm N$. If $M=-N$, then we get $b=2 a$. If $M=N$, then $2 a=4 k b^{2}-b=b^{4}-b$. Thus, we get $(a, b)=(b / 2, b)$ or $\left(\left(b^{4}-b\right) / 2, b\right)$ with b an even integer. We can easily check these are solutions.

If $4 k-b^{2}>0$, then since $N=2 k b^{2}-b=b(2 k b-1) \geq 1(2-1)=1$, so $M^{2} \geq(N+1)^{2}$. We have

$$
4 k-b^{2}=M^{2}-N^{2} \geq(N+1)^{2}-N^{2}=2 N+1=4 k b^{2}-2 b+1,
$$

which implies $4 k\left(b^{2}-1\right)+(b-1)^{2} \leq 0$. Since the left side is also nonegative, this forces $b=1$ and $k=a^{2} /(2 a-1+1)=a / 2$. Then $(a, b)=(2 k, 1)$, which can be checked to be a solution for every positive integer k.

$$
\begin{aligned}
& \text { If } 4 k-b^{2}<0 \text {, then } M^{2} \leq(N-1)^{2} \text {. So } \\
& 4 k-b^{2}=M^{2}-N^{2} \leq(N-1)^{2}-N^{2}=-2 N+1=-4 k b^{2}+2 b+1,
\end{aligned}
$$

which implies $0 \leq(1-4 k) b^{2}+2 b+(1-4 k)$. However, the right side equals $(1-4 k)\left(b+\frac{1}{1-4 k}\right)^{2}+\frac{8 k(2 k-1)}{1-4 k}<0$, a contradiction.
(19) (1972 Putnam Exam) Show that if n is an integer greater than 1, then n does not divide $2^{n}-1$.

Solution. Assume n divides $2^{n}-1$ for some integer $n>1$. Since $2^{n}-1$ is odd, so n is odd. Let p be the smallest prime divisor of n. Then p divides $2^{n}-1$, hence $2^{n} \equiv 1(\bmod p)$. By Fermat's little theorem, $2^{p-1} \equiv 1(\bmod p)$. Now the greatest common divisor d of n and $p-1$ must be 1 because d divides $n, d \leq p-1$ and p is the smallest prime divisor of n. Then there are integers r, s such that $r n+s(p-1)=1$, which implies

$$
2=2^{d}=\left(2^{n}\right)^{r}\left(2^{p-1}\right)^{s} \equiv 1(\bmod p)
$$

a contradiction.

Exercises

12. (1992 IMO) Find all integers a, b, c with $1<a<b<c$ such that ($a-$ 1) $(b-1)(c-1)$ is a divisor of $a b c-1$.
13. (1994 IMO) Determine all ordered pairs (m, n) of positive integers such that $\left(n^{3}+1\right) /(m n-1)$ is an integer. (Comments: There are 9 solutions.)
14. Redo Example 18 by considering roots of quadratic expression as in the solution of Example 17.
15. (1999 IMO) Determine all pairs (n, p) of positive integers such that p is a prime, $n \leq 2 p$, and $(p-1)^{n}+1$ is divisible by n^{p-1}. (Hint: For $p \geq 3$, consider the smallest prime divisor q of n.)
16. (2000 CHKMO) Find all prime numbers p and q such that $\frac{\left(7^{p}-2^{p}\right)\left(7^{q}-2^{q}\right)}{p q}$ is an integer.
17. (2003 IMO) Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q. (Hint: Note not all of the prime divisors of $M=\left(p^{p}-1\right) /(p-1)$ are congruent to $1\left(\bmod p^{2}\right)$. Let q be such a prime divisor of M.)
18. (1990 IMO) Determine all integers $n>1$ such that $\left(2^{n}+1\right) / n^{2}$ is an integer. (Hint: Write $n=3^{k} r$ with $(3, r)=1$. Show $k=0$ or 1 by factoring $2^{n}+1$
and considering (mod 9). Show $r=1$ by considering the smallest prime divisor of r if $r>1$.)

§4 Diophantine Equations-Equations which integral solutions are sought.

Examples. (20) (1979 USAMO) Determine all integral solutions of $n_{1}^{4}+n_{2}^{4}+$ $\cdots+n_{14}^{4}=1599$.

Solution. We have $(2 n)^{4}=16 n^{4} \equiv 0(\bmod 16)$ and

$$
(2 n+1)^{4}=16 n^{4}+32 n^{3}+8 n(3 n+1)+1 \equiv 1(\bmod 16)
$$

So, $n_{1}^{4}+n_{2}^{4}+\cdots+n_{14}^{4} \equiv 0,1,2, \ldots, 14(\bmod 16)$, but $1599 \equiv 15(\bmod 16)$. So, there can be no solution.

(21) (1976 USAMO) Determine all integral solutions of $a^{2}+b^{2}+c^{2}=a^{2} b^{2}$.

Solution. Suppose (a, b, c) is a solution. If a, b, c are odd, then $a^{2}+b^{2}+c^{2} \equiv$ $3(\bmod 4)$, but $a^{2} b^{2} \equiv 1(\bmod 4)$. If two are odd and one even, then $a^{2}+b^{2}+$ $c^{2} \equiv 2(\bmod 4)$, but $a^{2} b^{2} \equiv 0$ or $1(\bmod 4)$. If one is odd and two even, then $a^{2}+b^{2}+c^{2} \equiv 1(\bmod 4)$, but $a^{2} b^{2} \equiv 0(\bmod 4)$.

Therefore, a, b, c must all be even, say $a=2 a_{0}, b=2 b_{0}, c=2 c_{0}$. Then we get $a_{0}^{2}+b_{0}^{2}+c_{0}^{2}=4 a_{0}^{2} b_{0}^{2}$. If at least one of a_{0}, b_{0}, c_{0} is odd, then $a_{0}^{2}+b_{0}^{2}+c_{0}^{2} \equiv 1,2$ or $3(\bmod 4)$, but $4 a_{0}^{2} b_{0}^{2} \equiv 0(\bmod 4)$. So a_{0}, b_{0}, c_{0} must all be even again, say $a_{0}=2 a_{1}, b_{0}=2 b_{1}, c_{0}=2 c_{1}$. Then $a_{1}^{2}+b_{1}^{2}+c_{1}^{2}=16 a_{1}^{2} b_{1}^{2}$. So a_{1}, b_{1}, c_{1} must all be even. From this we see inductively that a, b, c can be divisible by any power of 2. Therefore, $a=b=c=0$.
(22) (1993 APMO) Determine all positive integer n for which the equation $x^{n}+$ $(2+x)^{n}+(2-x)^{n}=0$ has an integer as a solution.
Solution. If n is even, the terms on the left side are nonnegative and cannot all be 0 . So there will not be any integer solution. If $n=1$, then $x=-4$ is the solution. If n is odd and at least 3, then any solution x must be even, otherwise the left side is odd. Suppose $x=2 y$. Then the equation becomes $y^{n}+(1+y)^{n}+(1-y)^{n}=0$. Obviously $y \neq 0$. We have $0=y^{n}+(1+y)^{n}+(1-y)^{n} \equiv 2(\bmod |y|)$. So $y \mid 2$,
forcing $y= \pm 1$ or ± 2. However, simple checkings show these are not solutions. So $n=1$ is the only solution.
(23) Determine all integral solutions of $y^{2}=1+x+x^{2}+x^{3}+x^{4}$.

Solution. Completing squares, we have $\left(x^{2}+\frac{x}{2}+1\right)^{2}=y^{2}+\frac{5}{4} x^{2}$ and $\left(x^{2}+\right.$ $\left.\frac{x}{2}\right)^{2}+\frac{3}{4}\left(x+\frac{2}{3}\right)^{2}+\frac{2}{3}=y^{2}$. So $x^{2}+\frac{x}{2}+1 \geq|y|>x^{2}+\frac{x}{2}$. If x is odd, then $|y|=x^{2}+\frac{x}{2}+\frac{1}{2}$. Substituting back in to the equation and simplifying we get $x^{2}-2 x-3=0$, yielding $x=-1$ or 3 . If x is even, then $|y|=x^{2}+\frac{x}{2}+1$ and so $\frac{5}{4} x^{2}=0$ forcing $x=0$. Therefore, the solutions are $(x, y)=(-1, \pm 1),(3, \pm 11)$ and $(0, \pm 1)$.
(24) Determine all nonzero integral solutions of $\left(a^{2}+b\right)\left(a+b^{2}\right)=(a-b)^{3}$.

Solution. Expanding, then simplifying the equation, we get $2 b^{2}+\left(a^{2}-3 a\right) b+$ $\left(3 a^{2}+a\right)=0$. Applying the quadratic formula, we get

$$
b=\frac{3 a-a^{2} \pm \sqrt{a^{4}-6 a^{3}-15 a^{2}-8 a}}{4}=\frac{3 a-a^{2} \pm \sqrt{a(a-8)(a+1)^{2}}}{4} .
$$

So $a(a-8)=(a-4)^{2}-4^{2}$ must be a perfect square, say $x^{2}=(a-4)^{2}-4^{2}$. Then $(a-4)^{2}-x^{2}=16$. So $(a-4+x)(a-4-x)=(\pm 1)(\pm 16)$ or $(\pm 2)(\pm 8)$ or $(\pm 4)(\pm 4)$. From these, we get the nonzero $a=-1,8,9$. These lead to the solutions $(a, b)=(-1,-1),(8,-10),(9,-6),(9,-21)$. (Check: The 4 solutions yield the 4 equations $0 \times 0=0,54 \times 108=18^{3}, 75 \times 45=15^{3}, 60 \times 450=30^{3}$.)
(25) Find all positive integral solutions of $3^{x}+4^{y}=5^{z}$.

Solution. We will show there is exactly one set of solution, namely $x=y=z=2$. To simplify the equation, we consider modulo 3 . We have $1=0+1^{y} \equiv 3^{x}+4^{y}=$ $5^{z} \equiv(-1)^{z}(\bmod 3)$. It follows that z must be even, say $z=2 w$. Then $3^{x}=5^{z}-4^{y}=\left(5^{w}+2^{y}\right)\left(5^{w}-2^{y}\right)$. Now $5^{w}+2^{y}$ and $5^{w}-2^{y}$ are not both divisible by 3 , since their sum is not divisible by 3 . So, $5^{w}+2^{y}=3^{x}$ and $5^{w}-2^{y}=1$. Then, $(-1)^{w}+(-1)^{y} \equiv 0(\bmod 3)$ and $(-1)^{w}-(-1)^{y} \equiv 1(\bmod 3)$. From these, we get w is odd and y is even. If $y>2$, then $5 \equiv 5^{w}+2^{y}=3^{x} \equiv 1$ or $3(\bmod 8)$,
a contradiction. So $y=2$. Then $5^{w}-2^{y}=1$ implies $w=1$ and $z=2$. Finally, we get $x=2$.

Finally, we come to the most famous Diophantine equation. Let us define Pythagorean triples to be triples (a, b, c) of positive integers satisfying $a^{2}+b^{2}=$ c^{2}. For example, $(3,4,5)$ and $(5,12,13)$ are Pythagorean triples. Clearly, if $a^{2}+b^{2}=c^{2}$, then $(a d)^{2}+(b d)^{2}=(c d)^{2}$ for any positive integer d. So, solutions of $a^{2}+b^{2}=c^{2}$ with a, b, c relatively prime (i.e. having no common prime divisors) are more important. These are called primitive solutions. Below we will establish a famous theorem giving all primitive solutions.

Theorem. If u, v are relatively prime positive integers of opposite parity and $u>v$, then $a=u^{2}-v^{2}, b=2 u v, c=u^{2}+v^{2}$ give a primitive solution of $a^{2}+b^{2}=c^{2}$. Conversely, every primitive solution is of this form, with a possible permutation of a and b.
(For example, $u=2, v=1$ yields $a=3, b=4, c=5$.)
Reasons. For the first statement, $a^{2}+b^{2}=u^{4}+2 u^{2} v^{2}+v^{4}=c^{2}$. Suppose two of a, b, c have a common prime divisor p, then the equation will imply all three have p as a common divisor. Note $p \neq 2$ since a, c are odd. Then $p \mid(c+a) / 2=u^{2}$ and $p \mid(c-a) / 2=v^{2}$. This contradicts u, v being relatively prime. So a, b, c must be relatively prime.

For the second statement, if $a^{2}+b^{2}=c^{2}$, then $a^{2}+b^{2} \equiv 0$ or $1(\bmod 4)$. So, if a, b, c are also relatively prime, then one of a or b is odd and the other is even. Let us say a is odd and b is even. Then c is odd and it follows $m=(c+a) / 2$ and $n=(c-a) / 2$ are positive integers. Note $a(=m-n)$ and $c(=m+n)$ relatively prime implies m, n cannot have a common prime divisor (for if $p \mid m$ and $p \mid n$, then $p \mid m-n=a$ and $p \mid m+n=c)$. Now $(b / 2)^{2}=\left(c^{2}-a^{2}\right) / 4=m n$. It follows that both m and n are perfect squares with no common prime divisors. Let us say $m=u^{2}$ and $n=v^{2}$. Then $a=u^{2}-v^{2}, b=2 u v$ and $c=u^{2}+v^{2}$. Since a is odd, u and v are of opposite parity.
Remark. The general solutions of $a^{2}+b^{2}=c^{2}$ are either trivial with a or b equals 0 or nontrivial with a, b of the form $\pm\left(u^{2}-v^{2}\right) d, \pm 2 u v d$ and c of the form $\pm\left(u^{2}+v^{2}\right) d$, where u, v are as above and d is positive.

Example. (26) Find all positive integral solutions of $3^{x}+4^{y}=5^{z}$ using the theorem on Pythagorean triples.

Solution. Let x, y, z be a solution, then $1 \equiv(-1)^{z}(\bmod 3)$ and $(-1)^{x} \equiv$ $1(\bmod 4)$. So x and z are even, say $x=2 a$ and $z=2 b$. Then $\left(3^{a}\right)^{2}+\left(2^{y}\right)^{2}=\left(5^{b}\right)^{2}$. Since $3^{a}, 2^{y}$ and 5^{b} are relatively prime, by the theorem on Pythagorean triples, $3^{a}=u^{2}-v^{2}$ and $2^{y}=2 u v$, where $u>v$ and one is odd, the other even. Now $2^{y}=$ $2 u v$ implies $u=2^{y-1}>v=1$. Then $3^{a}=2^{2(y-1)}-1=\left(2^{y-1}-1\right)\left(2^{y-1}+1\right)$. Since the two factors on the right differ by 2 and must be powers of 3 , we have $2^{y-1}-1=1$, which gives $y=2, u=2, a=1, x=2$ and $z=2$.

Exercises

19. Show that $15 x^{2}-7 y^{2}=9$ has no integral solutions.
20. Find all integral solution(s) of $x^{3}+2 y^{3}+4 z^{3}=9 w^{3}$. (Hint: Consider (mod 9) first.)
21. Find all integral solution(s) of $3 \cdot 2^{x}+1=y^{2}$.
22. Show that $y^{2}=x^{3}+7$ has no integral solutions. (Hint: Note $y^{2}+1=$ $(x+2)\left(x^{2}-2 x+4\right)$ and use example 14 .)
*23. Show that $x^{4}+y^{4}=z^{2}$ has no positive integral solutions. (Hint: Suppose (x, y, z) is a positive solution with z least possible, then show there is another solution with a smaller z value using the theorem on Pythagorean triples.) Then also conclude that $x^{4}+y^{4}=z^{4}$ has no positive integral solution.

Remarks. The famous Fermat's Last Theorem is the statement that for every integer $n>2$, the equation $x^{n}+y^{n}=z^{n}$ has no positive integral solution. Fermat claimed to have a proof 350 years ago, but nobody found his proof. Only a few year ago, Andrew Wiles finally proved it. His proof was 200 pages long.

6. Combinatorics

Combinatorics is the study of counting objects. There are many basic, yet useful principles that allow us to count efficiently.

§1. Addition and Multiplication Principles.

Addition Principle. Suppose events $A_{1}, A_{2}, \ldots, A_{n}$ have $a_{1}, a_{2}, \ldots, a_{n}$ outcomes respectively. If all of these outcomes are distinct, then the number of outcomes due to event A_{1} or event A_{2} or \ldots or event A_{n} is $a_{1}+a_{2}+\cdots+a_{n}$.
Remarks. When you need to count something, the difficulty is how to break up the things into groups that are easy to count.

Examples. (1) Flipping a coin (event A_{1}) results in two outcomes: head or tail. Tossing a dice (event A_{2}) results in six outcomes: $1,2,3,4,5,6$. So flipping a coin or tossing a dice results in $6+2=8$ outcomes.
(2) Find the number of squares having all their vertices belonging to an 10×10 array of equally spaced dots.
Solution. Each such square has a unique circumscribed square with sides parallel to the sides of the array! Use these circumscribed squares as events. If a circumscribed square is $k \times k$ (that is, each side has $k+1$ dots), then there are k distinct squares (outcomes) inscribed in this circumscribed square. For $k=1,2, \ldots, 9$, there are $(10-k)^{2}$ circumscribed squares of dimension $k \times k$. So the answer is
$\sum_{k=1}^{9}(10-k)^{2} \cdot k=\sum_{k=1}^{9}\left(100 k-20 k^{2}+k^{3}\right)=100 \sum_{k=1}^{9} k-20 \sum_{k=1}^{9} k^{2}+\sum_{k=1}^{9} k^{3}=825$,
using the formulas
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \quad$ and $\quad \sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.

Multiplication Principle. Suppose events $A_{1}, A_{2}, \ldots, A_{n}$ have $a_{1}, a_{2}, \ldots, a_{n}$ outcomes respectively. Then the number of outcomes of event A_{1}, followed by event A_{2}, \ldots, followed by event A_{n} is $a_{1} a_{2} \cdots a_{n}$.

Examples. (3) Let n, k be integers such that $0 \leq k \leq n$.
(a) Find the number P_{k}^{n} (or ${ }_{n} P_{k}$) of permutations of n distinct objects taken k at a time. This is the number of ways of taking k of the n objects one after the other without replacement so ordering is important. (If k is not mentioned, then the default value is $k=n$.)
(b) Find the number C_{k}^{n} (or ${ }_{n} C_{k}$ or $\binom{n}{k}$) of combinations of n distinct objects taken k at a time. This is the number of ways of taking k of the n objects at the same time so ordering is not important.

Solutions (a) There are n outcomes of taking the first object, followed by $n-1$ outcomes of taking the second object, ..., there are $n-k+1$ outcomes of taking the k-th objects. By the multiplication principle, $P_{k}^{n}=n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}$.
(b) Divide all permutations of n objects taken k at a time into groups that have the same k objects. In each group, the number of ways the k objects were taken was $P_{k}^{k}=k!$. Since order is not important in combinations, the k ! ways in each group is only counted once. Hence C_{k}^{n} is the number of groups, hence $C_{k}^{n}=\frac{P_{k}^{n}}{k!}=\frac{n!}{k!(n-k)!}$.
(4) Find the number of positive divisors of a positive integer N having prime factorization $2^{e_{1}} 3^{e_{2}} \cdots p_{n}^{e_{n}}$. Find the number of ordered pairs (a, b) of positive integers a, b such that $\operatorname{lcm}(a, b)=N$.
Solution. Every divisor of N is of the form $2^{A_{1}} 3^{A_{2}} \ldots p_{n}^{A_{n}}$, where $A_{i}=0,1,2, \ldots, e_{i}$ for $i=1,2, \ldots, n$. So the number of outcomes in the event of filling in A_{1} followed by the event of filling in $A_{2} \ldots$ followed by the event of filling in A_{n} is $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{n}+1\right)$. This is the number of positive divisors of N.

Let $a=2^{m_{1}} 3^{m_{2}} \cdots p_{n}^{m_{n}}$ and $b=2^{k_{1}} 3^{k_{2}} \cdots p_{n}^{k_{n}}$. Then $\operatorname{lcm}(a, b)=N$ if and only if $\max \left(m_{1}, k_{1}\right)=e_{1}$ and $\max \left(m_{2}, k_{2}\right)=e_{2}$ and \ldots and $\max \left(m_{n}, k_{n}\right)=e_{n}$. Consider the event max $\left(m_{1}, k_{1}\right)=e_{1}$, there are $2 e_{1}+1$ possible outcomes, namely $\left(m_{1}, k_{1}\right)=\left(0, e_{1}\right),\left(1, e_{1}\right), \ldots,\left(e_{1}, e_{1}\right),\left(e_{1}, e_{1}-1\right), \ldots,\left(e_{1}, 1\right),\left(e_{1}, 0\right)$. Similarly, there are $2 e_{i}+1$ outcomes for the event $\max \left(m_{i}, k_{i}\right)=e_{i}$. So the number of pairs (a, b) such that $\operatorname{lcm}(a, b)=n$ is $\left(2 e_{1}+1\right)\left(2 e_{2}+1\right) \cdots\left(2 e_{n}+1\right)$.

§2. Bijection Principle.

Bijection Principle. If there is a one-to-one correspondence between the outcomes of event A and outcomes of event B, then A and B have the same number of outcomes.

Reminder. When we are asked to count the number of outcomes of an event, sometimes it may be possible to set up a one-to-one correspondence with another event whose outcomes are easier to count.

Examples. (5) Let n be a positive integer. In how many ways can one write a sum of at least two positive integers that add up to n ? Consider the same set of integers written in a different order as being different. (For example, there are 3 ways to express 3 as $3=1+1+1=2+1=1+2$.)

Solution. (First the answer can be discovered by trying the cases $n=4,5$ and observe pattern!) We study the case $n=3$. We have $3=(1)+(1)+(1)=$ $(1+1)+(1)=(1)+(1+1)$. Each of the sum is in a one-to-one correspondence with (1D1D1), where each blank square is filled with $a+$ or $a)+($. Note since each sum has at least two terms, there is at least on $)+($.

For a general n, we have $n=(1$ IID. . 1) with $n-1$ blank squares. By the multiplication principle, in filling in the blank squares one followed by the other, there are 2^{n-1} ways, but filling all blank squares with + is not allowed. So there are $2^{n-1}-1$ ways.
(6) How many paths are there going from $(0,0)$ to $(10,20)$ on the coordinate plane such that either the x or the y coordinate of every point on the path is an integer and the x and y coordinates on the path are always nondecreasing at every moment?

Solution. Note such a path is a staircase from $(0,0)$ to $(10,20)$ with corners at lattice points (i.e. points with x, y integers). Break the path into unit length pieces. Then each piece is either moving left or up. By projecting the path to the x and y-axes, we see that the length is 30 units and there are 10 left and 20 up pieces. There is a one-to-one correspondence between a path and a sequence of 10 lefts and 20 ups in some order. Hence, among the 30 pieces, it depends where we take the 10 lefts. Therefore, there are C_{10}^{30} paths.
(7) Each of the vertices of a regular nonagon (i.e. 9-sided polygon) has been colored either red or blue. Prove that there exist two congruent monochromatic (i.e. vertices having the same color) triangles.

Solution. By the pigeonhole principle, there are at least five vertices of the same color, say red. So there are at least $C_{3}^{5}=10$ triangles having red vertices. For each triangle $A B C$ (vertices in clockwise order), take vertex A, go around the nonagon in the clockwise direction and count the number of sides of the nonagon travelled from A to B, from B to C and from C to A.

Arrange these three numbers in increasing order $x \leq y \leq z$. There is a one-toone correspondence between the sides of triangle $A B C$ and (x, y, z). Since x, y, z are positive integers, $x \leq y \leq z$ and $x+y+z=9$, there are 7 outcomes, namely $(x, y, z)=(1,1,7),(1,2,6),(1,3,5),(1,4,4),(2,2,5),(2,3,4),(3,3,3)$. Since $10>7$, by the pigeonhole principle, there must be two congruent red triangles.
(8) Let m and n be integers greater than 1 . Let S be a set with n elements, and let $A_{1}, A_{2}, \ldots, A_{m}$ be subsets of S. Assume that for any two elements x and y in S, there is a set A_{i} containing either x or y, but not both. Prove that $n \leq 2^{m}$.

Solution. For each element z in S, define $f(z)=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$, where $z_{i}=1$ if z is in the set A_{i}, otherwise $z_{i}=0$. If $x \neq y$, then $f(x)$ and $f(y)$ differ in some coordinates. So the n elements in S correspond to n different $f(z)$. By the multiplication principle, there are exactly $2 \times 2 \times \cdots \times 2=2^{m}$ possible $\left(z_{1}, z_{2}, \ldots, z_{m}\right)$'s. Therefore, $n \leq 2^{m}$.

§3 Pigeonhole Principle.

Pigeonhole Principle. If $n+1$ or more objects are put into n boxes, then at least two of the objects will be in the same box. More generally, if m objects are put into n boxes, then at least $\left\lceil\frac{m}{n}\right\rceil$ objects will be in the same box.

Examples. (9) (1954 Putnam Exam) Five point are chosen from inside of the unit square. Show that there are two points with distance at most $\frac{1}{2} \sqrt{2}$.

Solution. Divide the inside of the unit square into 4 squares with side $\frac{1}{2}$. By the pigeonhole principle, there are two points in the same square. Then their distance is at most the length of the diagonal, which is $\frac{1}{2} \sqrt{2}$.
(10) Eleven numbers are chosen from $1,2, \ldots, 20$. Show that the sum of two of them is 21 .

Solution. Consider the 10 sets $\{1,20\},\{2,19\}, \cdots,\{10,11\}$. By the pigeonhole principle, two of them will be from the same set. Hence the sum is 21 .
(11) From any set of m integers, where $m>1$, show that there must be a subset the sum of whose elements is divisible by m.

Solution. Let $a_{1}, a_{2}, \ldots, a_{m}$ be the integers. Consider the $m+1$ numbers

$$
S_{0}=0, \quad S_{1}=a_{1}, \quad S_{2}=a_{1}+a_{2}, \quad \ldots, \quad S_{m}=a_{1}+a_{2}+\cdots+a_{m} .
$$

By the pigeonhole principle, there are S_{i}, S_{j} with $i>j$ such that $S_{i} \equiv S_{j}(\bmod m)$. Then $a_{j+1}+\cdots+a_{i}=S_{i}-S_{j} \equiv 0(\bmod m)$. So $\left\{a_{j+1}, \ldots, a_{i}\right\}$ is a subset the sum of whose elements is divisible by m.
(12) Suppose $n+1$ numbers are chosen from $1,2, \ldots, 2 n$. Show that there are two of them such that one divides the other.

Solution. Factor each of the $n+1$ numbers into the form $2^{m} k$ with k odd. There are n possibilities for k, namely $k=1,3, \ldots, 2 n-1$. By the pigeonhole principle two of them have the same k factor. Then the one with the smaller exponent m divides the one with the larger exponent m.
(13) Each pair of 6 distinct points are joined by a red or blue line segment. Show that there is a red or blue triangle. (Note if 6 is replaced by 5 , the problem will not be true as one can color the edges of a pentagon red and the diagonals blue to get a counterexample.)

Solution. Take one of the 6 points, say A. By the pigeonhole principle, among the 5 segments from A, there are 3 of the same color, say $A B, A C, A D$ are red. Either triangle $B C D$ is blue or one of the side, say $B C$, is red, then triangle $A B C$ is red.

Alternative Formulation. Among any 6 people, either there are 3 who knows each other or there are 3 with no pair knows each other.

Solution. Associate each person a point. Draw a red segment joining the points if the corresponding people knows each other, a blue segment if they don't know each other. Then use the result above.

Remarks. There is a famous theorem known as Ramsey's Theorem, which asserts that for any positive integers p and q, there is a smallest positive integer $n=$ $R(p, q)$ such that the following statement is true:

If n points are given with no three collinear and all line segments connecting pairs of them are colored red or blue, then either there are p points, all segments connecting them are red or there are q points, all segments connecting them are blue.

Example (13) is the statement $R(3,3)=6$. Very few Ramsey numbers $R(p, q)$ are known. Also, Ramsey's theorem can be extended to more than 2 colors. Briefly, given integers p_{1}, \ldots, p_{k}, there is a least n such that if all segments connecting n points are colored by k colors C_{1}, \ldots, C_{k}, then either there are p_{1} points with segments all C_{1} colored or \ldots or there are p_{k} points with segments all C_{k} colored.

§4 Principle of Inclusion and Exclusion.

Principle of Inclusion and Exclusion (PIE). Let $|S|$ denote the number of elements in a set S.

$$
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|,
$$

$\left|A_{1} \cup A_{2} \cup A_{3}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right|$.

In general,
$\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots$.

Examples. (14) Find the number of positive integers at most 1000 which are divisible by 10 or 12 or 14 .

Solution. Let A_{k} be the set of positive integers at most 1000 which are divisible by k. Since $A_{i} \cap A_{j}=A_{\operatorname{lcm}(i, j)}, \operatorname{lcm}(10,12)=60,1 \mathrm{~cm}(10,14)=70,1 \mathrm{~cm}(12,14)=$ 84 and $\operatorname{lcm}(10,12,14)=420$, so by PIE,

$$
\begin{aligned}
&\left|A_{10} \cup A_{12} \cup A_{14}\right| \\
&=\left|A_{10}\right|+\left|A_{12}\right|+\left|A_{14}\right|-\left|A_{10} \cap A_{12}\right|-\left|A_{10} \cap A_{14}\right| \\
& \quad-\left|A_{12} \cap A_{14}\right|+\left|A_{10} \cap A_{12} \cap A_{14}\right| \\
&= {\left[\frac{1000}{10}\right]+\left[\frac{1000}{12}\right]+\left[\frac{1000}{14}\right]-\left[\frac{1000}{60}\right]-\left[\frac{1000}{70}\right]-\left[\frac{1000}{84}\right]+\left[\frac{1000}{420}\right] } \\
&= 100+83+71-16-14-11+2=215 .
\end{aligned}
$$

(15) (Derangement Problem) How many ways can n letters be put into n envelopes so that no letter goes into the right envelope?

Solution. Totally there are n ! ways of putting n letters into n envelopes. We will count the opposite situation, where at least one letter goes into the right envelopes. Let A_{i} be all possible ways of putting letters into envelopes such that the i-th letter goes to the right envelope. Since the other letters may go randomly into the other $n-1$ envelopes, $\left|A_{i}\right|=(n-1)!$. Similarly, $\left|A_{i} \cap A_{j}\right|=(n-2)!$ for $i \neq j$ as the other $n-2$ letters may be randomly placed, etc. By PIE,

$$
\begin{aligned}
\left|\bigcup_{i=1}^{n} A_{i}\right| & =\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots \\
& =\binom{n}{1}(n-1)!-\binom{n}{2}(n-2)!+\binom{n}{3}(n-3)!-\cdots \\
& =n!\left(\frac{1}{1!}-\frac{1}{2!}+\frac{1}{3!}-\cdots \pm \frac{1}{n!}\right) .
\end{aligned}
$$

So the number of ways no letters go into the right envelopes is

$$
n!-\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots \pm \frac{1}{n!}\right) .
$$

(Note the probability that no letters will go to the right envelopes is the above expression divided by $n!$, which is close to $\frac{1}{e}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots$ when n is large.)
(16) (Euler ϕ-function) For a positive integer n, show that the number of integers in $\{1,2, \ldots, n\}$ that are relatively prime to n is $\phi(n)=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)$, where $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{m}^{e_{m}}$ is the prime factorization of n.

Solution. Instead we count the number of integers in $\{1,2, \ldots, n\}$ that are not relatively prime to n. Then these integers are divisible by at least one of the primes $p_{1}, p_{2}, \ldots, p_{m}$. Let A_{i} be the number of integers in $\{1,2 \ldots, n\}$ that are divisible by p_{i}. By PIE,

$$
\begin{aligned}
\left|\bigcup_{i=1}^{m} A_{i}\right| & =\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots \\
& =\sum_{1 \leq i \leq m} \frac{n}{p_{i}}-\sum_{1 \leq i<j \leq m} \frac{n}{p_{i} p_{j}}+\sum_{1 \leq i<j<k \leq n} \frac{n}{p_{i} p_{j} p_{k}}-\cdots .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\phi(n) & =n-\left|A_{1} \cup A_{2} \cup \cdots \cup A_{m}\right| \\
& =n-\sum_{1 \leq i \leq m} \frac{n}{p_{i}}+\sum_{1 \leq i<j \leq m} \frac{n}{p_{i} p_{j}}-\cdots \\
& =n\left(1-\left(\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{m}}\right)+\left(\frac{1}{p_{1} p_{2}}+\cdots+\frac{1}{p_{m-1} p_{m}}\right)+\cdots\right) \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{m}}\right) \\
& =n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right) .
\end{aligned}
$$

§5 Recurrence Relations and Generating Functions.

Given a sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$, a recurrence relation is typically a formula for a_{n} in terms of $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$ and n. For example, the famous Fibonacci sequence is defined by the initial conditions $F_{0}=1, F_{1}=1$ and the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Using the recurrence relation, we see that the Fibonacci sequence F_{n} is $1,1,2,3,5,8,13,21,34,55,89, \ldots$. For a sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$, the generating function of the sequence is $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$. (Note this series may not converge for all real x.) We can often use recurrence relations and generating functions to help in counting things.

Examples. (17) Let a_{n} be the number of regions formed on a plane by n lines, no two of which are parallel and no three concurrent. Find a_{n}.
Solution. Clearly, $a_{1}=2, a_{2}=4, a_{3}=7$ by drawing pictures. To solve the problem by recursion, observe that any two of the lines must intersect. Suppose $n-1$ lines formed a_{n-1} regions. The n-th line will intersect them at $n-1$ points. These $n-1$ points divide the n-th line into n parts and each part cuts one of the a_{n-1} regions into two. So $a_{n}=a_{n-1}+n$. Then

$$
\begin{aligned}
a_{n}-a_{1} & =\left(a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\cdots+\left(a_{2}-a_{1}\right) \\
& =n+(n-1)+\cdots+2=\frac{(n+2)(n-1)}{2} .
\end{aligned}
$$

Therefore, $a_{n}=a_{1}+\frac{(n+2)(n-1)}{2}=\frac{n^{2}+n+2}{2}$.
(18) Show that the n-th term of the Fibonacci sequence is given by

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right) . \quad \text { (Binet's Formula) }
$$

Solution. Consider the generating function $f(x)=F_{0}+F_{1} x+F_{2} x^{2}+F_{3} x^{3}+\cdots$ of the Fibonacci sequence. Using $F_{0}=F_{1}$ and $F_{n}=F_{n-1}+F_{n-2}$, we have

$$
\begin{array}{rlrl}
x f(x) & =F_{0} x+F_{1} x^{2}+F_{2} x^{3}+F_{3} x^{4}+\cdots \\
x^{2} f(x) & = & F_{0} x^{2}+F_{1} x^{3}+F_{2} x^{4}+\cdots \\
\left(x^{2}+x\right) f(x) & =F_{1} x+F_{2} x^{2}+F_{3} x^{3}+F_{4} x^{4}+\cdots=f(x)-1 .
\end{array}
$$

So $f(x)=\frac{-1}{x^{2}+x-1}$. By partial fraction, we get $\frac{-1}{x^{2}+x-1}=\frac{A}{x-r}+\frac{B}{x-s}$, where $A=-\frac{1}{\sqrt{5}}, \quad B=\frac{1}{\sqrt{5}}, r=\frac{-1+\sqrt{5}}{2}, s=\frac{-1-\sqrt{5}}{2}$. Note $|s|>|r|>$ 1. So for $|x|<|r|$, we have $|x / r|<1,|x / s|<1$ and

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{5}}\left(\frac{1}{r-x}-\frac{1}{s-x}\right)=\frac{1}{\sqrt{5}}\left(\frac{1 / r}{1-(x / r)}-\frac{1 / s}{1-(x / s)}\right) \\
& =\frac{1}{\sqrt{5}}\left(\left(\frac{1}{r}+\frac{x}{r^{2}}+\frac{x^{2}}{r^{3}}+\cdots\right)-\left(\frac{1}{s}+\frac{x}{s^{2}}+\frac{x^{2}}{s^{3}}+\cdots\right)\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}}\left(\frac{1}{r^{n+1}}-\frac{1}{s^{n+1}}\right) x^{n} .
\end{aligned}
$$

Therefore, $F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1}{r^{n+1}}-\frac{1}{s^{n+1}}\right)$. Since $\frac{1}{r}=\frac{1+\sqrt{5}}{2}, \frac{1}{s}=\frac{1-\sqrt{5}}{2}$, Binet's formula follows.

Using generating functions, we can find formulas for terms of k-th order linear recurrence relations (which are of the form $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ with constants $c_{1}, c_{2}, \ldots, c_{k}$.)

Theorem. Let the sequence $a_{0}, a_{1}, a_{2}, \ldots$ satisfy $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}\left(c_{1}, c_{2}\right.$ constants) for $n>1$ and the characteristic equation $x^{2}=c_{1} x+c_{2}$ has roots r_{1}, r_{2}. Then there are constants b_{1}, b_{2} such that for $n=0,1,2, \ldots$,

$$
a_{n}= \begin{cases}b_{1} r_{1}^{n}+b_{2} r_{2}^{n} & \text { if } r_{1} \neq r_{2} \\ b_{1} r_{1}^{n}+b_{2} n r_{2}^{n} & \text { if } r_{1}=r_{2}\end{cases}
$$

Remarks. Similar theorem is true for higher order linear recurrence relation. If $a_{0}, a_{1}, a_{2}, \ldots$ satisfies $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+c_{3} a_{n-3}$ and $x^{3}=c_{1} x^{2}+c^{2} x+c_{3}$ has roots r_{1}, r_{2}, r_{3}, then there are constants b_{1}, b_{2}, b_{3} such that for $n=0,1,2, \ldots$,

$$
a_{n}= \begin{cases}b_{1} r_{1}^{n}+b_{2} r_{2}^{n}+b_{3} r_{3}^{n} & \text { if } r_{1}, r_{2}, r_{3} \text { are distinct } \\ b_{1} r_{1}^{n}+b_{2} n r_{1}^{n}+b_{3} r_{3}^{n} & \text { if } r_{1}=r_{2} \neq r_{3} \\ b_{1} r_{1}^{n}+b_{2} n r_{1}^{n}+b_{3} n^{2} r_{1}^{n} & \text { if } r_{1}=r_{2}=r_{3} .\end{cases}
$$

(19) (1989 Putnam Exam) Prove that there exists a unique function f defined on $(0,+\infty)$ such that $f(x)>0$ and $f(f(x))=6 x-f(x)$.

Solution. For $a>0$, define $a_{0}=a, a_{n}=f\left(a_{n-1}\right)$ for $n=1,2,3, \ldots$ Then $a_{n}=$ $f\left(a_{n-1}\right)=f\left(f\left(a_{n-2}\right)\right)=6 a_{n-2}-f\left(a_{n-2}\right)=-a_{n-1}+6 a_{n-2}$. The characteristic equation $x^{2}=-x+6$ has roots -3 and 2. So $a_{n}=\alpha(-3)^{n}+\beta 2^{n}$. If $\alpha \neq 0$, then $a_{n}<0$ when n is large, contradicting $f(x)>0$. So $\alpha=0$. Since $a_{0}=a$, so $\beta=a$. We get $f(a)=a_{1}=2 a$. Simple checking shows that $f(x)=2 x$ satisfies $f(f(x))=4 x=6 x-f(x)$. Therefore, the unique function is $f(x)=2 x$.
(20) (1991 Chinese National Senior High Math Competition) Let a_{n} be the number of positive integers having digits 1,3 and 4 only and sum of digits equal n. (Find a recurrence relation for a_{n} and) show that $a_{2 n}$ is a perfect square for $n=1,2,3, \ldots$.

Solution. Let A_{n} be the set of all such integers. Then $A_{1}=\{1\}, A_{2}=\{11\}, A_{3}=$ $\{111,3\}, A_{4}=\{1111,13,31,4\}, \ldots$. So $a_{1}=1, a_{2}=1, a_{3}=2, a_{4}=4$. Note the number $d_{1} d_{2} \cdots d_{k}$ (in digit form) is in A_{n} if and only if the number $d_{1} d_{2} \cdots d_{k-1}$ $\operatorname{in} \begin{cases}A_{n-1} & \text { if } d_{k}=1\end{cases}$
is in $\left\{\begin{array}{lll}A_{n-3} & \text { if } d_{k}=3 & \text { So } a_{n}=a_{n-1}+a_{n-3}+a_{n-4} \text { for } n>4 \text {. Although we }\end{array}\right.$ A_{n-4} if $d_{k}=4$.
can get a formula for a_{n} using the characteristic equation method, it turns out that formula will not be to helpful to show $a_{2 n}$'s are perfect squares.

Before proceeding further, we will use the recurrence relation to write out the terms of a_{n}. We get $1,1,2,4,6,9,15,25,40,64,104,169,273,441,714, \ldots$. The $a_{2 n}$ sequence is $1,4,9,25,64,169,441, \ldots$ and seems to be all perfect squares. What can we observe from the a_{n} sequence? Well, $a_{2 n-1}+a_{2 n}=a_{2 n+1}$ and $a_{2 n} a_{2 n+2}=a_{2 n+1}^{2}$ seem to be true. If true, these can finish the problem for us because $a_{2}=1^{2}$ and if $a_{2 k}=m^{2}$, then $a_{2 k+2}=a_{2 k+1}^{2} / a_{2 k}=\left(a_{2 k+1} / m\right)^{2}$ will imply all $a_{2 n}$'s are perfect squares by induction.

Now we can check the relations by mathematical induction. For the first relation, $a_{1}+a_{2}=2=a_{3}$. Suppose $a_{2 n-1}+a_{2 n}=a_{2 n+1}$. Then $a_{2 n+1}+a_{2 n+2}=$ $a_{2 n-1}+a_{2 n}+a_{2 n+2}=a_{2 n+3}$ by the recurrence relation, which completes the induction for the first relation. For the second relation, $a_{2} a_{4}=4=a_{3}^{2}$. Suppose
$a_{2 n} a_{2 n+2}=a_{2 n+1}^{2}$. Then using the recurrence relation and the first relation, we get

$$
\begin{aligned}
a_{2 n+2} a_{2 n+4} & =a_{2 n+2}\left(a_{2 n+3}+a_{2 n+1}+a_{2 n}\right)=a_{2 n+2} a_{2 n+3}+a_{2 n+2} a_{2 n+1}+a_{2 n+1}^{2} \\
& =a_{2 n+2} a_{2 n+3}+a_{2 n+1}\left(a_{2 n+2}+a_{2 n+1}\right)=a_{2 n+2} a_{2 n+3}+a_{2 n+1} a_{2 n+3} \\
& =a_{2 n+3}\left(a_{2 n+2}+a_{2 n+1}\right)=a_{2 n+3}^{2},
\end{aligned}
$$

which completes the induction for the second relation.
(21) Suppose $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are two different groups of n positive integers such that the numbers $a_{i}+a_{j}(1 \leq i<j \leq n)$ are the same as the numbers $b_{i}+b_{j}(1 \leq i<j \leq n)$. Show that n is a power of 2 .

Solution. Let $f(x)=x^{a_{1}}+x^{a_{2}}+\cdots+x^{a_{n}}$ and $g(x)=x^{b_{1}}+x^{b_{2}}+\cdots+x^{b_{n}}$. Then

$$
\begin{gathered}
f^{2}(x)=\sum_{i=1}^{n} x^{2 a_{i}}+2 \sum_{1 \leq i<j \leq n} x^{a_{i}+a_{j}}=f\left(x^{2}\right)+2 \sum_{1 \leq i<j \leq n} x^{a_{i}+a_{j}}, \\
f^{2}(x)-f\left(x^{2}\right)=2 \sum_{1 \leq i<j \leq n} x^{a_{i}+a_{j}}=2 \sum_{1 \leq i<j \leq n} x^{b_{i}+b_{j}}=g^{2}(x)-g\left(x^{2}\right) .
\end{gathered}
$$

So $g\left(x^{2}\right)-f\left(x^{2}\right)=g^{2}(x)-f^{2}(x)=(g(x)+f(x))(g(x)-f(x))$. Since $g(1)=n=f(1)$, so $g(x)-f(x)=(x-1)^{k} p(x)$ for some $k \geq 1$ and polynomial $p(x)$. Then

$$
g(x)+f(x)=\frac{g\left(x^{2}\right)-f\left(x^{2}\right)}{g(x)-f(x)}=\frac{\left(x^{2}-1\right)^{k} p\left(x^{2}\right)}{(x-1)^{k} p(x)}=(x+1)^{k} \frac{p\left(x^{2}\right)}{p(x)} .
$$

Setting $x=1$, we get $2 n=f(1)+g(1)=2^{k}$. Therefore $n=2^{k-1}$.

For the next few examples, we will need to multiply power series. Observe that

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots\right) \\
= & a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots .
\end{aligned}
$$

For sequences $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ and $b_{0}, b_{1}, b_{2}, b_{3}, \ldots$, we define their convolution to be the sequence $c_{0}, c_{1}, c_{2}, c_{3}, \ldots$, where

$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

is the coefficient sequence of the product of the generating functions for the two sequences. We will denote the convolution by $a_{n} \star b_{n}=c_{n}$.

On the open interval $(-1,1)$, if we multiply $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots$ by itself, we get $\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots$. (This also follows from differentiating the geometric series.) In short, $1 \star 1=n+1$. Now

$$
\frac{x}{(1-x)^{2}}=x+2 x^{2}+3 x^{3}+\cdots
$$

Differentiating both sides, we get $\frac{1+x}{(1-x)^{3}}=1+4 x+9 x^{2}+16 x^{3}+\cdots$.
Examples. (22) For $n \geq 3$, show that

$$
\binom{n}{1}-2^{2}\binom{n}{2}+3^{2}\binom{n}{3}-\cdots+(-1)^{n+1} n^{2}\binom{n}{n}=0
$$

Solution. Note the left side is a convoluted expression. Now

$$
1-4 x+9 x^{2}-16 x^{3}+\cdots=\frac{1-x}{(1+x)^{3}}
$$

$$
\begin{aligned}
\binom{n}{n} x+\binom{n}{n-1} x^{2}+\cdots+\binom{n}{0} x^{n+1} & =\binom{n}{0} x+\binom{n}{1} x^{2}+\cdots+\binom{n}{n} x^{n+1} \\
& =x(1+x)^{n}
\end{aligned}
$$

Their product is $x(1-x)(1+x)^{n-3}$, which is of degree $n-1$. So the coefficient of x^{n} is

$$
\binom{n}{1}-2^{2}\binom{n}{2}+3^{2}\binom{n}{3}-\cdots+(-1)^{n+1} n^{2}\binom{n}{n}=0
$$

The binomial theorem asserts that for any real number α,

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}+\cdots=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k},
$$

where $\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}$. If α is a nonnegative integer, this is true for all x. However, if α is not a nonnegative integer (eg. $\alpha=-1$), then it is only true for $|x|<1$. Considering the cases $\alpha=-n$ and $\alpha=1 / 2$, we have

$$
\begin{aligned}
\binom{-n}{k} & =\frac{-n(-n-1) \cdots(-n-k+1)}{k!} \\
& =\frac{(-1)^{k} n(n+1) \cdots(n+k-1)}{k!}=(-1)^{k}\binom{n+k-1}{k}, \\
\binom{1 / 2}{k} & =\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-k+1\right)}{k!}=\frac{(-1)^{k-1} 1 \cdot 3 \cdot 5 \cdots(2 k-3)}{2^{k} k!} .
\end{aligned}
$$

Example. (23) (Catalan Numbers) Find the number T_{n} of ways a convex n-sided polygon can be divided into triangles by $n-3$ nonintersecting diagonals. (Here nonintersecting means no intersection inside the polygon.)

Solution. The first few cases are $T_{3}=1, T_{4}=2$ and $T_{5}=5$. Consider a $(n+1)$ sided convex polygon $v_{1} v_{2} \ldots v_{n+1}$. Fix edge $v_{n} v_{n+1}$. For any of these divisions, one of the triangles will be $v_{k} v_{n} v_{n+1}$ with $1 \leq k \leq n-1$. For each such k, the polygon $v_{1} v_{2} \ldots v_{k} v_{n+1}$ has $k+1$ sides and the polygon $v_{k} v_{k+1} \ldots v_{n}$ has $n-k+1$ sides. These yield $T_{k+1} T_{n-k+1}$ triangulations of $v_{1} v_{2} \ldots v_{n+1}$ having triangle $v_{k} v_{n} v_{n+1}$. (For the case $k=1$ or $n-1, T_{2}$ should be set to 1 .) Summing from $k=1$ to $n-1$, we get $T_{n+1}=T_{2} T_{n}+T_{3} T_{n-1}+\cdots+T_{n} T_{2}$, which is a convoluted expression.

Consider the generating function $f(x)=T_{2}+T_{3} x+T_{4} x^{2}+T_{5} x^{3}+\cdots$. We have

$$
\begin{aligned}
f^{2}(x) & =T_{2}^{2}+\left(T_{2} T_{3}+T_{3} T_{2}\right) x+\left(T_{2} T_{4}+T_{3} T_{3}+T_{4} T_{2}\right) x^{2}+\cdots \\
& =T_{3}+T_{4} x+T_{5} x^{2}+T_{6} x^{3}+\cdots .
\end{aligned}
$$

So $x f^{2}(x)=T_{3} x+T_{4} x^{2}+T_{5} x^{3}+T_{6} x^{4}+\cdots=f(x)-1$. Solving for $f(x)$ with $x \neq 0$, we get

$$
f(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}=\frac{1}{2 x}\left(1 \pm \sum_{k=0}^{\infty}\binom{1 / 2}{k}(-4 x)^{k}\right)
$$

Since $f(0)=T_{2}=1$, the plus sign is rejected. Comparing coefficients, we get for $n=3,4,5, \ldots$,

$$
T_{n}=-\frac{1}{2}\binom{1 / 2}{n-1}(-4)^{n-1}=\frac{(2 n-4)!}{(n-1)!(n-2)!}=\frac{C_{n-2}^{2 n-4}}{n-1}
$$

Exercises.

1. (1980 USSR Math Olympiad) Let n be an odd integer greater than 1 . Show that one of the numbers $2^{1}-1,2^{2}-1,2^{3}-1, \ldots, 2^{n}-1$ is divisible by n. (Hint: None of them is congruent to $-1(\bmod n)$.)
2. Show that there are integers a, b, c, not all zero, with absolute values less than 10^{6} such that

$$
|a+b \sqrt{2}+c \sqrt{3}| \leq \frac{1+\sqrt{2}+\sqrt{3}}{1+10^{6}+10^{12}}
$$

(Hint: Consider all numbers of the form $r+s \sqrt{2}+t \sqrt{3}$, where $r, s, t \in$ $\left\{0,1,2, \ldots, 10^{6}-1\right\}$ and see how they are distributed.)
3. (1976 USA Math Olympiad) Each square of a 4×7 board is colored white or black. Prove that with any such coloring, there is always a rectangle whose four corner squares are of the same color. Is this true if the board is 4×6 ?
4. For $n \geq 3$, how many n digit numbers are there such that each digit is 1,2 or 3 and the digits contain 1,2,3 each at least once? (Hint: Let A_{1} be the set of n digit numbers, each of its digits is 2 or 3 .)
5. In a group of 100 people, suppose everyone knows at least 51 other people in the group. Show that there are three people in the group who know each other.
6. (1978 Austrian-Polish Math Competition) There are 1978 clubs. Each club has 40 members. It is known that every pair of these clubs has exactly one common member. Show that there is one member who belongs to every club.
7. (1964 IMO) Seventeen people correspond by mail with each other. In their letters only 3 different topics are discussed. Each letter deals with only one of these topics. Show that there are at least three people who write to each other on the same topic. (Hint: Use 17 points and 3 colors. One color for each topic.)
8. Show that for integers a, b, c with $c \neq 0,1,4,9,16, \ldots$, if $(a+b \sqrt{c})^{n}=$ $p+q \sqrt{c}$, then $(a-b \sqrt{c})^{n}=p-q \sqrt{c}$ for every positive integer n.
9. Let a_{n} be the number of ways in which a $2 \times n$ rectangle can be formed out of $n 1 \times 2$ rectangles. Find a recurrence relation of a_{n} in terms of a_{n-1} and a_{n-2}, then find a_{n} in terms of n.
10. Let a_{n} be the number of strings of n symbols each of which is either 0,1 or 2 such that no two consecutive 0 's occur. Show that $a_{n}=2 a_{n-1}+2 a_{n-2}$ and find a_{n} in terms of n. (Note $a_{1}=3, a_{2}=8, a_{3}=22$.)
11. Show that there are $a_{n}=2^{n-1}$ ways of arranging the integers $1,2, \ldots, n$ in a row such that except for the leftmost, every number differ from some number to its left by +1 or -1 . (Hint: The rightmost integer must be 1 or n.)
12. In example (12), show that $a_{k}=\left\{\begin{array}{ll}F_{n}^{2} & \text { if } k=2 n \text { is even } \\ F_{n} F_{n+1} & \text { if } k=2 n+1 \text { is odd, }\end{array}\right.$ where F_{n} is the n-th Fibonacci numbers.

7. Coordinate Geometry

When we do a geometry problem, we should first look at the given facts and the conclusion. If all these involve intersection points, midpoints, feet of perpendiculars, parallel lines, then there is a good chance we can solve the problem by coordinate geometry. However, if they involve two or more circles, angle bisectors and areas of triangles, then sometimes it is still possible to solve the problem by choosing a good place to put the origin and the x-axis. Below we will give some examples. It is important to stay away from messy computations!

Example 1. (1995 IMO) Let A, B, C and D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at the points X and Y. The line $X Y$ meets $B C$ at the point Z. Let P be a point on the line $X Y$ different from Z. The line $C P$ intersects the circle with diameter $A C$ at the points C and M, and the line $B P$ intersects the circle with diameter $B D$ at the points B and N. Prove that the lines $A M, D N$, and $X Y$ are concurrent.

(Remarks. Quite obvious we should set the origin at Z. Although the figure is not symmetric with respect to line $X Y$, there are pairs such as M, N and A, D and B, C that are symmetric in roles! So we work on the left half of the figure, the computations will be similar for the right half.)

Solution. (Due to Mok Tze Tao, 1995 Hong Kong Team Member) Set the origin at Z and the x-axis on line $A D$. Let the coordinates of the circumcenters of triangles $A M C$ and $B N D$ be $\left(x_{1}, 0\right)$ and $\left(x_{2}, 0\right)$, and the circumradii be r_{1} and r_{2}, respectively. Then the coordinates of A and C are $\left(x_{1}-r_{1}, 0\right)$ and $\left(x_{1}+r_{1}, 0\right)$, respectively. Let the coordinates of P be ($0, y_{0}$). Since $A M \perp C P$ and the slope of $C P$ is $-y_{0} d\left(x_{1}+r_{1}\right)$, so the equation of $A M$ is $\left(x_{1}+r_{1}\right) x-y_{0} y=x_{1}^{2}-r_{1}^{2}$. Let Q be the intersection of $A M$ with $X Y$, then Q has coordinates $\left(0,\left(r_{1}^{2}-x_{1}^{2}\right) / y_{0}\right)$. Similarly,
let Q^{\prime} be the intersection of $D N$ with $X Y$, then Q^{\prime} has coordinates $\left(0,\left(r_{2}^{2}-x_{2}^{2}\right) / y_{0}\right)$. Since $r_{1}^{2}-x_{1}^{2}=Z X^{2}=r_{2}^{2}-x_{2}^{2}$, so $Q=Q^{\prime}$.

Example 2. (1998 APMO) Let $A B C$ be a triangle and D the foot of the altitude from A. Let E and F be on a line passing through D such that $A E$ is perpendicular to $B E, A F$ is perpendicular to $C F$, and E and F are different from D. Let M and N be the midpoints of the line segments $B C$ and $E F$, respectively. Prove that $A N$ is perpendicular to $N M$.

(Remarks. We can set the origin at D and the x-axis on line $B C$. Then computing the coordinates of E and F will be a bit messy. A better choice is to set the line through D, E, F horizontal.)

Solution. (Due to Cheung Pok Man, 1998 Hong Kong Team Member) Set the origin at A and the x-axis parallel to line $E F$. Let the coordinates of D, E, F be (d, $b),(e, b),(f, b)$, respectively. The case $b=0$ leads to $D=E$, which is not allowed.

So we may assume $b \neq 0$. Since $B E \perp A E$ and the slope of $A E$ is b / e, so the equation of line $B E$ works out to be $e x+b y=e^{2}+b^{2}$. Similarly, the equations of lines $C F$ and $B C$ are $f x+b y=f^{2}+b^{2}$ and $d x+b y=d^{2}+b^{2}$, respectively. Solving the equations for $B E$ and $B C$, we find B has coordinates $(d+e, b-(d e / b))$. Similarly, C has coordinates $(d+f, b-(d f / b))$. Then M has coordinates $(d+(e+f) / 2$, $b-(d e+d f) /(2 b))$ and N has coordinates $((e+f) / 2, b)$. So the slope of $A N$ is $2 b /(e+f)$ and the slope of $M N$ is $-(e+f) /(2 b)$. Therefore, $A N \perp M N$.

Example 3. (2000 IMO) Two circles Γ_{I} and Γ_{2} intersect at M and N. Let ℓ be the common tangent to Γ_{l} and Γ_{2} so that M is closer to ℓ than N is. Let ℓ touch Γ_{l} at A and Γ_{2} at B. Let the line through M parallel to ℓ meet the circle Γ_{1} again at C and the circle Γ_{2} again at D. Lines $C A$ and $D B$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.

(Remarks. Here if we set the x-axis on the line through the centers of the circles, then the equation of the line $A B$ will be complicated. So it is better to have line $A B$ on the x-axis.)

Solution. Set the origin at A and the x-axis on line $A B$. Let B, M have coordinates $(b, 0),(s, t)$, respectively. Let the centers O_{1}, O_{2} of Γ_{1}, Γ_{2} be
at $\left(0, r_{1}\right),\left(b, r_{2}\right)$, respectively. Then C, D have coordinates $(-s, t),(2 b-s, t)$, respectively. Since $A B, C D$ are parallel, $C D=2 b=2 A B$ implies A, B are midpoints of $C E, D E$, respectively. So E is at $(s,-t)$. We see $E M \perp C D$.

To get $E P=E Q$, it is now left to show M is the midpoint of segment $P Q$. Since O_{I} $O_{2} \perp M N$ and the slope of $O_{1} O_{2}$ is $\left(r_{2}-r_{1}\right) / b$, the equation of line $M N$ is $b x+\left(r_{2}-\right.$ $\left.r_{1}\right) y=b s+\left(r_{2}-r_{1}\right) t$. (This line should pass through the midpoint of segment $A B$.) Since $O_{2} M=r_{2}$ and $O_{1} M=r_{1}$, we get

$$
(b-s)^{2}+\left(r_{2}-t\right)^{2}=r_{2}^{2} \quad \text { and } s^{2}+\left(r_{1}-t\right)^{2}=r_{1}^{2}
$$

Subtracting these equations, we get $b^{2} / 2=b s+\left(r_{2}-r_{1}\right) t$, which implies $(b / 2,0)$ is on line $M N$. Since $P Q, A B$ are parallel and line $M N$ intersects $A B$ at its midpoint, M must be the midpoint of segment $P Q$. Together with $E M \perp P Q$, we get $E P=E Q$.

Example 4. (2000 APMO) Let $A B C$ be a triangle. Let M and N be the points in which the median and the angle bisector, respectively, at A meet the side $B C$. Let Q and P be the points in which the perpendicular at N to $N A$ meets $M A$ and $B A$, respectively, and O the point in which the perpendicular at P to $B A$ meets $A N$ produced. Prove that $Q O$ is perpendicular to $B C$.

(Remarks. Here the equation of the angle bisector is a bit tricky to obtain unless it is the x-axis. In that case, the two sides of the angle is symmetric with respect to the x-axis.)
Solution. (Due to Wong Chun Wai, 2000 Hong Kong Team Member) Set the origin at N and the x-axis on line $N O$. Let the equation of line $A B$ be $y=a x+b$, then A has coordinates $(-b / a, 0)$ and P has coordinates $(0, b)$. The equation of lines $A C$ and $P O$ are
$y=-a x-b$ and $y=(-1 / a) x+b$, respectively. So O has coordinates $(a b, O)$. Let the equation of $B C$ be $y=c x$. Then B has coordinates $(b /(c-a), b c /(c-a)), C$ has
coordinates $(-b /(c+a),-b c(c+a))$ and M has coordinates $\left(a b /\left(c^{2}-a^{2}\right), a b c /\left(c^{2}-a^{2}\right)\right)$. Then the equation of line $A M$ is $y=\left(a^{2} / c\right)(x+b / c)$ and so Q has coordinates $(0$, $a b / c)$. Then $B C$ has slope c and $Q O$ has slope $-l / c$. So $Q O \perp B C$.

Example 5. (1998 IMO) In the convex quadrilateral $A B C D$, the diagonals $A C$ and $B D$ are perpendicular and the opposite sides $A B$ and $D C$ are not parallel. Suppose that the point P, where the perpendicular bisectors of $A B$ and $D C$ meet, is inside $A B C D$. Prove that $A B C D$ is a cyclic quadrilateral if and only if the triangles $A B P$ and $C D P$ have equal areas.

(Remarks. The area of a triangle can be computed by taking the half length of the cross product. A natural candidate for the origin is P and having the diagonals parallel to the axes will be helpful.)

Solution. (Due to Leung Wing Chung, 1998 Hong Kong Team Member) Set the origin at P and the x-axis parallel to line $A C$. Then the equations of lines $A C$ and $B D$ are $y=p$ and $x=q$, respectively. Let $A P=B P=r$ and $C P=D P=s$. Then the coordinates of A, B, C, D are $\left(-\sqrt{r^{2}-p^{2}}, p\right),\left(q, \sqrt{r^{2}-q^{2}}\right),\left(\sqrt{s^{2}-p^{2}}, p\right),\left(q,-\sqrt{s^{2}-q^{2}}\right)$, respectively. Using the determinant formula for finding the area of a triangle, we see that the areas of triangles $A B P$ and $C D P$ are equal if and only if

$$
\frac{1}{2}\left|\begin{array}{cc}
-\sqrt{r^{2}-p^{2}} & p \\
q & \sqrt{r^{2}-q^{2}}
\end{array}\right|=\frac{1}{2}\left|\begin{array}{cc}
\sqrt{s^{2}-p^{2}} & p \\
q & -\sqrt{s^{2}-q^{2}}
\end{array}\right|
$$

which after cancelling $\frac{1}{2}$ on both sides is equivalent to

$$
-\sqrt{r^{2}-p^{2}} \sqrt{r^{2}-q^{2}}-p q=-\sqrt{s^{2}-p^{2}} \sqrt{s^{2}-q^{2}}-p q
$$

Since $f(x)=-\sqrt{x^{2}-p^{2}} \sqrt{x^{2}-q^{2}}-p q$ is strictly decreasing when $x \geq|p|$ and $|q|$, equality of areas hold if and only if $r=s$, which is equivalent to A, B, C, D concyclic (since P being on the perpendicular bisectors of $A B, C D$ is the only possible place for the center).

Example 6. Let O be the center of the circumcircle of $\triangle A B C$ and let $A D$ be a diameter. Let the tangent at D to the circumcircle intersect line $B C$ at P. Let line $P O$ intersect lines $A C, A B$ at M, N respectively. Prove that $O M=O N$.

Solution. Set O as the origin and line $M N$ as the x-axis.

Let P^{\prime} be the reflection of P with respect to O. Then the coordinates of P and P^{\prime} are of the form $(p, 0)$ and $(-p, 0)$.
The equation of the circumcircle as a conic section is of the form $x^{2}+y^{2}-r^{2}=0$. The equation of the pair of lines $A P$ ' and $B C$ as a (degenerate) conic section is

$$
(y-m(x+p))(y-n(x-p))=0
$$

where m is the slope of line $A P^{\prime}$ and n is the slope of line $B C$. Since these two conic sections intersect at A, B, C, so the equation of the pair of lines $A B$ and $A C$ as a (degenerate) conic section is of the form

$$
x^{2}+y^{2}-r^{2}=\lambda(y-m(x+p))(y-n(x-p))
$$

for some real number λ. When we set $y=0$, we see the x-coordinates of M and N satisfies $x^{2}-r^{2}=\lambda m n\left(x^{2}-p^{2}\right)$, whose roots are some positive number and its negative. Therefore, $O M=O N$.

After seeing these examples, we would like to remind the readers that there are pure geometric proofs to each of the problems. For examples (1) and (3), there are proofs that only take a few lines. We encourage the readers to discover these simple proofs.
Although in the opinions of many people, a pure geometric proof is better and more beautiful than a coordinate geometric proof, we should point out that sometimes the coordinate geometric proofs may be preferred when there are many cases. For example (2), the different possible orderings of the points D, E, F on the line can all happen as some pictures will show. The coordinate geometric proofs above cover all cases.

Exercises

1. (1994 Canadian Math Olympiad) Let $A B C$ be an acute triangle. Let D be on side $B C$ such that $A D \perp B C$. Let H be a point on segment $A D$ different from A
and D. Let line $B H$ intersect side $A C$ at E and line $C H$ intersect side $A B$ at F. Prove that $\angle E D A=\angle F D A$.
2. Let E be a point inside triangle $A B C$ such that $\angle A B E=\angle A C E$. Let F and G be the feet of the perpendiculars from E to the internal and external bisectors, respectively, of $\angle B A C$. Prove that the line $F G$ passes through the midpoint of $B C$.
3. Let circle Γ_{2} lie inside circle Γ_{1} and the two circles do not intersect. For any point A on Γ_{1}, let B and C be the two points on Γ_{1} such that $A B$ and $A C$ are tangent to Γ_{2}. Prove that $B C$ is tangent to Γ_{2} if and only if $O I^{2}=R^{2}-2 R r$, where O, I are the centers of Γ_{1}, Γ_{2} and R, r are the radii of Γ_{1}, Γ_{2}, respectively. (Hint: Set the origin at A and the x-axis on $A I$.)
4. (1999 IMO) Two circles Γ_{1} and Γ_{2} are contained inside the circle Γ and are tangent to Γ at distinct points M and N, respectively. Γ_{1} passes through the center of Γ_{2}. The line passing through the two points of intersection of Γ_{1} and Γ_{2} meet Γ at A and B. The lines $M A$ and $M B$ meet Γ_{1} at C and D, respectively. Prove that $C D$ is tangent to Γ_{2}. (Hint: Set the origin at M, x-axis on $M O_{1}, t=\angle$ $O O_{1} O_{2}$, where O, O_{1}, O_{2} are the centers of $\Gamma, \Gamma_{1}, \Gamma_{2}$, respectively.)
5. A circle with center C does not intersect a line L. Let F be the foot of the perpendicular from C to line L. Through F, two lines different from line $C F$ are drawn cutting the circle at four points, the first line at A, B with A between F and B; the second line at D, E with D between F and E. Let line $B D$ intersect line L at G and line $A E$ intersect line L at H. Prove that $G F=H F$.

Equation of Lines
Notations: $e^{i \theta}=\operatorname{cis} \theta=\cos \theta+i \sin \theta$.
Basic Observations
(1) $Z-W$ "corresponds" to the vector $\overrightarrow{W Z}$.

(2)

To rotate a point in the plane with respect to the origin by an angle α, We simply multiply the complex number by $e^{i \alpha}$.
If $Z=r^{i \theta}$, then $\arg z=\theta$.
(3) A complex number z is real if and only if $z=\bar{z}$.

Equation of a line through two given points
Given W_{1}, W_{2}, the parametric equation of the line through W_{1}, W_{2} is $\dot{\vec{O}}=\vec{O}_{1}+t \vec{W}_{1} \vec{W}_{2}$, t real.
 for the three points W_{1}, W_{2}, Z to be collinear. Equation of perpendicular line through a given point.

$i\left(w_{2}-w_{1}\right)$ Rotation by 90° :
${ }_{\omega_{1}}^{\omega_{2}-\omega_{1}} e^{i \frac{\pi}{2}}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=i$.
Equation of the line through C perpendicular to $w_{1} w_{2}$ is $\frac{z-C}{i\left(w_{2}-w_{1}\right)}=\frac{\bar{z}-\bar{C}}{\bar{i}\left(\bar{w}_{2}-\bar{w}_{1}\right)}$.

Lines associated with (unit)circle

If W_{1}, W_{2} are on the unit circle
(i.e. $w_{1} \bar{W}_{1}=W_{2} \bar{w}_{2}=1$), then the equation of the line through $W_{1} W_{2}$ is

$$
\frac{z-w_{1}}{\bar{z}-\bar{w}_{1}}=\frac{w_{2}-w_{1}}{w_{2}-\bar{w}_{1}}=-w_{1} w_{2}
$$

Simplifying we get $Z+w_{1} w_{2} \bar{z}=w_{1}+w_{2}$.
The equation of the line through a given point C perpenderito to $w_{1} w_{2}$ is $\frac{z-c}{\bar{z}-\bar{c}}=\frac{i\left(w_{2}-w_{1}\right)}{\bar{i}\left(\bar{w}_{2}-\bar{w}_{1}\right)}=w_{1} w_{2}$.
Simplifying we get $z-W_{1} W_{2} \bar{z}=C-w_{1} W_{2} \bar{C}$.
Tangential Case
Letting $W_{2} \rightarrow W_{1}$, we get the equation of the tangent line to the unit circle at W_{1}, which is

$$
Z+W_{1}^{2} \bar{z}=2 W_{1}
$$

The equation of the perpendicular from C to the tangent line at W_{1} is

$$
z-w_{1}^{2} \bar{z}=c-w_{1}^{2} \bar{c}
$$

Given $\triangle A_{1} A_{2} A_{3}$ is inscribed in the unit circle.
(1) Circumcenter O is at the origin
(2) Centroid G is at $\frac{A_{1}+A_{2}+A_{3}}{3}$
$0, G, N, H$ are
collinear. (This is true even if $\triangle A_{1} A_{2} A_{3}$ (Euler Line of $\triangle A_{1} A_{2} A_{3}$) is not inscribed in the unit circle!)
(3) Orthocenter H is at $A_{1}+A_{2}+A_{3}$ (because $O H=3(O G)$) Equation of line through A_{1} perpendicular to $A_{2} A_{3}$ is

$$
z-A_{2} A_{3} \bar{Z}=A_{1}-A_{2} A_{3} \overline{A_{1}} .
$$

Equation of line through A_{2} perpendicular to $A_{1} A_{3}$ is

$$
z-A_{1} A_{3} \bar{z}=A_{2}-A_{1} A_{3} \frac{1}{A_{2}} .
$$

These two lines intersect at H, which satisfies both equations. Using the fact $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=1$ (ie. $A_{1} \bar{A}_{1}=A_{2} \bar{A}_{2}=A_{3} \bar{A}_{3}=1$), we see that $Z=A_{1}+A_{2}+A_{3}$ satisfies both equations, too. $\therefore H=A_{1}+A_{2}+A_{3}$.
(4) Center N of the nine point circle is at $\frac{A_{1}+A_{2}+A_{3}}{2}$ (because N is the midpoint of OH).
Recall the mine point circle is the circle that passes through the midpoint of the edges $\frac{A_{1}+A_{2}}{2}, \frac{A_{2}+A_{3}}{2}, \frac{A_{2}+A_{1}}{2}$, the feet of the altitudes H_{1}, H_{2}, H_{3} and the midpoints of the vertices and the orthocenter $\frac{A_{1}+H}{2}, \frac{A_{2}+H}{2}, \frac{A_{3}+H}{2}$.

Similar Triangles

$$
\begin{aligned}
& z_{z_{3}}^{z_{1}} \\
& \text { Note } Z=r e^{i \theta} \\
& =|z| e^{i a r g z} T \\
& \Delta z_{1} z_{2} z_{3}, \Delta w_{1} w_{2} w_{3} \quad \text { are directly) } \\
& \Leftrightarrow \frac{z_{2} z_{1}}{z_{3} z_{1}}=\frac{w_{2} w_{1}}{w_{3} w_{1}} \cdot\left\langle z_{2} z_{1} z_{3}=\left\langle w_{2} w_{1} w_{3}\right.\right. \\
& \Leftrightarrow \frac{\left|z_{4} z_{1}\right|}{\left|z_{3}-z_{1}\right|}=\frac{\left|w_{2}-w_{1}\right|}{\left|w_{3}-w_{1}\right|} \text { and } \\
& \arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)=\arg \left(\frac{w_{2}-w_{1}}{w_{3}-w_{1}}\right) \\
& \Leftrightarrow \frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{w_{2}-w_{1}}{w_{3}-w_{1}} \\
& \Leftrightarrow\left|\begin{array}{lll}
z_{1} & w_{1} & 1 \\
z_{2} & w_{2} & 1 \\
z_{3} & w_{3} & 1
\end{array}\right|=0
\end{aligned}
$$

$\Delta z_{1} z_{2} z_{3}$ is similar to the mirror image of $\Delta w_{1} w_{2} w_{3}$ if and only if $\left|\begin{array}{lll}z_{1} & w_{1} & 1 \\ z_{2} & w_{2} & 1 \\ z_{3} & \overline{w_{3}} & 1\end{array}\right|=0$.
Special Case - Equilateral Triangles

$\triangle P Q R$ (comuterclocknis)
$\Rightarrow \omega=e^{2 \pi i / 3}$

$\triangle P Q R$ (clockwise)

$$
\Rightarrow \omega=e^{-2 \pi i / 3}
$$

$\triangle P Q R$ is equilateral
$\Leftrightarrow \triangle P Q R$ is similar to the triangle with vertices $1, \omega, \omega^{2}$, where ω is a cuke root of unity.

$$
\Leftrightarrow\left|\begin{array}{lll}
P & 1 & 1 \\
Q & w & 1 \\
R & w^{2} & 1
\end{array}\right|=0, \omega^{3}=1, \omega \neq 1
$$

$$
\Leftrightarrow P+\omega Q+\omega^{2} R=0, \omega^{3}=1, \omega \neq 1 .
$$

Problem (Napolean Triangle Theorem)
Equilateral triangles are erected on the sides of a given triangle. Then the centroids of these equilateral triangles also form an equilateral triangle.

Solution Since $\triangle A Q R, \triangle B R P, \triangle C P Q$ are equilateral, we have $A+\omega Q+\omega^{2} R=0, B+\omega R+\omega^{2} P=0, C+\omega P+\omega^{2} Q=0$, where $\omega=e^{-2 \pi i / 3}$ is a cube root of unity.
To show $\triangle X Y Z$ is equilateral, we compute

$$
\begin{aligned}
& x+\omega y+\omega^{2} Z=\left(\frac{A+R+Q}{3}\right)+\omega\left(\frac{C+Q+P}{3}\right)+\omega^{2}\left(\frac{B+P+R}{3}\right) \\
&=\frac{1}{3}\left[\left(A+\omega Q+\omega^{2} R\right)+\omega^{2}\left(B+\omega R+\omega^{2} P\right)+\omega\left(C+\omega P+\omega^{2} Q\right)\right] \\
&=0 .
\end{aligned}
$$

Problem.
Let A, B be two fired points on a given circle. Find the locus of the midpoint of the segment joining the orthocenter and the centroid of $\triangle A B C$, when C goes around the given circle once.

Solution W.L.O.G. (Without loos of generality) we may assume the given circle is the unit circle. Let X be a point on the locus, then

$$
X=\frac{H+G}{2}=\frac{A+B+C+\frac{A+B+C}{3}}{2}=\frac{2}{3}(A+B+C)
$$

and so

$$
\left|x-\frac{2}{3}(A+B)\right|=\frac{2}{3}|C|=\frac{2}{3} .
$$

Therefore, X is on a circle of radius $\frac{2}{3}$ that of the given Circle and centered at $\frac{2}{3}(A+B)=\frac{4}{3}\left(\frac{A+B}{2}\right)$ (ie. the point $\frac{4}{3}$ the distance from the center to the midpoint of segment AB.)

Conversely, any point on that circle is a point on the locus. Given X on the circle, $C=\frac{3}{2}\left(X-\frac{2}{3}(A+B)\right)$ is the corresponding point on the unit circle.

Prod dem
Let A_{1}, A_{2}, A_{3} be the midpoints of $W_{2} W_{3}, W_{3} W_{1}, W_{1} W_{2}$, respectively. From A_{i} drop a perpendicular to the tangent line to the circuncirde of $\Delta W_{1} W_{2} W_{3}$ at W_{i}. Show that these perpendiculars are concurrent. Identify this point of concurrency.

Solution. W.L.O.G., assume the circumcirdle is the unit circle. The line perpendicular to the tangent at W_{1} through A_{1} has equation

$$
z-W_{1}^{2} \bar{z}=A_{1}-W_{1}^{2} \bar{A}_{1}=\frac{W_{2}+W_{3}}{2}-W_{1}^{2} \frac{\bar{W}_{2}+\bar{W}_{3}}{2} \cdots \frac{W_{2}+W_{3}}{2}
$$

Now W_{1} is on the unit circle, so $W_{1} \bar{W}_{1}=1$. Then W_{e} can write the equation as

$$
z-W_{1}^{2} \bar{z}=\frac{W_{1}+W_{2}+W_{3}}{2}-W_{1}^{2} \frac{\bar{W}_{1}+\bar{W}_{2}+\bar{W}_{3}}{2}
$$

From this we see that the point $N=\frac{W_{1}+W_{2}+W_{3}}{2}$ is on the line. Since the expression for N is symmetric with respect to W_{1}, W_{2}, W_{3}, we can conclude that N will also lie on the other two lines. The expression for N tells us it is the center of the nine point circle for $\Delta W_{1} W_{2} W_{3}$.

Problem (Simeon Line Theorem)
Let W be on the circumcircle of $\Delta Z_{1} Z_{2} Z_{3}$ and P, Q, R be the feet of the perpendiculars from W to $Z_{3} Z_{1}, Z_{1} Z_{2}, Z_{2} Z_{3}$, respectively. Show that P, Q, R are collinear. (This line is called a Simson line of $\Delta Z_{1} Z_{2} Z_{3}$ from W.)

Solution Without loss of generality, we may assume the circumcircle is the unit circle. Then $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=|w|=1$. The line $Z_{3} Z_{1}$, has equation $z+Z_{1} Z_{3} z=Z_{1}+Z_{3}$. The perpendicular from W to $Z_{1} Z_{3}$ has equation $z-Z_{1} Z_{3} \bar{z}=W-Z_{1} Z_{3} W$. So solving these together, we get

Similarly, $Q=\frac{Z_{1}+Z_{2}+W-Z_{1} z_{2} \bar{W}}{2}$ and $R=\frac{z_{2}+Z_{3}+W-Z_{2} z_{3} \bar{W}}{2}$.
T. show P, Q, R are collinear, it suffices to show $\frac{P-R}{Q-R}=\frac{\bar{P}-\bar{R}}{\bar{Q}-\bar{R}}$.
Now $\bar{P}-\bar{R} \quad \bar{Z}_{1}-\bar{Z}_{2}-\bar{Z}_{1} \bar{Z}_{3} W+\bar{Z}_{2} \bar{Z}_{3} W$

$$
\begin{aligned}
\frac{\bar{P}-\bar{R}}{\bar{Q}-\bar{R}} & =\frac{\bar{Z}_{1}-\bar{Z}_{2}-\bar{Z}_{1} \bar{Z}_{3} W+\bar{z}_{2} \bar{z}_{3} W}{\bar{Z}_{1}-\bar{Z}_{3}-\bar{Z}_{1} \bar{Z}_{2} W+\bar{Z}_{2} \bar{Z}_{3} W} \times\left(\frac{Z_{1} Z_{2} Z_{3} \bar{W}}{Z_{1} z_{2} Z_{3} \bar{W}}\right) \\
& =\frac{Z_{1} Z_{2} \bar{W}-Z_{1} Z_{3} \bar{W}-Z_{2}+Z_{1}}{Z_{2} Z_{3} \bar{W}-Z_{1} Z_{2} \bar{W}-Z_{3}+Z_{1}} \quad \quad \begin{array}{l}
\left|Z_{i}\right|=1 \Leftrightarrow \bar{Z}_{i} \overline{Z_{i}}=1 . \\
|W|=1 \Leftrightarrow W \bar{W}=1 .
\end{array} \\
& =\frac{P-R}{Q-R} .
\end{aligned}
$$

(6) Consider $\triangle A B C$ and its circumcircle S. Reflect the

Problems
(1) A point A is taken inside a circle. Find the locus of the points of intersection of the tangents to the circle at the endpoints of all possible chords passing through A.
(2) Let $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$ be any three equilateral triangles in the plane (vertices labelled clockwise). Let the midpoints of segments $C_{2} B_{3}, C_{3} B_{1}, C_{1} B_{2}$ be M_{1}, M_{2}, M_{3} respectively. Let the points of trisection of segments $A_{1} M_{1}, A_{2} M_{2}, A_{3} M_{3}$ nearer M_{1}, M_{2}, M_{3} be T_{1}, T_{2}, T_{3} respectively. Prove $\Delta T_{1} T_{2} T_{3}$ is equilateral.
(3) Six points are given on a circle. The orthocenter of the triangle formed by 3 of the points is joined by a segment to the centroid of the triangle formed by the other 3 points. Prove that the 20 segments obtained in this way are all concurrent.
(4) Let $P(z)=a z^{3}+b z^{2}+c z+d$, where a, b, c, d are complex numbers with $|a|=|b|=|c|=|d|=1$. Show that $|P(z)| \geq \sqrt{6}$ for at least one point z satisfying $|z|=1$.
(Hint: $|P(z)|^{2}=4+2 \operatorname{Re} Q(z)$, where $Q(z)=a d z^{3}+\cdots$.
Let $z_{0}^{3}=\bar{a} d, \omega=e^{2 \pi i / 3}$. Consider $z_{0}, \omega z_{0}, \omega^{2} z_{0}$.)
(5) Suppose the inscribed circle of $\triangle A_{1} A_{2} A_{3}$ touches the sides $A_{2} A_{3}$, $A_{3} A_{1}, A_{1} A_{2}$ at T_{1}, T_{2}, T_{3}. From the midpoints M_{1}, M_{2}, M_{3} of $A_{2} A_{3}, A_{3} A_{1}$, $A_{1} A_{2}$, draw lines perpendicular to $T_{2} T_{3}, T_{3} T_{1}, T_{T} T_{2}$. Prove that these perpendicular lines are concurrent.

Circle S with respect to $A B, A C$ and $B C$ to get three new circles $S_{A B}, S_{A C}, S_{B C}$ (with the same radius as S). Show that $S_{A B}, S_{A C}, S_{B C}$ intersect at a common point. Identify this point.

Let N be the center of the nine point circle of $\triangle A_{1} A_{2} A_{3}, H_{i}$ the feet of perpendiculars, M_{i} the midpoints of edges.
Show that $\& H_{1} N M_{1}+\not H_{2} N M_{2}=\neq H_{3} N M_{3}$ for the figure drawn.

$$
\left.\not \subset A O B=\arg (A-0)-\arg (B-0)=\arg \left(\frac{A-0}{B-0}\right)\right]
$$

(3)(i) Show that in the Simson Line Theorem, the equation of the line through P, Q, R is

$$
w Z-z_{1} z_{2} z_{3} \bar{z}=\frac{1}{2}\left[w^{2}+\left(z_{1}+z_{2}+z_{3}\right) w-\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right)-z_{1} z_{2} z_{3} \bar{w}\right] \text {. }
$$

(This is the so-called Simson Line Equation.)
[Note: Since the equation is symmetric in z_{1}, z_{2}, z_{3}, it is enough to check P satisfies the equation.]
(ii) Show that the Simon line PQR bisects the segment joining W to the orthocenter of $\Delta z_{1} z_{2} z_{3}$ (ie. the midpoint of the segment is on the line).
(iii) Let $A B C D$ be a cyclic quadrilateral, let A_{1}, A_{2} be the feet of the perpodidion from A to the opposite sides $B C, C D$, and define $B_{1}, B_{2}, C_{1}, C_{2}, D_{1}, D_{2}$ similarly. Show that the lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}, D_{1} D_{2}$ are concurrent. [Note: $A_{1} A_{2}$ is the Simson Line of $\triangle B C D$ from A.]
(9) (2003 IMO) Let $A B C D$ be acyclic quadrilateral.

Let P, Q and R be the feet of the perpendicular from D to the lines $B C, C A$ and $A B$ respectively. Show that $P Q=Q R$ if and only if the bisector of $\angle A B C$ and $\angle A D C$ meet on $A C$.
(10) C Crux 1799) Let P be on the circumcircle of triangle $A B C$. Dand E are the feet of the perpendiculars from P to $B C$ and $C A$ respectively. L and M are the midpoints of $A D$ and $B E$ respectively. Show that $D E \perp L M$.

8. Vector Geometry

A vector $\overrightarrow{X Y}$ is an object having a magnitude (the length $X Y$) and a direction (from X to Y). Vectors are very useful in solving certain types of geometry problems. First, we will mention some basic concepts related to vectors. Two vectors are the same if and only if they have the same magnitudes and directions.
A vector $\overrightarrow{O X}$ from the origin O to a point X is called a position vector. For convenience, often a position vector $\overrightarrow{O X}$ will simply be denoted by X, when the position of the origin is understood, so that the vector $\overrightarrow{X Y}=\overrightarrow{O Y}-\overrightarrow{O X}$ will simply be $Y-X$. The length of the position vector $\overrightarrow{O X}=X$ will be denoted by $|X|$. We have the triangle inequality $|X+Y| \leq|X|+|Y|$, with equality if and only if X $=t Y$ for some $t \geq 0$. Also, $|c X|=|c||X|$ for number c.

For a point P on the line $X Y$, in terms of position vectors, $P=t X+(1-t) Y$, where $t=P Y / X Y$. Conversely, for every real number t, the position vector $t X+(1-t) Y$ corresponds to a point on the line $X Y$. The segment $X Y$ is consisted of points corresponding to the cases t in $[0,1]$.

Example 1. (1980 Leningrad High School Math Olympiad) Call a segment in a convex quadrilateral a midline if it joins the midpoints of opposite sides. Show that if the sum of the midlines of a quadrilateral is equal to its semiperimeter, then the quadrilateral is a parallelogram.
Solution. Let $A B C D$ be such a convex quadrilateral. Set the origin at A. The sum of the lengths of the midlines is $\frac{1}{2}(|B+C-D|+|D+C-B|)$ and the semiperimeter is $\frac{1}{2}(|B|+|C-D|+|D|+|C-B|)$. So

$$
|B+C-D|+|D+C-B|=|B|+|C-D|+|D|+|C-B|
$$

By triangle inequality, $|B|+|C-D| \geq|B+C-D|$, with equality if and only if $B=t(C-D)$ (or $A B \| C D$). Similarly, $|D|+|C-B| \geq|D+C-B|$, with equality if and only if $A D \| B C$. For the equation above to be true, both triangle inequalities must be equalities. In that case, $A B C D$ is a parallelogram.

Example 2. (Crux Problem 2333) D and E are points on sides $A C$ and $A B$ of triangle $A B C$, respectively. Also, $D E$ is not parallel to $C B$. Suppose F and G are points of $B C$ and $E D$, respectively, such that $B F / F C=E G / G D=B E / C D=r$. Show that $G F$ is parallel to the angle bisector of $\angle B A C$.

Solution. Set the origin at A. Then $E=p B$ and $D=q C$ for some p, q in $(0,1)$. Let $t=1 /(r+1)=F C / B C=G D / E D$, then $r=(1-t) / t$ and

$$
F=t B+(1-t) C \quad \text { and } \quad G=t E+(1-t) D=t p B+(1-t) q C .
$$

Since $B E=r C D$, so $|E-B|=r|D-C|$. Then

$$
\begin{gathered}
(1-p)|B|=r(1-q)|C|=\frac{1-t}{t}(1-q)|C| \quad \text { and } \\
F-G=t(1-p) B+(1-t)(1-q) C=t(1-p)|B|\left(\frac{B}{|B|}+\frac{C}{|C|}\right) .
\end{gathered}
$$

This is parallel to $\frac{B}{|B|}+\frac{C}{|C|}$, which is in the direction of the bisector of $\angle B A C$.

$$
* * * * * * * * * * * * * * * * * * * *
$$

The dot product of two vectors X and Y is the number $X \cdot Y=|X||Y| \cos \theta$, where θ is the angle between the vectors. Dot product has the following properties:
(1) $X \cdot Y=Y \cdot X,(X+Y) \cdot Z=X \cdot Z+Y \cdot Z$ and $(c X) \cdot Y=c(X \cdot Y)$.
(2) $|X|^{2}=X \cdot X,|X \cdot Y| \leq|X||Y|$ and $O X \perp O Y$ if and only if $X \cdot Y=0$.

Example 3. (1975 USAMO) Let A, B, C, D denote four points in space and $A B$ the distance between A and B, and so on. Show that

$$
A C^{2}+B D^{2}+A D^{2}+B C^{2} \geq A B^{2}+C D^{2}
$$

Solution. Set the origin at A. The inequality to be proved is

$$
C \cdot C+(B-D) \cdot(B-D)+D \cdot D+(B-C) \cdot(B-C) \geq B \cdot B+(C-D) \cdot(C-D)
$$

After expansion and regrouping, this is the same as $(B-C-D) \cdot(B-C-D) \geq 0$, with equality if and only if $B-C=D=D-A$, i.e. is $B C A D$ is a parallelogram.
$* *$

For a triangle $A B C$, the position vectors of its centroid is $G=(A+B+C) / 3$. If we take the circumcenter O as the origin, then since $\overrightarrow{O H}=3 \overrightarrow{O G}$, the position vector of the orthocenter is $H=A+B+C$. Now for the incenter I, let a, b, c be the side lengths and $A I$ intersect $B C$ at D. Since $B D: C D=c: b$ and $D I: A I=$ $\frac{c a}{b+c}: c=a: b+c$, so $D=\frac{b B+c C}{b+c}$ and $I=\frac{a A+b B+c C}{a+b+c}$.

Example 4. (2 ${ }^{\text {nd }}$ Balkan Math Olympiad) Let O be the center of the circle through the points A, B, C, and let D be the midpoint of $A B$. Let E be the centroid of triangle $A C D$. Prove that $C D \perp O E$ if and only if $A B=A C$.

Solution. Set the origin at O. Then

$$
D=\frac{A+B}{2}, \quad E=\frac{A+C+D}{3}=\frac{3 A+B+2 C}{6}, \quad D-C=\frac{A+B-2 C}{2}
$$

Hence $C D \perp O E$ if and only if $(A+B-2 C) \cdot(3 A+B+2 C)=0$. Using $A \cdot A=B \cdot B=C \cdot C$, this is the same as $A \cdot(B-C)=A \cdot B-A \cdot C=0$. Then $O A \perp B C$, which implies $A B=A C$.

Example 5. (1990 IMO Unused Problem, Proposed by France) Given $\triangle A B C$ with no side equal to another side, let G, I and H be its centroid, incenter and orthocenter, respectively. Prove that $\angle G I H>90^{\circ}$.

Solution. Set the origin at the circumcenter. Then

$$
H=A+B+C, \quad G=\frac{A+B+C}{3}, \quad I=\frac{a A+b B+c C}{a+b+c}
$$

We need to show $(G-I) \cdot(H-I)=G \cdot H+I \cdot I-I \cdot(G+H)<0$. Now $A \cdot A=B \cdot B=C \cdot C=R^{2}$ and $2 B \cdot C=B \cdot B+C \cdot C-(B-C) \cdot(B-C)=2 R^{2}-a^{2}, \ldots$. Hence,

$$
\begin{gathered}
G \cdot H=\frac{(A+B+C) \cdot(A+B+C)}{3}=R^{2}-\frac{a^{2}+b^{2}+c^{2}}{3} \\
I \cdot I=\frac{(a A+b B+c C) \cdot(a A+b B+c C)}{(a+b+c)^{2}}=3 R^{2}-\frac{a b c}{a+b+c} \\
I \cdot(G+H)=\frac{4(a A+b B+c C) \cdot(A+B+C)}{3(a+b+c)}=4 R^{2}-\frac{2\left[a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)\right]}{3(a+b+c)} .
\end{gathered}
$$

Using these, $(G-I) \cdot(H-I)=G \cdot H+I \cdot I-I \cdot(G+H)<0$ is equivalent to proving

$$
(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+3 a b c>2\left[a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)\right]
$$

After expansion and regrouping, this becomes Schur's inequality

$$
a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)>0
$$

To obtain this inequality, without loss of generality, assume $a \geq b \geq c$. Then

$$
a(a-b)(a-c) \geq b(a-b)(b-c)
$$

so that the sum of the first two terms is nonnegative. As the third term is also nonnegative, the above inequality is true.

```
*********************
```

The cross product of two vectors X and Y is a vector denoted by $X \times Y$ having magnitude $|X \| Y| \sin \theta$, where θ is the angle between the vectors, and direction perpendicular to the plane of X and Y satisfying the right hand rule. Cross product has the following properties:
(1) $X \times Y=-Y \times X,(X+Y) \times Z=X \times Z+Y \times Z$ and $(c X) \times Y=c(X \times Y)$.
(2) $\frac{1}{2}|X \times Y|$ is the area of $\triangle X O Y$. When $X, Y \neq O$, we have $X \times Y=0$ if and only if X, O, Y are collinear.

Example 6. (1984 Annual Greek High School Competition) Let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ be a convex hexagon having its opposite sides parallel. Prove that triangles $A_{1} A_{3} A_{5}$ and $A_{2} A_{4} A_{6}$ have equal areas.
Solution. Set the origin at any point. Since opposite sides are parallel, we have

$$
\left(A_{1}-A_{2}\right) \times\left(A_{4}-A_{5}\right)=0, \quad\left(A_{3}-A_{2}\right) \times\left(A_{5}-A_{6}\right)=0 \text { and }\left(A_{3}-A_{4}\right) \times\left(A_{6}-A_{1}\right)=0
$$

Expanding these equations and adding them, we get

$$
A_{1} \times A_{3}+A_{3} \times A_{5}+A_{5} \times A_{1}=A_{2} \times A_{4}+A_{4} \times A_{6}+A_{6} \times A_{2}
$$

Now

$$
\left[A_{1} A_{3} A_{5}\right]=\frac{1}{2}\left|\left(A_{1}-A_{3}\right) \times\left(A_{1}-A_{5}\right)\right|=\frac{1}{2}\left|A_{1} \times A_{3}+A_{3} \times A_{5}+A_{5} \times A_{1}\right|
$$

Similarly, $\left[A_{2} A_{4} A_{6}\right]=\frac{1}{2}\left|A_{2} \times A_{4}+A_{4} \times A_{6}+A_{6} \times A_{2}\right|$. So $\left[A_{1} A_{3} A_{5}\right]=\left[A_{2} A_{4} A_{6}\right]$.
Example 7. (1996 Balkan Math Olympiad) Let $A B C D E$ be a convex pentagon and let M, N, P, Q, R be the midpoints of sides $A B, B C, C D, D E, E A$,
respectively. If segments $A P, B Q, C R, D M$ have a common point, show that this point also lies on $E N$.

Solution. Set the origin at the common point. Since, A, P and the origin are collinear,

$$
0=A \times P=A \times\left(\frac{C+D}{2}\right)=\frac{A \times C+A \times D}{2} .
$$

So $A \times C=D \times A$. Similarly, $B \times D=E \times B, C \times E=A \times C$ and $D \times A=B \times D$. Then $E \times B=C \times E$. So $E \times N=E \times(B+C) / 2=0$, which implies E, N and the origin are collinear.

Example 8. (16 Austrian Math Olympiad) A line intersects the sides (or sides produced) $B C, C A, A B$ of triangle $A B C$ in the points A_{1}, B_{1}, C_{1}, respectively. The points A_{2}, B_{2}, C_{2} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of $B C, C A$, $A B$, respectively. Prove that A_{2}, B_{2}, C_{2} are collinear.

Solution. Set the origin at a vertex, say C. Then $A_{1}=c_{1} B, B_{1}=c_{2} A$ and $C_{1}=$ $A+c_{3}(B-A)$ for some constants c_{1}, c_{2}, c_{3}. Since A_{1}, B_{1}, C_{1} are collinear,

$$
0=\left(B_{1}-A_{1}\right) \times\left(C_{1}-A_{1}\right)=\left(c_{1}-c_{1} c_{2}-c_{1} c_{3}+c_{2} c_{3}\right) A \times B
$$

Now

$$
A_{2}=B-A_{1}=\left(1-c_{1}\right) B, B_{2}=A-B_{1}=\left(1-c_{2}\right) A, C_{2}=(A+B)-C_{1}=c_{3} A+\left(1-c_{3}\right) B .
$$

From these, we get

$$
\left(B_{2}-A_{2}\right) \times\left(C_{2}-A_{2}\right)=\left(c_{1}-c_{1} c_{2}-c_{1} c_{3}+c_{2} c_{3}\right) A \times B=0 .
$$

so A_{2}, B_{2}, C_{2} are collinear

$$
* *
$$

Two vectors X and Y are linearly independent if the equation $a X+b Y=O$ has exactly one solution, namely $a=b=0$. This is the case if and only if $X, Y \neq O$ and X, O, Y are not collinear. If $a X+b Y+c Z=0$ for some a, b, c not all zeros and $a+b+c=0$, then X, Y, Z are collinear because, say $a \neq 0$, we have $b+c=-a$ and

$$
X=-\frac{b}{a} Y-\frac{c}{a} Z=t Y+(1-t) Z \quad\left(\text { where } t=-\frac{b}{a}\right)
$$

is on the line $Y Z$.

Example 9. (Pappus' Theorem) A line, which passes through points A_{1}, A_{2}, A_{3}, intersects another line, which passes through points B_{1}, B_{2}, B_{3}, at a point O. Let lines $A_{2} B_{3}, A_{3} B_{2}$ intersect at P_{1}, lines $A_{1} B_{3}, A_{3} B_{1}$ intersect at P_{2} and lines $A_{1} B_{2}, A_{2} B_{1}$ intersect at P_{3}. Show that P_{1}, P_{2}, P_{3} are collinear.

Solution. Set the origin at O. Let A and B be unit vectors along the lines through A_{i} 's and B_{i} 's, respectively. Then $A_{i}=r_{i} A$ and $B_{i}=s_{i} B$ for some constants r_{i}, s_{i}. Now

$$
\begin{aligned}
& P_{3}=t A_{1}+(1-t) B_{2}=t r_{1} A+(1-t) s_{2} B \text { for some } t \text { and } \\
& P_{3}=u A_{2}+(1-u) B_{1}=u r_{2} A+(1-u) s_{1} B \text { for some } u .
\end{aligned}
$$

Subtracting, we find $0=\left(t r_{1}-u r_{2}\right) A+\left[(1-t) s_{2}-(1-u) s_{1}\right] B$. Since A and B are linearly independent, we must have $t r_{1}-u r_{2}=0$ and $(1-t) s_{2}-(1-u) s_{1}=0$. After solving for t and u, we find

$$
P_{3}=\frac{r_{1} r_{2}\left(s_{1}-s_{2}\right)}{r_{1} s_{1}-r_{2} s_{2}} A+\frac{s_{1} s_{2}\left(r_{1}-r_{2}\right)}{r_{1} s_{1}-r_{2} s_{2}} B .
$$

Also, $P_{1}=\frac{r_{2} r_{3}\left(s_{2}-s_{3}\right)}{r_{2} s_{2}-r_{3} s_{3}} A+\frac{s_{2} s_{3}\left(r_{2}-r_{3}\right)}{r_{2} s_{2}-r_{3} s_{3}} B, \quad P_{2}=\frac{r_{3} r_{1}\left(s_{3}-s_{1}\right)}{r_{3} s_{3}-r_{1} s_{1}} A+\frac{s_{3} s_{1}\left(r_{3}-r_{1}\right)}{r_{3} s_{3}-r_{1} s_{1}} B$.
Note that

$$
r_{1} s_{1}\left(r_{2} s_{2}-r_{3} s_{3}\right) P_{1}+r_{2} s_{2}\left(r_{3} s_{3}-r_{1} s_{1}\right) P_{2}+r_{3} s_{3}\left(r_{1} s_{1}-r_{2} s_{2}\right) P_{3}=0
$$

and the sum of the coefficients is also 0 . So $P_{1}, P_{2,} P_{3}$ are collinear.

Exercises

1. (1997 Hungarian Math Olympiad) Let R be the circumradius of triangle $A B C$, and let G and H be its centroid and orthocenter, respectively. Let F be the midpoint of $G H$. Show that $A F^{2}+B F^{2}+C F^{2}=3 R^{2}$.
2. Let $A B C$ be any triangle. Two squares $B A E P$ and $A C R D$ are constructed externally to $A B C$. Let M and N be the midpoints of $B C$ and $E D$, respectively. Show that $A M \perp E D$ and $A N \perp B C$.
3. (1996 Vietnamese Math Olympiad) Let $A B C D$ be a tetrahedron with $A B=A C=C D$ and circumcenter O. Let G be the centroid of triangle $A C D$, let E be the midpoint of $B G$, and let F be the midpoint of $A E$. Prove that $O F$ is perpendicular to $B G$ if and only if $O D$ is perpendicular to $A C$.
4. (2001 IMO Unused Problem) Let $A B C$ be a triangle with centroid G. Determine, with proof, the position of the point P in the plane of $A B C$ such that $A P \cdot A G+B P \cdot B G+C P \cdot C G$ is a minimum, and express this minimum value in terms of the side lengths of $A B C$. (Hint: Set the origin at G.)
5. (Pedoe's Inequality) Let a, b, c and a_{1}, b_{1}, c_{1} be the side lengths of triangles $A B C$ and $A_{1} B_{1} C_{1}$, respectively. Supposes their areas are S and S_{1}, respectively. Prove that

$$
a_{1}^{2}\left(-a^{2}+b^{2}+c^{2}\right)+b_{1}^{2}\left(a^{2}-b^{2}+c^{2}\right)+c_{1}^{2}\left(a^{2}+b^{2}-c^{2}\right) \geq 16 S S_{1}
$$

6. (Desargue's Theorem) For two triangles $A B C$ and $A_{1} B_{1} C_{1}$, let lines $B C, B_{1} C_{1}$ intersect at P; lines $C A, C_{1} A_{1}$ intersect at Q and lines $A B, A_{1} B_{1}$ intersect at R. Prove that lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent if and only if P, Q, R are collinear.
7. (2004 APMO) Let O be the circumcenter and H be the orthocenter of an acute triangle $A B C$. Prove that the area of one of the triangles $A O H, B O H$ and $C O H$ is equal to the sum of the areas of the other two.

9. Stewart's Theorem and Ceva's Theorem

Notations: For $\triangle A B C$, its area will be denoted by $[A B C]$ or $S_{A B C}$. As usual, let a be the length of side $B C, b$ be the length of side $C A$ and c be the length of side $A B$.

Stewart's Theorem. Let D be a point on side $B C$. Let p, m and n be the lengths of line segments $A D, B D$ and $C D$ respectively. Then

$$
b^{2} m+c^{2} n=a\left(p^{2}+m n\right)
$$

Proof. Since $\angle A D B+\angle A D C=180^{\circ}$, so $\cos \angle A D B+\cos \angle A D C=0$.The formula follows from the cosine law as $\cos \angle A D B=\left(m^{2}+p^{2}-c^{2}\right) /(2 m p)$ and $\cos \angle A D C=$ $\left(n^{2}+p^{2}-b^{2}\right) /(2 n p)$.

Formulas. (1) If $A D$ is the median to side $B C$, then $m=a / 2=n$. Let m_{a} denote the length of $A D$. Stewart's theorem yields $m_{a}=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}$. This formula is sometimes refered to as Apollonius' formula. Note we have the interesting formula

$$
4\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)=3\left(a^{2}+b^{2}+c^{2}\right)
$$

(2) If $A D$ is the angle bisector of $\angle B A C$, then $m / n=c / b$ and $m+n=a$ imply $m=c a l(b+c)$ and $n=b a l(b+c)$. Let t_{a} denote the length of $A D$. Stewart's theorem yields $t_{a}=\sqrt{b c\left(1-\frac{a^{2}}{(b+c)^{2}}\right)}$.

Next we come to an important theorem known as Ceva's theorem. It explains why medians or altitudes or angle bisectors of a triangle are concurrent.

Ceva's Theorem. For $\triangle A B C$, let D be on line $B C, E$ be on line $C A$ and F be on line $A B$. If lines $A D, B E$ and $C F$ are concurrent, then

$$
\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}=1
$$

(Remarks. By the sine law, $A F / \sin \gamma=A C / \sin \angle A F C$ and $F B / \sin \gamma^{\prime}=C B / \sin \angle C F B$ Since $\sin \angle A F C=\sin \angle C F B$, we get $A F / F B=(A C \sin \gamma) /\left(C B \sin \gamma^{\prime}\right)$. Using similar equations, we see that the equation in Ceva's theorem can be written as

$$
\frac{\sin \alpha \sin \beta \sin \gamma}{\sin \alpha^{\prime} \sin \beta^{\prime} \sin \gamma^{\prime}}=1
$$

This is called the trigonometric form of the equation.)

Proof. Let O be the concurrent point. Through A, draw a line parallel to $B E$ and let it intersect line $B C$ at E^{\prime}. Similarly, through A, draw a line parallel to $C F$ and let it intersect line $B C$ at F^{\prime}. Then $A F / F B$ $=F^{\prime} C / C B, C E / E A=C B / B E^{\prime}$ and $C D / C F^{\prime}=$ $O D / O A=B D / B E^{\prime}$. So $B D / D C=B E^{\prime} / F^{\prime} C$. Therefore,

$$
\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}=\frac{F^{\prime} C}{C B} \times \frac{B E^{\prime}}{F^{\prime} C} \times \frac{C B}{B E^{\prime}}=1
$$

Converse of Ceva's Theorem. If $\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}=1$, then lines $A D, B E$ and $C F$ are concurrent.

Proof. We will prove the converse by the method of false position. We are given $\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}=1$. Let lines $A D$ and $B E$ intersect at X and lines $C X$ and $A B$ intersect at F^{\prime}. By Ceva's theorem, $\frac{A F^{\prime}}{F^{\prime} B} \times \frac{B D}{D C} \times \frac{C E}{E A}=1$. So $\frac{A F}{F B}=\frac{A F^{\prime}}{F^{\prime} B}$. Then $\frac{A B}{F B}=\frac{A F}{F B}+1=\frac{A F^{\prime}}{F^{\prime} B}+1=\frac{A B}{F^{\prime} B}$, which implies $F=F^{\prime}$,

Facts. (a) If $A D, B E$ and $C F$ are the median of $\triangle A B C$, then they concur at a point called the centroid of the triangle, which is commonly denoted by G. In this case, the Ceva equation is just $\frac{c / 2}{c / 2} \times \frac{a / 2}{a / 2} \times \frac{b / 2}{b / 2}=1$.
(b) If $A D, B E$ and $C F$ are the altitudes of $\triangle A B C$, then they concur at a point called the orthocenter of the triangle, which commonly denoted by H. In this case, the Ceva equation is just $\frac{b \cos A}{a \cos B} \times \frac{c \cos B}{b \cos C} \times \frac{a \cos C}{c \cos A}=1$.
(c) If $A D, B E$ and $C F$ are the angle bisectors of $\triangle A B C$, then they concur at a point called the incenter of the triangle, which is commonly denoted by I. In this case, the Ceva equation is just $\frac{b c /(a+b)}{a c /(a+b)} \times \frac{c a /(b+c)}{b a /(b+c)} \times \frac{a b /(c+a)}{c b /(c+a)}=1$. (Since points on an angle bisector are equidistant from the sides of the angle, I is equidistant from $A B, B C, C A$ and hence it is the center of the inscribed circle in $\triangle A B C$.)
(d) The perpendicular bisectors of sides $A B, B C, C A$ concur at a point called the circumcenter of the triangle, which is commonly denoted by O. (Since points on a perpendicular bisector of a line segment are equidistant from the endpoints, O is equidistant from A, B, C and hence it is the center of the circumscribed circle.)

Formulas

Extended Sine Law. Let R be the radius of the circumcircle of $\triangle A B C$. Then

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$

Proof. Draw diameter $B D$. Then $\frac{a}{\sin A}=\frac{a}{\sin D}=B D=2 R$.

Area of Triangle. Letting h_{a} denote the height from A to side $B C$, we have

$$
[A B C]=\frac{a h_{a}}{2}=\frac{a b \sin C}{2}=\frac{a b c}{4 R}
$$

Let $s=(a+b+c) / 2$ be the semiperimeter of $\triangle A B C$. Let I be the incenter of $\triangle A B C$ and r be the radius of the incircle of $\triangle A B C$. Then

$$
[A B C]=[A I B]+[B I C]+[C I A]=\frac{a r}{2}+\frac{b r}{2}+\frac{c r}{2}=s r .
$$

Heron's Formula. $[A B C]=\sqrt{s(s-a)(s-b)(s-c)}$.
Proof. By cosine law, $\cos C=\left(a^{2}+b^{2}-c^{2}\right) /(2 a b)$. We have

$$
\begin{aligned}
{[A B C]^{2} } & =\frac{a^{2} b^{2}}{4} \sin ^{2} C=\frac{a^{2} b^{2}}{4}(1+\cos C)(1-\cos C) \\
& =\frac{\left(2 a b+a^{2}+b^{2}-c^{2}\right)\left(2 a b-a^{2}-b^{2}+c^{2}\right)}{16} \\
& =\frac{(a+b+c)}{2} \frac{(a+b-c)}{2} \frac{(c+a-b)}{2} \frac{(c-a+b)}{2} \\
& =s(s-c)(s-b)(s-a)
\end{aligned}
$$

(Remarks. Combining with the formulas above, we get

$$
\left.R=\frac{a b c}{4 \sqrt{s(s-a)(s-b)(s-c)}} \text { and } r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}} .\right)
$$

Theorems about Concyclic Points

Intersecting Chord Theorem.

(1) Let line segments $A B$ and $C D$ (or both extended to) intersect at point P. Then A, B, C, D are concyclic if and only if $P A \times P B=P C \times P D$.

(2) Let lines $P C$ and $A B$ intersect at P. Then $P C$ is tangent to the circumcircle of $\triangle A B C$ if and only if $P C^{2}=P A \times P B$.

Proof. For (1), observe that $\angle A P D=\angle C P B$. So A, B, C, D are concyclic \Leftrightarrow $\angle P A D=\angle P C B \Leftrightarrow \triangle A P D \sim \triangle C P B \Leftrightarrow P A / P D=P C / P B \Leftrightarrow P A \times P B=P C \times P D$.

For (2), observe that $\angle A P C=\angle C P B$. So $P C$ is tangent to the circumcircle of $\triangle A B C \Leftrightarrow \angle A C P=\angle C B P \Leftrightarrow \triangle A C P \sim \triangle C B P \Leftrightarrow P C / P A=P B / P C \Leftrightarrow P C^{2}=$ $P A \times P B$.

Ptolemy's Theorem. $A B C D$ is a cyclic quadrilateral if and only if

$$
A B \times C D+A D \times B C=A C \times B D
$$

(For general quadrilateral, $A B \times C D+A D \times B C \geq A C \times B D$.)
Proof. On side $A B$, construct $\triangle B A E \sim \triangle C A D$. Then $A B / A C=A E / A D=B E / C D$ and $\angle B A E=\angle C A D$. So

$\angle B A C=\angle B A D-\angle C A D=\angle B A D-\angle B A E=\angle E A D$.
Then $\triangle B A C \sim \triangle E A D$. So $B C / A C=E D / A D$. Then $A B \times C D+A D \times B C=A C \times B E+A C \times E D \geq A C \times B D$.

Equality holds if and only if $B E+E D=B D$. This occurs if and only if $\angle D B A=\angle E B A=\angle D C A$, i.e. $A B C D$ is cyclic.

Simson's Theorem. Let P be on the plane of $\triangle A B C$. Let D, E, F be the feet of the perpendiculars from P to lines $B C, C A, A B$ respectively. If P is on the circumcircle of $\triangle A B C$, then D, E, F are collinear. The converse is also true.

Proof. Connect $P A$ and $P B$. Since $\angle P F A=90^{\circ}=\angle P E A$, so P, F, A, E are concyclic and hence $\angle P F E=\angle P A E$. Similarly, $\angle P D B=90^{\circ}=\angle P F B$, so P, B, D, F are concyclic and hence

$$
\angle P B D+\angle P F D=180^{\circ}
$$

Now P is on the circumcircle $\Leftrightarrow \angle P A E=\angle P B C \Leftrightarrow$ $\angle P F E=\angle P B D \Leftrightarrow \angle P F E+\angle P F D=\angle P B D+\angle P F D \Leftrightarrow \angle P F E+\angle P F D=$ $180^{\circ} \Leftrightarrow D, E, F$ are collinear.

10. Menelaus' Theorem and Other Famous Theorems

Below we will write $P=W X \cap Y Z$ to denote P is the point of intersection of lines $W X$ and $Y Z$. If points A, B, C are collinear, we will introduce the sign convention : $A B / B C=\overrightarrow{A B} / \overrightarrow{B C}$ (so if B is between A and C, then $A B / B C \geq 0$, otherwise $A B / B C \leq 0$).

Menelaus' Theorem Points X, Y, Z are taken from lines $A B, B C, C A$ (which are the sides of $\triangle A B C$ extended) respectively. If there is a line passing through X, Y, Z, then

$$
\frac{A X}{X B} \cdot \frac{B Y}{Y C} \cdot \frac{C Z}{Z A}=-1
$$

Proof. Let D be on line $A C$ such that $B D \| X Z$. Then $A X / X B=A Z / Z D$ and $B Y / Y C=D Z / Z C$. So

$$
\frac{A X}{X B} \cdot \frac{B Y}{Y C} \cdot \frac{C Z}{Z A}=\frac{A Z}{Z D} \cdot \frac{D Z}{Z C} \cdot \frac{C Z}{Z A}=-1
$$

Converse of Menelaus, Theorem. If $\frac{A X}{X B} \cdot \frac{B Y}{Y C} \cdot \frac{C Z}{Z A}=-1$, then there is a line passing through X, Y, Z.
Proof (by the method of false position). To see this, let $Z^{\prime}=X Y \cap C A$. Then applying Menelaus theorem to the line through X, Y, Z ' and comparing with the equation above, we get $C Z / Z A=C Z^{\prime} / Z^{\prime} A$. Then $C A / Z A=1+(C Z / Z A)=$ $1+\left(C Z^{\prime} / Z^{\prime} A\right)=C A / Z A$. It follows $Z=Z^{\prime}$.

Pascal's Theorem Let A, B, C, D, E, F be points on a circle (which are not necessarily in cyclic order). Let

$$
P=A B \cap D E, Q=B C \cap E F, \quad R=C D \cap F A
$$

Then P, Q, R are collinear.
Proof. Let $X=E F \cap A B, Y=A B \cap C D, Z=C D \cap E F$. Applying Menelaus' theorem respectively to lines $B C, D E, F A$ cutting $\triangle X Y Z$ extended, we have

$$
\frac{Z Q}{Q X} \cdot \frac{X B}{B Y} \cdot \frac{Y C}{C Z}=-1, \frac{X P}{P Y} \cdot \frac{Y D}{D Z} \cdot \frac{Z E}{E X}=-1, \frac{Y R}{R Z} \cdot \frac{Z F}{F X} \cdot \frac{X A}{A Y}=-1
$$

Multiplying these three equations together, then using the intersecting chord theorem to get $X A \cdot X B=X E \cdot X F, Y C \cdot Y D=Y A \cdot Y B, Z E \cdot Z F=Z C \cdot Z D$, we arrive at the equation

$$
\frac{Z Q}{Q X} \cdot \frac{X P}{P Y} \cdot \frac{Y R}{R Z}=-1
$$

By the converse of Menelaus' theorem, this implies P, Q, R are collinear.
Remarks. There are limiting cases of Pascal's Theorem. For example, we may move A to approach B. In the limit, A and B will coincide and the line $A B$ will become the tangent line at B. In the limiting case, we also denote the tangent line at A by $A A$.

Example 1. (2001 Macedonian Math Olympiad) For the circumcircle of $\triangle A B C$, let D be the intersection of the tangent line at A with line $B C, E$ be the intersection of the tangent line at B with line $C A$ and F be the intersection of the tangent line at C with line $A B$.

Prove that points D, E, F are collinear.

Solution Applying Pascal's theorem to A, A, B, B, C, C on the circumcircle, since $D=A A \cap B C, E=B B \cap C A, F=C C \cap A B$, we get D, E, F are collinear.

Example 2. Let D and E be the midpoints of the minor $\operatorname{arcs} A B$ and $A C$ on the circumcircle of $\triangle A B C$, respectively. Let P be on the minor arc $B C, Q=D P \cap B A$ and $R=P E \cap A C$. Prove that line $Q R$ passes through the incenter I of $\triangle A B C$.

Solution Since D is the midpoint of arc $A B$, line $C D$ bisects $\angle A C B$. Similarly, line $E B$ bisects $\angle A B C$. So $I=C D \cap E B$. Applying Pascal's theorem to C, D, P, E, B, A, we get I, Q, R are collinear.

Example 3. (2001 Australian Math Olympiad) Let $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ be points on a circle such that $A A^{\prime}$ is perpendicular to $B C, B B^{\prime}$ is perpendicular to $C A$, $C C^{\prime}$ is perpendicular to $A B$. Further, let D be a point on that circle and let $D A^{\prime}$ intersect $B C$ in $A^{\prime \prime}, D B^{\prime}$ intersect $C A$ in $B^{\prime \prime}$, and $D C^{\prime}$ intersect $A B$ in $C^{\prime \prime}$, all segments being extended where required. Prove that $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ and the orthocenter of triangle $A B C$ are collinear.

Solution Let H be the orthocenter of $\triangle A B C$. Applying Pascal's theorem to A, A^{\prime}, D, C^{\prime}, C, B, we see $H, A^{\prime \prime}, C^{\prime \prime}$ are collinear. Similarly, applying Pascal's theorem to $B^{\prime}, D, C^{\prime}, C, A, B$, we see $B^{\prime \prime}, C^{\prime \prime}, H$ are collinear. So $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, H$ are collinear.

Example 4. (1991 IMO unused problem) Let $A B C$ be any triangle and P any point in its interior. Let P_{1}, P_{2} be the feet of the perpendiculars from P to the two sides $A C$ and $B C$. Draw $A P$ and $B P$ and from C drop perpendiculars to $A P$ and $B P$. Let Q_{1} and Q_{2} be the feet of these perpendiculars. If $Q_{2} \neq P_{1}$ and $Q_{1} \neq P_{2}$, then prove that the lines $P_{1} Q_{2}, Q_{1} P_{2}$ and $A B$ are concurrent.

Solution Since $\angle C P_{1} P, \angle C P_{2} P, \angle C Q_{2} P, \angle C Q_{1} P$ are all right angles, we see that the points $C, Q_{1}, P_{1}, P, P_{2}, Q_{2}$ lie on a circle with $C P$ as diameter. Note $A=$ $C P_{1} \cap P Q_{1}$ and $B=Q_{2} P \cap P_{2} C$. Applying Pascal's theorem to $C, P_{1}, Q_{2}, P, Q_{1}$, P_{2}, we see $X=P_{1} Q_{2} \cap Q_{1} P_{2}$ is on line $A B$.

Desargues' Theorem For triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, if lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur at a point O, then P, Q, R are collinear, where $P=$ $B C \cap B^{\prime} C^{\prime}, Q=C A \cap C^{\prime} A^{\prime}, R=A B \cap A^{\prime} B^{\prime}$ are points in the plane.

Proof. Applying Menelaus' theorem respectively to line $A^{\prime} B^{\prime}$ cutting $\triangle O A B$ extended, line $B^{\prime} C^{\prime}$ cutting $\triangle O B C$ extended and the line $C^{\prime} A^{\prime}$ cutting $\triangle O C A$ extended, we have

$$
\frac{O A^{\prime}}{A^{\prime} A} \cdot \frac{A R}{R B} \cdot \frac{B B^{\prime}}{B^{\prime} O}=-1, \frac{O B^{\prime}}{B^{\prime} B} \cdot \frac{B P}{P C} \cdot \frac{C C^{\prime}}{C^{\prime} O}=-1, \frac{A A^{\prime}}{A^{\prime} O} \cdot \frac{O C^{\prime}}{C^{\prime} C} \cdot \frac{C Q}{Q A}=-1
$$

Multiplying these three equations, $\frac{A R}{R B} \cdot \frac{B P}{P C} \cdot \frac{C Q}{Q A}=-1$.
By the converse of Menelaus' theorem, this implies P, Q, R are collinear.
Converse of Desargues' Theorem. For triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, if P, Q, R are collinear, where $P=B C \cap B^{\prime} C^{\prime}, Q=C A \cap C^{\prime} A^{\prime}, R=A B \cap A^{\prime} B^{\prime}$ are points on the plane, then lines $A A^{\prime}, B B^{\prime}, \stackrel{C}{C}$ ' concur at a point O (when they are not parallel).

Proof. Let $O=B B^{\prime} \cap C C^{\prime}$. Consider $\triangle R B B^{\prime}$ and $\triangle Q C C^{\prime}$. Since lines $R Q, B C$, $B^{\prime} C^{\prime}$ concur at P, and $A=R B \cap Q C, O=B B^{\prime} \cap C C^{\prime}, A^{\prime}=B R^{\prime} \cap C^{\prime} Q$, by Desargues' theorem, A, O, A^{\prime} are collinear. So lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur at O.

Newton's Theorem A circle is inscribed in a quadrilateral $A B C D$ with sides $A B, B C, C D, D A$ touch the circle at points E, F, G, H respectively. Then lines $A C, E G, B D, F H$ are concurrent.

Proof. Let $O=E G \cap F H$ and $X=E H \cap F G$. Since D is the intersection of the tangent lines at G and at H to the circle, applying Pascal's theorem to E, G, G, F, H, H, we get O, D, X are collinear. Similarly, applying Pascal's theorem to E, E, H, F, F, G, we get B, X, O are collinear.

Then B, O, D are collinear and so lines $E G, B D, F H$ are concurrent at O. Similarly, we can also obtain lines $A C, E G, F H$ are concurrent at O. Then Newton's theorem follows.

Brianchon's Theorem Lines $A B, B C, C D$, $D E, E F, F A$ are tangent to a circle at points G, H, I, J, K, L (not necessarily in cyclic order). Then lines $A D, B E, \quad C F$ are concurrent.

Proof. Let $M=A B \cap C D, N=D E \cap F A$. Applying Newton's theorem to quadrilateral $A M D N$, we see lines $A D, I L, G J$ concur at a point A '. Similarly, lines $B E, H K, G J$ concur at a point B^{\prime} and lines $C F, H K, I L$ concur at a point C^{\prime}. Then $A^{\prime}, B^{\prime}, G, J$ are collinear; $B^{\prime}, C^{\prime}, H, K$ are collinear; $C^{\prime}, A^{\prime}, I, L$ are collinear.

Next we apply Pascal's theorem to G, G, I, L, L, H and get points A, O, P are collinear, where $O=G I \cap L H$ and $P=I L \cap H G$. Applying Pascal's theorem again to H, H, L, I, I, G, we get C, O, P are collinear. Hence A, C, P are collinear.

Now $A B \cap A^{\prime} B^{\prime}=A B \cap G J=G, B C \cap B^{\prime} C^{\prime}=B C \cap H K=H$ and $C A \cap C^{\prime} A^{\prime}=$ $C A \cap I L=P$ are collinear. Applying the converse of Desargues' theorem to $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, we get lines $A A^{\prime}=A D, B B^{\prime}=B E, C C^{\prime}=C F$ are concurrent.

11. Nine Point Circle and Euler Line

The following theorem is a very interesting theorem. It is a high point in the history of geometry.

Nine Point Circle Theorem. For $\triangle A B C$, let A^{\prime}, B^{\prime},
 C^{\prime} be the midpoints of sides $B C, C A, A B$ respectively. Let D, E, F be the feet of the altitudes to sides $B C$, $C A, A B$ respectively. Let K, L, M be the midpoints of the line segments joining the orthocenter H to vertices A, B, C respectively.
Then $A^{\prime}, B^{\prime}, C^{\prime}, D, E, F, K, L, M$ lie on a circle (called the nine point circle of $\triangle A B C$). The center N of this circle is the midpoint of $O H$ and the radius of this circle is half the circumradius of $\triangle A B C$.

Proof. By the midpoint theorem, $\overrightarrow{C^{\prime} B^{\prime}}=\frac{1}{2} \overrightarrow{B C}=\overrightarrow{L M}$ and $\overrightarrow{C^{\prime} L}=\frac{1}{2} \overrightarrow{A H}=\overrightarrow{B^{\prime} M}$. Since $A H \perp B C, B^{\prime} C^{\prime} L M$ is a rectangle. The circumcircle of $B^{\prime} C^{\prime} L M$ contains E, F since $B^{\prime} L, C^{\prime} M$ are diameters and $\angle B^{\prime} E L=90^{\circ}=\angle C^{\prime} F M$. So $B^{\prime}, C^{\prime}, E, F, L, M$ are concyclic. Similarly, $A^{\prime}, B^{\prime}, D, E, K, L$ are concyclic. So, the nine points lie on a common circle. Note $B^{\prime} L, C^{\prime} M, A^{\prime} K$ are diameters of the nine point circle.

Next note O is the orthocenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$. Since $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$, so $\triangle A B H \sim \triangle A^{\prime} B^{\prime} O$ and

$$
A^{\prime} O / A H=A^{\prime} B^{\prime} / A B=1 / 2 \Rightarrow A^{\prime} O=1 / 2 A H=K H
$$

Since $A^{\prime} O \perp B C$ and $K H \perp B C$, so $A^{\prime} O \| K H$. Then $A^{\prime} O K H$ is a parallelogram. Since $A^{\prime} K$ is a diameter of the nine point circle, its center is the midpoint of OH .

Finally, N, K are midpoints of $O H, A H$ respectively. The radius $N K$ of the nine point circle is half the circumradius $O A$ by the midpoint theorem.

Euler Line of $\triangle A B C$. Since $A^{\prime} O=1 / 2 A H$ and $A^{\prime} O \| A H$, so $O H$ and $A A^{\prime}$ intersect at a point G such that $O G=1 / 2 H G=1 / 3 O H$. Similarly, this point G is on $B B^{\prime}$ and $C C^{\prime}$. Hence G is the centroid. (Note $A^{\prime} G=^{1} / 3 A^{\prime} A$.) The points O, G, N, H lie on a common line (called the Euler line of $\triangle A B C$). We have $O H=$ $2 O N=3 O G$.

For $\triangle A B C$, there is an inscribed circle with center I and radius r. If we extend the sides of $\angle B A C$ beyond B and C, then the bisectors of $\angle B A C$ and the external angle bisectors of $\angle B$ and $\angle C$ are concurrent at a point I_{a} that is equidistant from side $B C$ and the sides of $\angle B A C$. Hence, I_{a} is the center of a circle tangent to side $B C$ and the sides of $\angle B A C$. This is called the escribed circle or excircle of $\triangle A B C$ opposite A, I_{a} is called the excenter and its radius r_{a} is called the exradius. Similarly, there are excircles opposite to B and C.

Feuerbach's Theorem. For $\triangle A B C$, the inscribed circle is internally tangent to the nine point circle and the three escribed circles are externally tangent to the nine point circle.

Remark. This theorem will be proved later at the end of the chapter on inversion.

12. Power of a Point and Radical Axis

The power of a point P with respect to a circle is the number $d^{2}-r^{2}$, where d is the distance from P to the center of the circle and r is the radius of the circle. (If P is outside the circle, the power is positive. If P is inside, the power is negative. If P is on the circle, the power is 0 .)

In the intersecting chord theorem, if P is inside a circle and $A A^{\prime}$ is a chord through P, then the product $P A \times P A^{\prime}$ is constant and can be determined by taking the case the chord $A A^{\prime}$ passes through P and the center O. This gives $P A \times P A^{\prime}=r^{2}-d^{2}$, where r is the radius of the circle and d $=O P$. In the case P is outside the circle, the product $P A \times$ $P A^{\prime}$ can be determined by taking the limiting case $P A$ is tangent to the circle. Then $P A \times P A^{\prime}=d^{2}-r^{2}$.
Thus, $P A \times P A^{\prime}$ is the absolute value of the power of P with respect to the circle. This is known as the power-of-a-point theorem.

Next we will look at points having equal power with respect to two circles.
Theorem. On a plane, for distinct points R, S and a number m, the locus of all points X such that $R X^{2}-S X^{2}=m$ is a line perpendicular to line $R S$. Also, for distinct points R, S, X, Y, we have $R X^{2}-S X^{2}=R Y^{2}-S Y^{2}$ if and only if $X Y \perp R S$.

Proof. Let R, S have coordinate $(a, 0),(b, 0)$. Point X with coordinate (x, y) is on the locus if and only if $\left((a-x)^{2}+y^{2}\right)-$ $\left((b-x)^{2}+y^{2}\right)=m$, which is equivalent to $x=$ $\left(a^{2}-b^{2}-m\right) / 2(a-b)$, a line perpendicular to $R S$. The second statement follows by using Pythagoras' theorem for the if-part and letting $m=R Y^{2}-S Y^{2}$ so that X, Y are both on the locus for the only-ifpart.
Let circles C_{1} and C_{2} have distinct centers O_{1} and O_{2}. By the theorem, the points X whose powers with respect to C_{1} and C_{2} are equal (i.e. $O_{1} X^{2}-r_{1}^{2}=O_{2} X^{2}-r_{2}^{2}$) form a line perpendicular to line $O_{1} O_{2}$. This line is called the radical axis of the two circles. In the case of three circles C_{1}, C_{2}, C_{3} with noncollinear centers O_{1}, O_{2}, O_{3}, the three radical axes of the three pairs of circles intersect at a point called the radical center of the three circles. (This is because the intersection
point of any two of these radical axes has equal power with respect to all three circles, hence it is on the third radical axis too.)

If two circles C_{1} and C_{2} intersect, their radical axis is the line through the intersection point(s) perpendicular to the line of the centers. (This is because the intersection point(s) have 0 power with respect to both circles, hence they are on the radical axis.)

If the two circles do not intersect, their radical axis can be found by taking a third circle C_{3} intersecting both C_{1} and C_{2}. Let the radical axis of C_{1} and C_{3} intersect the radical axis of C_{2} and C_{3} at P. Then the radical axis of C_{1} and C_{2} is the line through P perpendicular to the line of centers of C_{1} and C_{2}.

We will illustrate the usefulness of the intersecting chord theorem, the concepts of power of a point, radical axis and radical center in the following examples.

Example 1. (1996 St. Petersburg City Math Olympiad) Let $B D$ be the angle bisector of angle B in triangle $A B C$ with D on side $A C$. The circumcircle of triangle $B D C$ meets $A B$ at E, while the circumcircle of triangle $A B D$ meets $B C$ at F. Prove that $A E=C F$.

Solution. By the intersecting chord theorem, $A E$ $\times A B=A D \times A C$ and $C F \times C B=C D \times C A$, so $A E / C F=(A D / C D)(B C / A B)$. However, $A B / C B=$ $A D / C D$ by the angle bisector theorem. So $A E=$ $C F$.

Example 2. (1997 USA Math Olympiad) Let ABC be a triangle, and draw isosceles triangles $B C D$, $C A E, A B F$ externally to $A B C$, with $B C, C A, A B$ as their respective bases. Prove the lines through A, B, C, perpendicular to the lines $E F, F D, D E$, respectively, are concurrent.

Solution 1. Let C_{1} be the circle with center D and radius $B D, C_{2}$ be the circle with center E

Solution 2. Let P be the intersection of the perpendicular line from B to $F D$ with the perpendicular line from C to $D E$. Then $P B \perp F D$ and $P C \perp D E$. By the theorem above, we have
$P F^{2}-P D^{2}=B F^{2}-B D^{2}$ and $P D^{2}-P E^{2}=C D^{2}-C E^{2}$.
Adding these and using $A F=B F, B D=C D$ and $C E=A E$, we get $P F^{2}-P E^{2}=A F^{2}-A E^{2}$. So $P A \perp E F$ and P is the desired concurrent point.

Example 3. (1985 IMO) A circle with center O passes through vertices A and C of triangle $A B C$ and intersects side $A B$ at K and side $B C$ at N. Let the circumcircles of triangles $A B C$ and $K B N$ intersect at B and M. Prove that $O M$ is perpendicular to $B M$.

Solution. For the three circles mentioned, the radical axes of the three pairs are lines $A C, K N$ and $B M$. (The centers are noncollinear because two of them are on the perpendicular bisector of $A C$, but not the third.) So the axes will concur at the radical center P. Since $\angle P M N=\angle B K N=\angle$ $N C A$, it follows that P, M, N, C are concyclic.

By power of a point, $B M \times B P=B N \times B C=B O^{2}-r^{2}$ and $P M \times P B=P N \times P K$ $=P O^{2}-r^{2}$, where r is the radius of the circle through A, C, N, K. Then $P O^{2}-$ $B O^{2}=B P(P M-B M)=P M^{2}-B M^{2}$. By the theorem above, this implies $O M \perp$ $P B$, which is the same as $O M \perp B M$.

Example 4. (1997 Chinese Math Olympiad) Let quadrilateral $A B C D$ be inscribed in a circle. Suppose lines $A B$ and $D C$ intersect at P and lines $A D$ and $B C$ intersect at Q. From Q, construct the tangents $Q E$ and $Q F$ to the circle, where E and F are the points of tangency. Prove that P, E, F are collinear.

Solution. Let M be a point on $P Q$ such that $\angle C M Q$ $=\angle A D C$. Then D, C, M, Q are concyclic and also, B, C, M, P are concyclic. Let r_{1} be the radius of the circumcircle C_{1} of $A B C D$ and O_{1} be the center of C_{1}. By power of a point,
and

$$
\begin{aligned}
& P O_{1}^{2}-r_{1}^{2}=P C \times P D=P M \times P Q \\
& Q O_{1}^{2}-r_{1}^{2}=Q C \times Q B=Q M \times P Q .
\end{aligned}
$$

Then $P O_{1}{ }^{2}-Q O_{1}{ }^{2}=(P M-Q M) P Q=P M^{2}-Q M^{2}$, which implies $O_{1} M \perp P Q$. The circle C_{2} with $Q O_{1}$ as diameter passes through M, E, F and intersects C_{1} at E, F. If r_{2} is the radius of C_{2} and O_{2} is the center of C_{2}, then $P O_{1}^{2}-r_{1}^{2}=P M \times$ $P Q=P O_{2}{ }^{2}-r_{2}{ }^{2}$. So P lies on the radical axis of C_{1}, C_{2}, which is the line $E F$.

Example 5. (2001 Chinese National Senior High Math Competition) As in the figure, in $\triangle A B C, O$ is the circumcenter. The three altitudes $A D, B E$ and $C F$ intersect at H. Lines $E D$ and $A B$ intersect at M. Lines $F D$ and $A C$ intersect at N. Prove that (1) $O B \perp D F, O C$ $\perp D E$; (2) $O H \perp M N$.

Solution. (1) Since $\angle A F C=90^{\circ}=\angle A D C$, so A, C, D, F are concyclic. Then $\angle B D F=\angle B A C$. Also, $\angle O B C=$ $1 / 2\left(180^{\circ}-\angle B O C\right)=90^{\circ}-\angle B A C=90^{\circ}-\angle B D F$ implies $O B \perp D F$. Similarly, $O C \perp D E$.
(2) We have

$$
\text { ve } \begin{align*}
C H \perp M A & \Leftrightarrow M C^{2}-M H^{2}=A C^{2}-A H^{2} \tag{a}\\
B H \perp N A & \Leftrightarrow N B^{2}-N H^{2}=A B^{2}-A H^{2} \tag{b}\\
D A \perp B C & \Leftrightarrow D B^{2}-D C^{2}=A B^{2}-A C^{2} \tag{c}\\
O B \perp D F=D N & \Leftrightarrow B N^{2}-B D^{2}=O N^{2}-O D^{2} \tag{d}\\
O C \perp D E=D M & \Leftrightarrow C M^{2}-C D^{2}=O M^{2}-O D^{2} . \tag{e}
\end{align*}
$$

Doing (a)-(b)+(c)+(d)-(e), we get $N H^{2}-M H^{2}=O N^{2}-O M^{2}$. So $O H \perp M N$.

Alternative Solution. (1) Let J be on line $D M$ such that $J B \| D F$. Since $\angle A F C$ $=90^{\circ}=\angle A D C$, so A, C, D, F are concyclic. Then $\angle J B D=\angle B D F=\angle B A C$. So line $B J$ is tangent to the circumcircle of $\triangle A B C$. Then $O B \perp J B$. So $O B \perp D F$. Similarly, $O C \perp D E$.
(2) Recall the Euler line $O H$ of $\triangle A B C$ contains the center of the circumcircle and the center of the nine point circle. We will show N, M are on the radical axis of these circles and hence $O H \perp M N$.
From (1), we know A, C, D, F are concyclic. By the intersecting chord theorem, $N A \times N C=N F \times N D$. Since $A C$ is a chord of the circumcircle and $F D$ is a chord on the nine-point circle, so N is on the radical axis of the circles and similarly for M.

13. Miscellaneous Examples

Example 1. (1994 Canadian Math Olympiad) Let $A B C$ be an acute triangle. Let D be on side $B C$ such that $A D \perp B C$. Let H be a point on the segment $A D$ different from A and D. Let line $B H$ intersect side $A C$ at E and line $C H$ intersect side $A B$ at F. Prove that $\angle E D A=\angle F D A$.

Solution 1. Draw a line through A parallel to $B C$. Let the line intersect line $D E$ at Q and line $D F$ at P. Note $\triangle A P F \sim \triangle B F D$. So $A P / B D=A F / B F$. Similarly, $A Q / C D=A E / C E$. Also, by Ceva's theorem,

$$
\frac{A F}{F B} \frac{B D}{D C} \frac{C E}{E A}=1 \Leftrightarrow \frac{A F}{F B} \cdot B D=\frac{A E}{C E} \cdot C D \Leftrightarrow A P=A Q .
$$

This with $D A=D A$ and $\angle D A P=90^{\circ}=\angle D A Q$ yield $\triangle D A P \sim \triangle D A Q$. Therefore, $\angle E D A=\angle F D A$.

Solution 2. Let A^{\prime}, E^{\prime} be the mirror image of A, E with respect to line $B C$. Since $A F, C D, E H$ concur at B, by Ceva's theorem,

$$
1=\frac{A D}{D H} \frac{H F}{F C} \frac{C E}{E A}=\frac{-A^{\prime} D}{D H} \frac{H F}{F C} \frac{C E^{\prime}}{E^{\prime} A}
$$

By the converse of Menelaus' theorem, D, F, E, are collinear. Hence, $\angle E D A=\angle E^{\prime} D A^{\prime}=\angle F D A$.
Example 2. (1997 USA Math Olympiad) Let $A B C$ be a triangle, and draw isosceles triangles $B C D, C A E, A B F$ externally to $A B C$, with $B C, C A, A B$ as their respective bases. Prove the lines through A, B, C, perpendicular to the lines $E F, F D, D E$, respectively, are concurrent.

Solution. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be points on $F E, D F, E D$ respectively such that $A A^{\prime} \perp F E, B B^{\prime} \perp D F$ and $C C^{\prime}$ $\perp \perp E D$. Let $D^{\prime}, E^{\prime}, F^{\prime}$ be points on $C B, A C, B A$ respectively such that $D D^{\prime} \perp C B, E E^{\prime} \perp A C$ and $F F^{\prime}$ $\perp B A$. Now $D D^{\prime}, E E, \stackrel{F F}{ }$, are perpendicular bisectors of the sides of $\triangle A B C$. So they concur. By the trigonometric form of Ceva's theorem, we have

$$
\frac{\sin \angle E^{\prime} E F}{\sin \angle D E E^{\prime}} \frac{\sin \angle F^{\prime} F D}{\sin \angle E F F^{\prime}} \frac{\sin \angle D^{\prime} D E}{\sin \angle F D D^{\prime}}=1 .
$$

Since $E^{\prime} E \perp C A$ and $E F \perp A A^{\prime}$, so $\angle E^{\prime} E F \cong \angle C A A^{\prime}$. Similarly, $\angle D E E^{\prime} \cong \angle$
$A^{\prime} A B, \angle F^{\prime} F D \cong \angle A B B^{\prime}, \angle E F F^{\prime} \cong \angle B^{\prime} B C, \angle D^{\prime} D E \cong \angle B C C^{\prime}$ and $\angle F D D^{\prime} \cong$ $\angle B^{\prime} B C$. So

$$
\frac{\sin \angle C A A^{\prime}}{\sin \angle A^{\prime} A B} \frac{\sin \angle A B B^{\prime}}{\sin \angle B^{\prime} B C} \frac{\sin \angle B C C^{\prime}}{\sin \angle B^{\prime} B C}=1
$$

By the converse of Ceva's theorem, we get $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent, which is the required conclusion.

Example 3. (1996 IMO) Let $A B C D E F$ be a convex hexagon such that $A B$ is parallel to $D E, B C$ is parallel to $E F$ and $C D$ is parallel to $F A$. Let R_{A}, R_{C}, R_{E} denote the circumradii of triangles $F A B, B C D, D E F$, respectively and let P denote the perimeter of the hexagon. Prove that $R_{A}+R_{C}+R_{E} \geq P / 2$.

Solution. Due to the parallel opposite sides, we have $\angle A=\angle D, \angle B=\angle E, \angle C=\angle F$. Let $P Q R S$ be the smallest rectangle containing the hexagon with side $B C$ on $P Q$ as shown. We have

$$
\begin{aligned}
2 B F & \geq P S+Q R=A P+A S+D Q+D R \\
& =(A B \sin B+F A \sin C)+(C D \sin C+D E \sin B)
\end{aligned}
$$

Similarly, $\quad 2 D B \geq(C D \sin A+B C \sin B)+(E F \sin B+F A \sin A)$ and $\quad 2 F D \geq(E F \sin C+D E \sin A)+(A B \sin A+B C \sin C)$.
By the extended sine law, $R_{A}=\frac{B F}{2 \sin A}, R_{C}=\frac{D B}{2 \sin C}, R_{E}=\frac{F D}{2 \sin B}$. Dividing the first inequality by $\sin A$, second inequality by $\sin C$, third inequality by $\sin E$ and adding them, we get by the AM-GM inequality that

$$
\begin{aligned}
& 4\left(R_{A}+R_{C}+R_{E}\right) \geq A B\left(\frac{\sin B}{\sin A}+\frac{\sin A}{\sin B}\right)+B C\left(\frac{\sin C}{\sin B}+\frac{\sin B}{\sin C}\right)+\cdots \\
& \geq 2(A B+B C+C D+D E+E F+F A)=2 P
\end{aligned}
$$

The result follows.
Example 4. (1997 Chinese National Senior High Math Competition) Circles C_{1}, C_{2} with centers O_{1}, O_{2} and distinct radii intersect at $M, N . C_{1}, C_{2}$ are internally tangent to a circle C with center O at S and T respectively. Prove that $O M \perp M N$ if and only if S, T, N are collinear.

Solution. Let the tangents at S and at T to circle C intersect at P. Let $Q=O P \cap S T$. Now $O P \perp S T$ and so $P Q \times P O=P S^{2}$. Also, $P S^{2}=P N \times P M$ by the intersecting chord theorem. Then $P Q \times P O=P N \times P M$, which implies O, Q, N, M concyclic. Hence,

$$
\begin{aligned}
\angle O M N=90^{\circ} & \Leftrightarrow \angle O Q N=90^{\circ} \\
& \Leftrightarrow S, T, N \text { are collinear since } O Q \perp S T .
\end{aligned}
$$

Example 5. The inscribed circle of $\triangle A B C$ touches sides $B C, C A, A B$ at D, E, F respectively. P is a point inside $\triangle A B C$. The inscribed circle of $\triangle P B C$ touches sides $B C, C P, P B$ at D, Q, R respectively. Prove that E, F, R, Q are concyclic.

Solution. If $E F \| B C$, then $\angle A F E=\angle A E F$ implies $\angle A B C=\angle A C B$. So $\triangle A B C$ is isosceles. Then D is the midpoint of $B C$ and P is on $A D$. Then $E F R Q$ is an isosceles trapezoid and so E, F, R, Q are concyclic.
If $E F \cap B C=S$, then by Menelaus theorem, $\frac{C S}{S B} \frac{B F}{F A} \frac{A E}{E C}=-1$. Since $A F=A E$, $B R=B D=B F, C Q=C D=C E, P Q=P R$, we get $\frac{C S}{S B} \frac{B R}{R P} \frac{P Q}{Q C}=-1$. So by the converse of Menelaus' theorem, we have R, Q, S collinear. By the intersecting chord theorem, $S E \times S F=S D^{2}=S R \times S Q$. Then E, F, R, Q are concyclic.

Example 6. As in the figure, circles C_{1}, C_{2} with centers O_{1}, O_{2} respectively intersect at $A, B . P$ is a point on line $A B$. From P, draw tangents to circle C_{1} at C and circle C_{2} at D. Let $E F$ be a common tangent to both circles with E on C_{1} and F on C_{2}. Prove that $A B, C E, D F$ are concurrent.

Solution. Let $Q=A B \cap E F$. Let lines $C E, D F$ intersect line $A B$ at R, R^{\prime} respectively. We have to show $R=R^{\prime}$.
Let line $E F$ intersect lines $P C, P D$ at M, N respectively. Applying Menelaus' theorem to line $C E R$ through $\triangle Q M P$, we get $\frac{M C}{C P} \frac{P R}{R Q} \frac{Q E}{E M}=-1$. Since
$M C=M E$, we get $\frac{P R}{R Q}=\frac{P C}{Q E}$. Similarly, $\frac{P R^{\prime}}{R^{\prime} Q}=\frac{P D}{Q F}$.
By the intersecting chord theorem, $P C^{2}=P A \times P B=P D^{2}$ and $Q E^{2}=Q A \times Q B=Q F^{2}$. So $\frac{P R}{R Q}=\frac{P R^{\prime}}{R^{\prime} Q}$. Therefore, $R=R^{\prime}$.

Exercises

1. Let a, b, c denote the lengths of the sides $B C, C A, A B$ respectively. Let h_{a}, h_{b}, h_{c} be the heights from A, B, C to the opposite sides respectively. Let R be the circumradius, r be the inradius and s be the semiperimeter of $\triangle A B C$.
(a) For $\triangle A B C$, show that $\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{1}{r}$.
(b) Show that $r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$. (Hint: Show $\tan \frac{A}{2}=\frac{r}{s-a}$.)
2. Show that among all triangles with the same perimeter, the equilateral triangle has the largest area.
3. (1996 Iranian Math Olympiad) Let $A B C$ be a scalene triangle (i.e. no two sides equal). The medians from A, B, C meet the circumcircle again at L, M, N respectively. If $L M=L N$, prove that $2 B C^{2}=A B^{2}+A C^{2}$. (Hint: Show $\frac{L N}{A C}=\frac{L G}{C G}$ first.)
4. (1995 IMO) Let $A B C D E F$ be a convex hexagon with $A B=B C=C D, D E=$ $E F=F A$ and $\angle B C D=\angle E F A=60^{\circ}$. Prove that $A G+G B+G H+D H+H E \geq$ $C F$.

5.

In the figure, if lines $A D, B E, C F$ are concurrent, show that lines $A D^{\prime}, B E^{\prime}, C F^{\prime}$ are concurrent.

In the figure, $A B C D, A F H D, K G C D$ are parallelograms and $K G, F H$ intersect at point E. Show that lines $F K, B D, G H$ are concurrent. (Hint: There are more than one ways of solving this. One way is to let $F K, B D$ intersect at X, then show G, H, X are collinear.)
7. (a) Let the angle bisector of $\angle B A C$ intersect the circumcircle of $\triangle A B C$ at D. Show that if point I on the line segment $A D$ is the incenter of $\triangle A B C$, then $B D=I D=C D$. (Remark: The converse is also true.)
(b) Show that $O I^{2}=R^{2}-2 R r$, where O is the circumcenter, R is the circumradius and r is the inradius of $\triangle A B C$.
8. Let a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ be the lengths of two triangles. Let $K(x, y, z)$ be the area of a triangle with side lengths x, y, z. Show that

$$
\sqrt{K\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}\right)} \geq \sqrt{K(a, b, c)}+\sqrt{K\left(a^{\prime}, b^{\prime} c^{\prime}\right)} .
$$

When does equality hold?
(Hong Kong IMO Prelim Contest 90-91) Let P be an interior point of $\triangle A B C$ and extend lines from the vertices through P to the opposite sides. Let a, b, c, d denote the lengths of the line segments indicated in the figure. Find $a b c$ if $a+b+c=43$ and $d=3$.

14. Homothety

A geometric transformation of the plane is a function that sends every point on the plane to a point in the same plane. Here we will like to discuss one type of geometric transformations, called homothety, which can be used to solve quite a few geometry problems in some international math competitions.

A homothety with center O and ratio k is a function that sends every point X on the plane to the point X^{\prime} such that

$$
\overrightarrow{O X^{\prime}}=k \overrightarrow{O X} .
$$

So if $|k|>1$, then the homothety is a magnification with center O. If $|k|<1$, it is a reduction with center O. A homothety sends a figure to a similar figure. For instance, let D, E, F be the midpoints of sides $B C, C A, A B$ respectively of $\triangle A B C$. The homothety with center A and ratio 2 sends $\triangle A F E$ to $\triangle A B C$ The homothety with center at the centroid G and ratio $-1 / 2$ sends $\triangle A B C$ to $\triangle D E F$.

Example 1. (1978 IMO) In $\triangle A B C, A B=A C$. A circle is tangent internally to the circumcircle of $A B C$ and also to the sides $A B, A C$ at P, Q, respectively. Prove that the midpoint of segment $P Q$ is the center of the incircle of $\triangle A B C$. Solution. Let O be the center of the circle. Let the circle be tangent to the circumcircle of $\triangle A B C$ at D. Let I be the midpoint of $P Q$. Then A, I, O, D are collinear by symmetry. Consider the homothety with center A that sends $\triangle A B C$ to $\triangle A B^{\prime} C^{\prime}$ such that D is on $B^{\prime} C^{\prime}$. Thus, $k=A B^{\prime} / A B$. As right triangles $A I P, A D B^{\prime}, A B D, A P O$ are similar, we have

$$
A I / A O=(A I / A P)(A P / A O)
$$

$$
=\left(A D / A B^{\prime}\right)(A B / A D)=A B / A B^{\prime}=1 / k .
$$

Hence, the homothety sends I to O. Then O being the incenter of $\Delta A B^{\prime} C^{\prime}$ implies I is the incenter of $\triangle A B C$.

For the next two examples, it would be helpful to know the following fact. If $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are not congruent and $A B\left\|A^{\prime} B^{\prime}, B C\right\| B^{\prime} C^{\prime}, C A \| C^{\prime} A^{\prime}$, then the corresponding angles of the triangles are the same so that the triangles are similar, but the corresponding sides are all of different lengths. Then $A A^{\prime}, B B^{\prime}$ intersect at a point X and $B B^{\prime}, C C^{\prime}$ intersect at a point Y. We get $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}, \triangle A B X \sim \triangle A^{\prime} B^{\prime} X^{\prime}$ and $\triangle B C X \sim \Delta B^{\prime} C^{\prime} X^{\prime}$. So

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}, \frac{A B}{A^{\prime} B^{\prime}}=\frac{B X}{B^{\prime} X^{\prime}}, \frac{B C}{B^{\prime} C^{\prime}}=\frac{B Y}{B^{\prime} Y^{\prime}} \Rightarrow \frac{B X}{B^{\prime} X^{\prime}}=\frac{B Y}{B^{\prime} Y^{\prime}} \Rightarrow X=Y .
$$

Therefore, $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur at X. (This is a special case of the converse of Desargue's theorem.)

Example 2. (1981 IMO) Three congruent circles have a common point O and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle and the point O are collinear.

Solution. Consider the figure shown. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the centers of the circles. Since the radii are the same, so $A^{\prime} B^{\prime}$ is parallel to $A B, B^{\prime} C^{\prime}$ is parallel to $B C$, $C^{\prime} A^{\prime}$ is parallel to $C A$. Since $A A^{\prime}, B B^{\prime}, C C^{\prime}$ bisect $\angle A, \angle B, \angle C$ respectively, they concur at the incenter I of $\triangle A B C$. Note O is the circumcenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$ as it is equidistant from $A^{\prime}, B^{\prime}, C^{\prime}$. Then the homothety with center I sending $\triangle A^{\prime} B^{\prime} C^{\prime}$ to $\triangle A B C$ will send O to the circumcenter P of $\triangle A B C$. Therefore, I, O, P are collinear.

Example 3. (1982 IMO) A non-isosceles triangle $A_{1} A_{2} A_{3}$ is given with sides a_{1}, $a_{2}, a_{3}\left(a_{i}\right.$ is the side opposite $\left.A_{i}\right)$. For all $i=1,2,3, M_{i}$ is the midpoint of side a_{i}, and T_{i} is the point where the incircle touchs side a_{i}. Denote by S_{i} the reflection of T_{i} in the interior bisector of angle A_{i}. Prove that the lines $M_{1} S_{1}, M_{2} S_{2}$ and $M_{3} S_{3}$ are concurrent.

Solution. Let I be the incenter of $\Delta A_{1} A_{2} A_{3}$. Let B_{1}, B_{2}, B_{3} be the points where the internal angle bisectors of $\angle A_{1}, \angle A_{2}, \angle A_{3}$ meet a_{1}, a_{2}, a_{3} respectively.

We will show $S_{i} S_{j}$ is parallel to $M_{i} M_{j}$. With respect to $A_{1} B_{1}$, the reflection of T_{1} is S_{1} and the reflection of T_{2} is T_{3}.

So $\angle T_{3} I S_{1}=\angle T_{2} I T_{1}$. With respect to $A_{2} B_{2}$, the reflection of T_{2} is S_{2} and the reflection of T_{1} is S_{3}. So $\angle T_{3} I S_{2}=\angle T_{1} I T_{2}$. Then $\angle T_{3} I S_{1}=\angle T_{3} I S_{2}$. Since $I T_{3}$ is perpendicular to $A_{1} A_{2}$, we get $S_{2} S_{1}$ is parallel to $A_{1} A_{2}$. Since $A_{1} A_{2}$ is parallel to $M_{2} M_{1}$, we get $S_{2} S_{1}$ is parallel to $M_{2} M_{1}$. Similarly, $S_{3} S_{2}$ is parallel to $M_{3} M_{2}$ and $S_{1} S_{3}$ is parallel to $M_{1} M_{3}$.

Now the circumcircle of $\Delta S_{1} S_{2} S_{3}$ is the incircle of $\Delta A_{1} A_{2} A_{3}$ and the circumcircle of $\Delta M_{1} M_{2} M_{3}$ is the nine point circle of $\Delta A_{1} A_{2} A_{3}$. Since $\Delta A_{1} A_{2} A_{3}$ is not equilateral, these circles have different radii. Hence $\Delta S_{1} S_{2} S_{3}$ is not congruent to $\Delta M_{1} M_{2} M_{3}$ and there is a homothety sending $\Delta S_{1} S_{2} S_{3}$ to $\Delta M_{1} M_{2} M_{3}$. Then $M_{1} S_{1}$, $M_{2} S_{2}$ and $M_{3} S_{3}$ concur at the center of the homothety.

Example 4. (1983 IMO) Let A be one of the two distinct points of intersection of two unequal coplanar circles C_{1} and C_{2} with centers O_{1} and O_{2} respectively. One of the common tangents to the circles touches C_{1} at P_{1} and C_{2} at P_{2}, while the other touches C_{1} at Q_{1} and C_{2} at Q_{2}. Let M_{1} be the midpoint of $P_{1} Q_{1}$ and M_{2} be the midpoint of $P_{2} Q_{2}$. Prove that $\angle O_{1} A O_{2}=\angle M_{1} A M_{2}$.

Solution. By symmetry, lines $O_{2} O_{1}, P_{2} P_{1}$, $Q_{2} Q_{1}$ concur at a point O. Consider the homothety with center O which sends C_{1} to C_{2}. Let $O A$ meet C_{1} at B, then A is the image of B under the homothety. Since $\Delta B M_{1} O_{1}$ is sent to $\triangle A M_{2} O_{2}$, so $\angle M_{1} B O_{1}=\angle M_{2} A O_{2}$.

Now $\triangle O P_{1} O_{1}$ similar to $\triangle O M_{1} P_{1}$ implies $O O_{1} / O P_{1}=O P_{1} / O M_{1}$. Then $O O_{1} \cdot O M_{1}=O P_{1}^{2}=O A \cdot O B$, which implies points A, B, M_{1}, O_{1} are concyclic. Then $\angle M_{1} B O_{1}=\angle M_{1} A O_{1}$. So $\angle M_{1} A O_{1}=\angle M_{2} A O_{2}$. Adding $\angle O_{1} A M_{2}$ to both sides, we have $\angle O_{1} A O_{2}=\angle M_{1} A M_{2}$.

Example 5. (1992 IMO) In the plane let C be a circle, L a line tangent to the circle C, and M a point on L. Find the locus of all points P with the following property: there exist two points Q, R on L such that M is the midpoint of $Q R$ and C is the inscribed circle of $\triangle P Q R$.

Solution. Let L be the tangent to C at S. Let T be the reflection of S with respect to M. Let U be the point on C diametrically opposite S. Take a point P on the locus. The homothety with center P that sends C to the excircle C^{\prime} will send U to T^{\prime}, the point where $Q R$ touches C^{\prime}. Let line $P R$ touch C^{\prime} at V.

Let s be the semiperimeter of $\triangle P Q R$, then $T R=Q S=s-P R=P V-P R=V R=$ $T^{\prime} R$. This implies P, U, T are collinear. Then the locus is on the part of line $U T$, opposite the ray $\vec{U} \vec{T}$.
Conversely, for any point P on the part of line $U T$, opposite the ray $\vec{U} \vec{T}$, the homothety sends U to T and T^{\prime}, so $T=T^{\prime}$. Then $Q S=s-P R=P V-P R=V R=$ $T^{\prime} R=T R$ and $Q M=Q S-M S=T R-M T=R M$. Therefore, P is on the locus.

Example 6. (2000APMO) Let $A B C$ be a triangle. Let M and N be the points in which the median and the angle bisector, respectively at A meet the side $B C$. Let Q and P be the points in which the perpendicular at N to $N A$ meets $M A$ and $B A$ respectively and O the point in which the perpendicular at P to $B A$ meets $A N$ produced. Prove that $Q O$ is perpendicular to $B C$.

Solution (due to Bobby Poon). The case $A B=A C$ leads to $M=N=Q, P=B$ and $Q O=M O \perp A B$.

Without loss of generality, we may assume $A B>$ $A C$. Let $A N$ intersect the circumcircle of $\triangle A B C$ at D. Then

$$
\angle D B C=\angle D A C=\angle D A B=\angle D C B
$$

So $D B=D C$ and $M D$ is perpendicular to $B C$.
Consider the homothety with center A that sends $\triangle D B C$ to $\triangle O B^{\prime} C^{\prime}$. Then $O B^{\prime}=$ $O C^{\prime}$ and $B C \| B^{\prime} C^{\prime}$. Let $K=B^{\prime} C^{\prime} \cap P N$. Then

$$
\angle O B^{\prime} K=\angle D B C=\angle D A B=90^{\circ}-\angle A O P=\angle O P K .
$$

So points P, B^{\prime}, O, K are concyclic. Hence $\angle B^{\prime} K O=\angle B^{\prime} P O=90^{\circ}$ and $B^{\prime} K=$ $C^{\prime} K$. Since $B C \| B^{\prime} C^{\prime}$, this implies K is on $M A$. So $K=M A \cap P N=Q$. Now \angle $B^{\prime} K O=90^{\circ}$ implies $Q O=K O \perp B^{\prime} C^{\prime}$. Finally, $B C \| B^{\prime} C^{\prime}$ implies $Q O \perp B C$.

For the next example, the solution involves the concepts of power of a point with respect to a circle and the radical axis.

Example 7. (1999 IMO) Two circles Γ_{1} and Γ_{2} are inside the circle Γ, and are tangent to Γ at the distinct points M and N, respectively. Γ_{1} passes through the center of Γ_{2}. The line passing through the two points of intersection of Γ_{1} and Γ_{2} meets Γ at A and B. The lines $M A$ and $M B$ meet Γ_{1} at C and D, respectively. Prove that $C D$ is tangent to Γ_{2}.

Solution. (Official Solution) Let EF be the chord of Γ which is the common tangent to Γ_{1} and Γ_{2} on the same side of line $O_{1} O_{2}$ as A. Let $E F$ touch Γ_{1} at C^{\prime} The homothety with center M that sends Γ_{1} to Γ will send C^{\prime} to some point A and line $E F$ to the tangent line L of Γ at A^{\prime}. Since lines $E F$ and L are parallel, A^{\prime} must be the midpoint of arc $F A^{\prime} E$. Then $\angle A^{\prime} E C^{\prime}=\angle$ $A^{\prime} F C^{\prime}=\angle A^{\prime} M E$. So $\triangle A^{\prime} E C$ is similar to $\triangle A^{\prime} M E$. Then the power of A^{\prime} with respect to Γ_{1} is $A^{\prime} C^{\prime} \cdot A^{\prime} M=A^{\prime} E^{2}$.
Similarly, the power of A^{\prime} with respect to Γ_{2} is $A^{\prime} F^{2}$. Since $A^{\prime} E=A^{\prime} F, A^{\prime}$ has the same power with respect to Γ_{1} and Γ_{2}. So A^{\prime} is on the radical axis $A B$. Hence, A^{\prime} $=A$. Then $C^{\prime}=C$ and C is on $E F$.

Similarly, the other common tangent to Γ_{1} and Γ_{2} passes through D. Let O_{i} be the center of Γ_{i}. By symmetry with respect to $O_{1} O_{2}$, we see that O_{2} is the midpoint of arc $\mathrm{CO}_{2} D$. Then $\angle D C O_{2}=\angle C D O_{2}=\angle F C O_{2}$. This implies O_{2} is on the angle bisector of $\angle F C D$. Since $C F$ is tangent to Γ_{2}, therefore $C D$ is tangent to Γ_{2}.

15. Inversion

In geometry, there is a transformation method called inversion for solving problems. To present this, we will introduce the extended plane, which is the plane together with a point that we would like to think of as infinity. Also, we think of all lines on the plane as passing through the point at infinity! To understand this, we will introduce the stereographic projection, which can be described as follow.

Consider a sphere sitting on a point O of a plane. If we remove the north pole N of the sphere, we get a punctured sphere.

For every point P on the plane, the line
 $N P$ will intersect the punctured sphere at a unique point S_{P}. This gives a one-to-one correspondence between the plane and the punctured sphere. If we consider the points P on a circle in the plane, then the S_{P} points will form a circle on the punctured sphere. However, if we consider the points P on any line in the plane, then the S_{P} points will form a punctured circle on the sphere with N as the point removed from the circle.

If we move a point P on any line of the plane toward infinity, then S_{P} will go toward the same point $N!$ Thus, in this model, all lines can be thought of as going to the same infinity.

Now for the method of inversion, let O be a point on the plane and r be a positive number. The inversion with center O and radius r is the function on the extended plane that sends a point $X \neq O$ to the image point X^{\prime} on the ray $\overrightarrow{O X}$ such that $O X \cdot O X^{\prime}=r^{2}$.
When $X=O, X^{\prime}$ is taken to be the point at infinity. When X is infinity, X^{\prime} is taken to be O. The circle with center O and radius r is called the circle of inversion.

The method of inversion is based on the following
Facts. (1) The function sending X to X^{\prime} described above is a one-to-one correspondence between the extended plane with itself. (This follows from checking $\left(X^{\prime}\right)^{\prime}=X$.)

(2) If X is on the circle of inversion, then $X^{\prime}=$ X. If X is outside the circle of inversion, then X^{\prime} is the midpoint of the chord formed by the tangent points T_{1}, T_{2} of the tangent lines from X to the circle of inversion. (This follows from
$\left.O X \cdot O X^{\prime}=\left(r \sec \angle T_{1} O X\right)\left(r \cos \angle T_{1} O X\right)=r^{2}.\right)$
(3) A circle not passing through O is sent to a circle not passing through O. In this case, the images of concyclic points are concyclic. The point O, the centers of the circle and the image circle are collinear. However, the center of the circle is not sent to the center of the image circle!
(4) A circle passing through O is sent to a line which is not passing through O and is parallel to the tangent line to the circle at O. Conversely, a line not passing through O is sent to a circle passing through O with the tangent line at O parallel to the line.
(5) A line passing through O is sent to itself.
(6) If two curves intersect at a certain angle at a point $P \neq O$, then the image curves will also intersect at the same angle at P^{\prime}. If the angle is a right angle, the curves are said to be orthogonal. So in particular, orthogonal curves at P are sent to orthogonal curves at P^{\prime}. A circle orthogonal to the circle of inversion is sent to itself. Tangent curves at P are sent to tangent curves at P^{\prime}.
(7) If points A, B are different from O and points O, A, B are not collinear, then the equation $O A \cdot O A^{\prime}=r^{2}=O B \cdot O B^{\prime}$ implies $O A / O B=O B^{\prime} / O A^{\prime}$.

Along with $\angle A O B=\angle B^{\prime} O A^{\prime}$, they imply $\triangle O A B$, $\triangle O B^{\prime} A^{\prime}$ are similar. Then $\angle O A B=\angle O B^{\prime} A^{\prime}$ and

$$
\frac{A^{\prime} B^{\prime}}{A B}=\frac{O A^{\prime}}{O B}=\frac{r^{2}}{O A \cdot O B}
$$

so that

$$
A^{\prime} B^{\prime}=\frac{r^{2}}{O A \cdot O B} A B
$$

The following are some examples that illustrate the powerful method of inversion. In each example, when we do inversion, it is often that we take the point that plays the most significant role and where many circles and lines intersect.

Example 1. (Ptolemy's Theorem) For coplanar points A, B, C, D, if they are concyclic, then

$$
A B \cdot C D+A D \cdot B C=A C \cdot B D
$$

Solution. Consider the inversion with center D and any radius r.

By fact (4), the circumcircle of $\triangle A B C$ is sent to the line through $A^{\prime}, B^{\prime}, C^{\prime}$. Since $A^{\prime} B^{\prime}+B^{\prime} C^{\prime}=A^{\prime} C^{\prime}$, we have by fact (7) that

$$
\frac{r^{2}}{A D \cdot B D} A B+\frac{r^{2}}{B D \cdot C D} B C=\frac{r^{2}}{A D \cdot C D} A C
$$

Multiplying by $(A D \cdot B D \cdot C D) / r^{2}$, we get the desired equation.
Remarks. The steps can be reversed to get the converse statement that if $A B \cdot C D$ $+A D \cdot B C=A C \cdot B D$, then A, B, C, D are concyclic.

Example 2. (1993 USAMO) Let $A B C D$ be a convex quadrilateral such that diagonals $A C$ and $B D$ intersect at right angles, and let O be their intersection point. Prove that the reflections of O across $A B, B C, C D, D A$ are concyclic.

Solution. Let P, Q, R, S be the feet of perpendiculars from O to $A B, B C, C D, D A$, respectively. The problem is equivalent to showing P, Q, R, S are concyclic (since they are the midpoints of O to its reflections). Note OSAP, $O P B Q, O Q C R, O R D S$ are cyclic quadrilaterals. Let their circumcircles be called $C_{A}, C_{B}, C_{C}, C_{D}$, respectively.
Consider the inversion with center O and any radius r. By fact (5), lines $A C$ and $B D$ are sent to themselves. By fact (4), circle C_{A} is sent to a line L_{A} parallel to $B D$, circle C_{B} is sent to a line L_{B} parallel to $A C$, circle C_{C} is sent to a line L_{C} parallel to $B D$, circle C_{D} is sent to a line L_{D} parallel to $A C$.

Next C_{A} intersects C_{B} at O and P. This implies $L_{A} \cap L_{B}=P^{\prime}$. Similarly, $L_{B} \cap$ $L_{C}=Q^{\prime}, L_{C} \cap L_{D}=R^{\prime}$ and $L_{D} \cap L_{A}=S^{\prime}$.

Since $A C \perp B D, P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$ is a rectangle, hence cyclic. Therefore, by fact (3), P, Q, R, S are concyclic.

Example 3. (1996 IMO) Let P be a point inside triangle $A B C$ such that

$$
\angle A P B-\angle A C B=\angle A P C-\angle A B C .
$$

Let D, E be the incenters of triangles $A P B, A P C$, respectively. Show that $A P$, $B D, C E$ meet at a point.

Solution. Let lines $A P, B D$ intersect at X, lines $A P$ $C E$ intersect at Y. We have to show $X=Y$. By the angle bisector theorem, $B A / B P=X A / X P$. Similarly, $C A / C P=Y A / Y P$. As X, Y are on $A P$, we get $X=Y$ if and only if $B A / B P=C A / C P$.

Consider the inversion with center A and any radius r. By fact (7), $\triangle A B C, \triangle A C^{\prime} B^{\prime}$ are similar, $\triangle A P B$, $\triangle A B^{\prime} P^{\prime}$ are similar and $\triangle A P C, \triangle A C^{\prime} P^{\prime}$ are similar.
Now

$$
\begin{aligned}
\angle B^{\prime} C^{\prime} P^{\prime} & =\angle A C^{\prime} P^{\prime}-\angle A C^{\prime} B^{\prime}=\angle A P C-\angle A B C \\
& =\angle A P B-\angle A C B=\angle A B^{\prime} P-\angle A B^{\prime} C^{\prime} \\
& =\angle C^{\prime} B^{\prime} P^{\prime} .
\end{aligned}
$$

So $\triangle B^{\prime} C^{\prime} P^{\prime}$ is isosceles and $P^{\prime} B^{\prime}=P^{\prime} C^{\prime}$. From $\triangle A P B, \triangle A B^{\prime} P^{\prime}$ similar and $\triangle A P C$, $\Delta A C^{\prime} P^{\prime}$ similar, we get $\frac{B A}{B P}=\frac{P^{\prime} A}{P^{\prime} B^{\prime}}=\frac{P^{\prime} A}{P^{\prime} C^{\prime}}=\frac{C A}{C P}$. Therefore, $X=Y$.
Example 4. (1995 Israeli Math Olympiad) Let $P Q$ be the diameter of semicircle H. Circle O is internally tangent to H and tangent to $P Q$ at C. Let A be a point on H and B a point on $P Q$ such that $A B \perp P Q$ and is tangent to O. Prove that $A C$ bisects $\angle P A B$.

O^{\prime} Solution. Consider the inversion with center C and any radius r. By fact (7), $\triangle C A P, \triangle C P^{\prime} A^{\prime}$ similar and $\triangle C A B, \triangle C B^{\prime} A^{\prime}$ similar. So $A C$ bisects $P A B$ if and only if $\angle C A P=$ $\angle C A B$ if and only if $\angle C P^{\prime} A^{\prime}=\angle$ $C B^{\prime} A^{\prime}$.

By fact (5), line $P Q$ is sent to itself. Since circle O passes through C, by fact (4), circle O is sent to a line O^{\prime} parallel to $P Q$.

By fact (6), since H is tangent to circle O and is orthogonal to line $P Q, H$ is sent to the semicircle H^{\prime} tangent to line O^{\prime} and has diameter $P^{\prime} Q^{\prime}$. Since segment $A B$ is tangent to circle O and is orthogonal to $P Q$, segment $A B$ is sent to arc $A^{\prime} B^{\prime}$ on the semicircle tangent to line O^{\prime} and has diameter $C B^{\prime}$. Now observe that arc $A^{\prime} Q^{\prime}$ and arc $A^{\prime} C$ are symmetrical with respect to the perpendicular bisector of $C Q^{\prime}$ so we get $\angle C P^{\prime} A^{\prime}=\angle C B^{\prime} A^{\prime}$.

In the solutions of the next two examples, we will consider the nine-point circle and the Euler line of a triangle.

Example 5. (1995 Russian Math Olympiad) Given a semicircle with diameter $A B$ and center O and a line, which intersects the semicircle at C and D and line $A B$ at $M(M B<M A, M D<M C)$. Let K be the second point of intersection of the circumcircles of triangles $A O C$ and $D O B$. Prove that $\angle M K O=90^{\circ}$.

Solution. Consider the inversion with center O and radius $r=O A$. By fact (2), A, B, C, D are sent to themselves. By fact (4), the circle through A, O, C is sent to line $A C$ and the circle through D, O, B is sent to line $D B$. Hence, the point K is sent to the intersection K^{\prime} of lines $A C$ with $D B$ and the point M is sent to the intersection M^{\prime} of line $A B$ with the circumcircle of $\triangle O C D$. Then the line $M K$ is sent to the circumcircle of $O M^{\prime} K^{\prime}$.
To solve the problem, note by fact (7), $\angle M K O=90^{\circ}$ if and only if $\angle K^{\prime} M^{\prime} O=$ 90°.

Since $B C \perp A K^{\prime}, A D \perp B K^{\prime}$ and O is the midpoint of $A B$, so the circumcircle of $\triangle O C D$ is the nine-point circle of $\triangle A B K^{\prime}$, which intersects side $A B$ again at the foot of perpendicular from K^{\prime} to $A B$. This point is M^{\prime}. So $\angle K^{\prime} M^{\prime} O=90^{\circ}$.

Example 6. (1995 Iranian Math Olympiad) Let M, N and P be points of intersection of the incircle of triangle $A B C$ with sides $A B, \quad B C$ and $C A$ respectively. Prove that the orthocenter of $\triangle M N P$, the incenter of $\triangle A B C$ and the circumcenter of $\triangle A B C$ are collinear.

Solution. Note the incircle of $\triangle A B C$ is the circumcircle of $\triangle M N P$. So the first two points are on the Euler line of $\triangle M N P$.

Consider inversion with respect to the incircle of $\triangle A B C$ with center I. By fact (2), A, B, C are sent to the midpoints $A^{\prime}, B^{\prime}, C^{\prime}$ of $P M, M N, N P$, respectively. The circumcenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the center of the nine point circle of $\triangle M N P$, which is on the Euler line of $\triangle M N P$. By fact (3), the circumcircle of $\triangle A B C$ is also on the Euler line of $\triangle M N P$.

Next we will prove Feuerbach's theorem by inversion.
Feuerbach's Theorem. For $\triangle A B C$, the inscribed circle is internally tangent to the nine point circle and the three escribed circles are externally tangent to the nine point circle.

Proof. As in the nine point circle, we let A ' be the midpoint of side $B C$ and D be the foot of perpendicular from A to $B C$. Let Y and Y_{a} be the feet of the perpendiculars to $B C$ from the incenter I and excenter I_{a} respectively. Similarly we can define X, X_{a}, Z, Z_{a} for $A B$ and $C A$.

Below we will show that
(1) $B Y=C Y_{a}$ (so that $A^{\prime} Y=A^{\prime} B-B Y=A^{\prime} C-C Y_{a}=A^{\prime} Y_{a}$).

Now take inversion with center at A^{\prime} and $r_{0}=A^{\prime} Y=A^{\prime} Y_{a}$. Since $\angle I Y A^{\prime}=$ $90^{\circ}=\angle I_{a} Y_{a} A^{\prime}$, the incircle and the excircle are orthogonal to the circle of inversion and by fact (6), they are sent to themselves.

Let B_{0} and C_{0} be the mirror images of B and C with respect to the angle bisector of $\angle B A C$. Since $B C$ is a common internal tangent to both the incircle and the excircle, by symmetry, $B_{0} C_{0}$ is also a common internal tangent to both
circles. Let S be the intersection of the angle bisector of $\angle B A C$ and side $B C$. By symmetry, S is also on $B_{0} C_{0}$.

Next we claim that the inversion takes the nine point circle is to the line $B_{0} C_{0}$. This will be done below by showing
(2) the inversion takes the nine point circle to a line parallel to line $B_{0} C_{0}$ and
(3) the inversion takes the point D on the nine point to point S on $B_{0} C_{0}$.

By fact (6), it follows that the nine point circle is also tangent to both circles. Similarly, the nine point circle is tangent to the incircle and each of the other two excircles. The proof of Feuerbach's theorem will then be complete.

For (1), note $B Y=B X, A X=A Z, C Z=C Y$. Let s be the semiperimeter of $\triangle A B C$. Then $s=A Z+Z C+B Y=b+B Y$ so that $B Y=s-b$. Also, $C Y_{a}=C Z_{a}, B Y_{a}=B X_{a}$ $A Z_{a}=A X_{a}$. Then $2 s=A C+C Y_{a}+B Y_{a}+B A=A Z_{a}+A X_{a}=2 A Z_{a}$. So $C Z_{a}=A Z_{a}-b=$ $s-b$. Therefore, $B Y=s-b=C Z_{a}=C Y_{a}$.

For (2), since the center A^{\prime} of inversion is on the nine point circle, by fact (4), the nine point circle is taken to a line parallel to the tangent line $A^{\prime} V$ to the nine point circle at A^{\prime}. Now

$$
\angle V A^{\prime} B^{\prime}=\angle A^{\prime} C^{\prime} B^{\prime}=\angle A C B=\angle A C_{0} B_{0} .
$$

Since $\angle V A^{\prime} B^{\prime}$ is the angle between the tangent line at A^{\prime} and line $A^{\prime} B^{\prime}$ (which is parallel to line $A B$) and $\angle A C_{0} B_{0}$ is the angle between line $B_{0} C_{0}$ and $A B$, so the tangent line at A, is parallel to line $B_{0} C_{0}$.

For (3), we have $\Delta S I Y \sim \Delta S I_{a} Y_{a}$, which implies $S Y / S Y_{a}=r / r_{a}$. Similarly, $\triangle A I X \sim \triangle A I_{a} X_{a}$ implies $A I / A I_{a}=r / r_{a}$. Also, lines $A D, I Y, I_{a} Y_{a}$ are parallel, so $A I / A I_{a}=D Y / D Y_{a}$. Then

$$
\left(r_{0}-A^{\prime} S\right) /\left(r_{0}+A^{\prime} S\right)=S Y / S Y_{a}=r / r_{a}=A I / A I_{a}=D Y / D Y_{a}=\left(A^{\prime} D-r_{0}\right) /\left(A^{\prime} D+r_{0}\right)
$$

Now $\left(r_{0}-A^{\prime} S\right) /\left(r_{0}+A^{\prime} S\right)=\left(A^{\prime} D-r_{0}\right) /\left(A^{\prime} D+r_{0}\right)$ implies $A^{\prime} S \cdot A^{\prime} D=r_{0}^{2}$. Therefore, the inversion takes D to S.

16. Pell's Equation

Let d be a positive integer that is not a square. The equation $x^{2}-d y^{2}=1$ with variables x, y over integers is called Pell's Equation. It was Euler who attributed the equation to John Pell (1611-1685), although Brahmagupta (7th century), Bhaskara (12th century) and Fermat had studied the equation in details earlier.

A solution (x, y) of Pell's equation is called positive if both x and y are positive integers. Hence, positive solutions correspond to the lattice points in the first quadrant that lie on the hyperbola $x^{2}-d y^{2}=1$. A positive solution $\left(x_{1}, y_{1}\right)$ is called the least positive solution (or fundamental solution) if it satisfies $x_{1}<x$ and $y_{1}<y$ for every other positive solution (x, y). (As the hyperbola $x^{2}-d y^{2}=1$ is strictly increasing in the first quadrant, the conditions for being least are the same as requiring $x_{1}+y_{1} \sqrt{d}<x+y \sqrt{d}$.)

Theorem. Pell's equation $x^{2}-d y^{2}=1$ has infinitely many positive solutions. If $\left(x_{1}, y_{1}\right)$ is the least positive solution, then for $n=1,2,3, \ldots$, define $x_{n}+y_{n} \sqrt{d}=$ $\left(x_{1}+y_{1} \sqrt{d}\right)^{n}$. The pairs $\left(x_{n}, y_{n}\right)$ are all the positive solutions of the Pell's equation. The x_{n} 's and y_{n} 's are strictly increasing to infinity and satisfy the recurrence relations $x_{n+2}=2 x_{1} x_{n+1}-x_{n}$ and $y_{n+2}=2 x_{1} y_{n+1}-y_{n}$.

We will comment on the proof. The least positive solution is obtained by writing \sqrt{d} as a simple continued fraction. It turns out

$$
\sqrt{d}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\perp}},
$$

where $a_{0}=[\sqrt{d}]$ and a_{1}, a_{2}, \ldots is a periodic positive integer sequence. The continued fraction will be denoted by $\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$. The k-th convergent of $\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$ is the number $\frac{p_{k}}{q_{k}}=\left\langle a_{0}, a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ with p_{k}, q_{k} relatively prime. Let $a_{1}, a_{2}, \ldots, a_{m}$ be the period for \sqrt{d}. The least positive solution of Pell's equation turns out to be

$$
\left(x_{1}, y_{1}\right)=\left\{\begin{array}{ll}
\left(p_{m-1}, q_{m-1}\right) & \text { if } m \text { is even } \\
\left(p_{2 m-1}, q_{2 m-1}\right) & \text { if } m \text { is odd }
\end{array} .\right.
$$

For example, $\sqrt{3}=\langle 1,1,2,1,2, \ldots\rangle$ and so $m=2$, then $\langle 1,1\rangle=\frac{2}{1}$. We check $2^{2}-3 \cdot 1^{2}=1$ and clearly, $(2,1)$ is the least positive solution of $x^{2}-3 y^{2}=1$. Next, $\sqrt{2}=\langle 1,2,2, \ldots\rangle$ and so $m=1$, then $\langle 1,2\rangle=\frac{3}{2}$. We check $3^{2}-2 \cdot 2^{2}=1$ and again clearly $(3,2)$ is the least positive solution of $x^{2}-2 y^{2}=1$.

Next, if there is a positive solution (x, y) such that $x_{n}+y_{n} \sqrt{d}<x+y \sqrt{d}<$ $x_{n+1}+y_{n+1} \sqrt{d}$, then consider $u+v \sqrt{d}=(x+y \sqrt{d}) /\left(x_{n}+y_{n} \sqrt{d}\right)$. We will get $u+v \sqrt{d}<x_{1}+y_{1} \sqrt{d}$ and $u-v \sqrt{d}=(x-y \sqrt{d}) /\left(x_{n}-y_{n} \sqrt{d}\right)$ so that $u^{2}-d v^{2}=(u-v \sqrt{d})(u+v \sqrt{d})=1$, contradicting $\left(x_{1}, y_{1}\right)$ being the least positive solution.

To obtain the recurrence relations, note that $\left(x_{1}+y_{1} \sqrt{d}\right)^{2}=x_{1}^{2}+d y_{1}^{2}+$ $2 x_{1} y_{1} \sqrt{d}=2 x_{1}^{2}-1+2 x_{1} y_{1} \sqrt{d}=2 x_{1}\left(x_{1}+y_{1} \sqrt{d}\right)-1$. So

$$
\begin{aligned}
x_{n+2}+y_{n+2} \sqrt{d} & =\left(x_{1}+y_{1} \sqrt{d}\right)^{2}\left(x_{1}+y_{1} \sqrt{d}\right)^{n} \\
& =2 x_{1}\left(x_{1}+y_{1} \sqrt{d}\right)^{n+1}-\left(x_{1}+y_{1} \sqrt{d}\right)^{n} \\
& =2 x_{1} x_{n+1}-x_{n}+\left(2 x_{1} y_{n+1}-y_{n}\right) \sqrt{d} .
\end{aligned}
$$

The related equation $x^{2}-d y^{2}=-1$ may not have a solution, for example, $x^{2}-3 y^{2}=-1$ cannot hold as $x^{2}-3 y^{2} \equiv x^{2}+y^{2} \not \equiv-1(\bmod 4)$. However, if d is a prime and $d \equiv 1(\bmod 4)$, then a theorem of Lagrange asserts that it will have a solution. In general, if $x^{2}-d y^{2}=-1$ has a least positive solution $\left(x_{1}, y_{1}\right)$, then all its positive solutions are pairs (x, y), where $x+y \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{2 n-1}$ for some positive integer n.

In passing, we remark that some k-th convergent numbers are special. If the length m of the period for \sqrt{d} is even, then $x^{2}-d y^{2}=1$ has $\left(x_{n}, y_{n}\right)=$ ($p_{n m-1}, q_{n m-1}$) as all its positive solutions, but $x^{2}-d y^{2}=-1$ has no integer solution. If m is odd, then $x^{2}-d y^{2}=1$ has $\left(p_{j m-1}, y_{j m-1}\right)$ with j even as all its positive solutions and $x^{2}-d y^{2}=-1$ has $\left(p_{j m-1}, q_{j m-1}\right)$ with j odd as all its positive solutions.

Example 1. Prove that there are infinitely many triples of consecutive integers each of which is a sum of two squares.

Solution. The first such triple is $8=2^{2}+2^{2}, 9=3^{2}+0^{2}, 10=3^{2}+1^{2}$, which suggests we consider triples $x^{2}-1, x^{2}, x^{2}+1$. Since $x^{2}-2 y^{2}=1$ has infinitely
many positive solutions (x, y), we see that $x^{2}-1=y^{2}+y^{2}, x^{2}=x^{2}+0^{2}$ and $x^{2}+1$ satisfy the requirement and there are infinitely many such triples.

Example 2. Find all triangles whoses sides are consecutive integers and areas are also integers.
Solution. Let the sides be $z-1, z, z+1$. Then the semiperimeter $s=\frac{3 z}{2}$ and the area is $A=\frac{z \sqrt{3\left(z^{2}-4\right)}}{4}$. If A is an integer, then z cannot be odd, say
$z=2 x$, and $z^{2}-4=3 w^{2}$. So $4 x^{2}-4=3 w^{2}$, which implies w is even, say $z=2 x$, and $z^{2}-4=3 w^{2}$. So $4 x^{2}-4=3 w^{2}$, which implies w is even, say $w=2 y$. Then $x^{2}-3 y^{2}=1$, which has $\left(x_{1}, y_{1}\right)=(2,1)$ as the least positive solution. So all positive solutions are $\left(x_{n}, y_{n}\right)$, where $x_{n}+y_{n} \sqrt{3}=(2+\sqrt{3})^{n}$. Now $x_{n}-y_{n} \sqrt{3}=(2-\sqrt{3})^{n}$. Hence,

$$
x_{n}=\frac{(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}}{2} \quad \text { and } \quad y_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{2 \sqrt{3}}
$$

The sides of the triangles are $2 x_{n}-1,2 x_{n}, 2 x_{n}+1$ and the areas are $A=3 x_{n} y_{n}$.

Example 3. Find all positive integers k, m such that $k<m$ and

$$
1+2+\cdots+k=(k+1)+(k+2)+\cdots+m
$$

Solution. Adding $1+2+\cdots+k$ to both sides, we get $2 k(k+1)=m(m+1)$, which can be rewritten as $(2 m+1)^{2}-2(2 k+1)^{2}=-1$. Now the equation $x^{2}-2 y^{2}=-1$ has $(1,1)$ as its least positive solution. So its positive solutions are pairs $\left(x_{n}, y_{n}\right)$, where $x_{n}+y_{n} \sqrt{2}=(1+\sqrt{2})^{2 n-1}$. Then
$x_{n}=\frac{(1+\sqrt{2})^{2 n-1}+(1-\sqrt{2})^{2 n-1}}{2}$ and $y_{n}=\frac{(1+\sqrt{2})^{2 n-1}-(1-\sqrt{2})^{2 n-1}}{2 \sqrt{2}}$.
Since $x^{2}-2 y^{2}=-1$ implies x is odd, so x is of the form $2 m+1$. Then $y^{2}=2 m^{2}+2 m+1$ implies y is odd, so y is of the form $2 k+1$. Then $(k, m)=$ $\left(\frac{y_{n}-1}{2}, \frac{x_{n}-1}{2}\right)$ with $n=2,3,4, \ldots$ are all the solutions.

Example 4. Prove that there are infinitely many positive integers n such that $n^{2}+1$ divides $n!$.

Solution. The equation $x^{2}-5 y^{2}=-1$ has $(2,1)$ as the least positive solution. So it has infinitely many positive solutions. Consider those solutions with $y>5$. Then $5<y<2 y \leq x$ as $4 y^{2} \leq 5 y^{2}-1=x^{2}$. So $2\left(x^{2}+1\right)=5 \cdot y \cdot 2 y$ divides $x!$, which is more than we want.

Example 5. For the sequence $a_{n}=\left[\sqrt{n^{2}+(n+1)^{2}}\right]$, prove that there are infinitely many n 's such that $a_{n}-a_{n-1}>1$ and $a_{n+1}-a_{n}=1$.

Solution. First consider the case $n^{2}+(n+1)^{2}=y^{2}$, which can be rewritten as $(2 n+1)^{2}-2 y^{2}=-1$. As in example 3 above, $x^{2}-2 y^{2}=-1$ has infinitely many positive solutions and each x is odd, say $x=2 n+1$ for some n. For these n 's, $a_{n}=y$ and $a_{n-1}=\left[\sqrt{(n-1)^{2}+n^{2}}\right]=\left[\sqrt{y^{2}-4 n}\right]$. The equation $y^{2}=n^{2}+(n+1)^{2}$ implies $n>2$ and $a_{n-1} \leq \sqrt{y^{2}-4 n}<y-1=a_{n}-1$. So $a_{n}-a_{n-1}>1$ for these n 's.

Also, for these n 's, $a_{n+1}=\left[\sqrt{(n+1)^{2}+(n+2)^{2}}\right]=\left[\sqrt{y^{2}+4 n+4}\right]$. As $n<y<2 n+1$, we easily get $y+1<\sqrt{y^{2}+4 n+4}<y+2$. So $a_{n+1}-a_{n}=$ $(y+1)-y=1$.

Example 6. (American Math Monthly E2606, proposed by R. S. Luthar) Show that there are infinitely many integers n such that $2 n+1$ and $3 n+1$ are perfect squares, and that such n must be multiples of 40 .

Solution. Consider $2 n+1=u^{2}$ and $3 n+1=v^{2}$. On one hand, $u^{2}+v^{2} \equiv$ $2(\bmod 5)$ implies $u^{2}, v^{2} \equiv 1(\bmod 5)$, which means n is a multiple of 5 .

On the other hand, we have $3 u^{2}-2 v^{2}=1$. Setting $u=x+2 y$ and $v=x+3 y$, the equation becomes $x^{2}-6 y^{2}=1$. It has infinitely many positive solutions. Since $3 u^{2}-2 v^{2}=1, u$ is odd, say $u=2 k+1$. Then $n=2 k^{2}+2 k$ is even. Since $3 n+1=v^{2}$, so v is odd, say $v=4 m \pm 1$. Then $3 n=16 m^{2} \pm 8 m$, which implies n is also a multiple of 8 .

Example 7. Prove that the only positive integral solution of $5^{a}-3^{b}=2$ is $a=b=1$.

Solution. Clearly, if a or b is 1 , then the other one is 1 , too. Suppose (a, b) is a solution with both $a, b>1$. Considering $(\bmod 4)$, we have $1-(-1)^{b} \equiv 2(\bmod 4)$, which implies b is odd. Considering $(\bmod 3)$, we have $(-1)^{a} \equiv 2(\bmod 3)$, which implies a is odd.

Setting $x=3^{b}+1$ and $y=3^{(b-1) / 2} 5^{(a-1) / 2}$, we get $15 y^{2}=3^{b} 5^{a}=3^{b}\left(3^{b}+\right.$ 2) $=\left(3^{b}+1\right)^{2}-1=x^{2}-1$. So (x, y) is a positive solution of $x^{2}-15 y^{2}=1$. The least positive solution is $(4,1)$. Then $(x, y)=\left(x_{n}, y_{n}\right)$ for some positive integer n, where $x_{n}+y_{n} \sqrt{15}=(4+\sqrt{15})^{n}$. After examinining the first few y_{n} 's, we observe that $y_{3 k}$ are the only terms that are divisible by 3 . However, they also seem to be divisible by 7 , hence cannot be of the form $3^{c} 5^{d}$.

To confirm this, we use the recurrence relations on y_{n}. Since $y_{1}=1, y_{2}=8$ and $y_{n+2}=8 y_{n+1}-y_{n}$, taking $y_{n}(\bmod 3)$, we get the sequence $1,2,0,1,2,0, \ldots$ and taking $y_{n}(\bmod 7)$, we get $1,1,0,-1,-1,0,1,1,0,-1,-1,0, \ldots$.

Therefore, no $y=y_{n}$ is of the form $3^{c} 5^{d}$ and $a, b>1$ cannot be solution to $5^{a}-3^{b}=2$.

Example 8. Show that the equation $a^{2}+b^{3}=c^{4}$ has infinitely many solutions.
Solution. We will use the identity $1^{3}+2^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$, which is a standard exercise of mathematical induction. From the identity, we get $\left(\frac{(n-1) n}{2}\right)^{2}+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for $n>1$. All we need to do now is to show there are infinitely many positive integers n such that $n(n+1) / 2=k^{2}$ for some positive integers k. Then $(a, b, c)=((n-1) n / 2, n, k)$ solves the problem.

Now $n(n+1) / 2=k^{2}$ can be rewritten as $(2 n+1)^{2}-2(2 k)^{2}=1$. We know $x^{2}-2 y^{2}=1$ has infinitely many positive solutions. For any such (x, y), clearly x is odd, say $x=2 m+1$. Then $y^{2}=2 m^{2}+2 m$ implies y is even. So any such (x, y) is of the form $(2 n+1,2 k)$. Therefore, there are infinitely many such n.

For a fixed nonzero integer N, as the case $N=-1$ shows, the generalized equation $x^{2}-d y^{2}=N$ may not have a solution. If it has a least positive solution (x_{1}, y_{1}), then $x^{2}-d y^{2}=N$ has infinitely many positive solutions given by $\left(x_{n}, y_{n}\right)$, where

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)(a+b \sqrt{d})^{n-1}
$$

and (a, b) is the least positive solution of $x^{2}-d y^{2}=1$. However, in general these do not give all positive solutions of $x^{2}-d y^{2}=N$ as the following example will show.

Example 9. Consider the equation $x^{2}-23 y^{2}=-7$. It has $\left(x_{1}, y_{1}\right)=(4,1)$ as the least positive solution. The next two solutions are $(19,4)$ and $(211,44)$. Now the least positive solution of $x^{2}-23 y^{2}=1$ is $(a, b)=(24,5)$. Since $(4+\sqrt{23})(24+5 \sqrt{23})=211+44 \sqrt{23}$, the solution $(19,4)$ is skipped by the formula above.

In case $x^{2}-d y^{2}=N$ has positive solutions, how do we get them all? A solution (x, y) of $x^{2}-d y^{2}=N$ is called primitive if x and y (and N) are relatively prime. For $0 \leq s<|N|$, we say the solution belong to class C_{s} if $x \equiv s y(\bmod |N|)$. As x, y are relatively prime to N, so is s. Hence, there are at most $\phi(|N|)$ classes of primitive solutions, where $\phi(k)$ is Euler's ϕ-function denoting the number of positive integers $m \leq k$ that are relatively prime to k. Also, for such $s,\left(s^{2}-d\right) y^{2} \equiv x^{2}-d y^{2} \equiv 0(\bmod |N|)$ and y, N relatively prime imply $s^{2} \equiv d(\bmod |N|)$.

Theorem. Let $\left(a_{1}, b_{1}\right)$ be a C_{s} primitive solutions of $x^{2}-d y^{2}=N$. A pair $\left(a_{2}, b_{2}\right)$ is also a C_{s} primitive solution of $x^{2}-d y^{2}=N$ if and only if $a_{2}+b_{2} \sqrt{d}=$ $\left(a_{1}+b_{1} \sqrt{d}\right)(u+v \sqrt{d})$ for some solution (u, v) of $x^{2}-d y^{2}=1$.

Proof. If $\left(a_{2}, b_{2}\right)$ is C_{s} primitive, define $u+v \sqrt{d}=\left(a_{2}+b_{2} \sqrt{d}\right) /\left(a_{1}+b_{1} \sqrt{d}\right)$. Then $u=\left(a_{1} a_{2}-d b_{1} b_{2}\right) / N$ and $v=\left(a_{1} b_{2}-b_{1} a_{2}\right) / N$. Also, $u-v \sqrt{d}=$ $\left(a_{2}-b_{2} \sqrt{d}\right) /\left(a_{1}-b_{1} \sqrt{d}\right)$. Multiplying these two equations, we get $u^{2}-d v^{2}=$ $N / N=1$.

To see u, v are integers, note $a_{1} a_{2}-d b_{1} b_{2} \equiv\left(s^{2}-d\right) b_{1} b_{2} \equiv 0(\bmod |N|)$, which implies u is an integer. Since $a_{1} b_{2}-b_{1} a_{2} \equiv s b_{1} b_{2}-b_{1} s b_{2}=0(\bmod |N|)$, v is also an integer.

For the converse, multiplying the equation with its conjugate shows $\left(a_{2}, b_{2}\right)$ solves $x^{2}-d y^{2}=N$. From $a_{2}=u a_{1}+d v b_{1}$ and $b_{2}=u b_{1}+v a_{1}$, we get $a_{1}=u a_{2}-d v b_{2}$ and $b_{1}=u b_{2}-v a_{2}$. Hence, common divisors of a_{2}, b_{2} are also common divisors of a_{1}, b_{1}. So a_{2}, b_{2} are relatively prime. Finally, $a_{2}-s b_{2} \equiv$ $\left(u s b_{1}+d v b_{1}\right)-s\left(u b_{1}+v s b_{1}\right)=\left(d-s^{2}\right) v b_{1} \equiv 0(\bmod |N|)$ concludes the proof.

Thus, all primitive solutions of $x^{2}-d y^{2}=N$ can be obtained by finding a solution (if any) in each class, then multiply them by solutions of $x^{2}-d y^{2}=1$. For the nonprimitive solutions, we can factor the common divisors of a and b to reduce N.

Example 10. (1995 IMO proposal by USA leader T. Andreescu) Find the smallest positive integer n such that $19 n+1$ and $95 n+1$ are both integer squares.

Solution. Let $95 n+1=x^{2}$ and $19 n+1=y^{2}$, then $x^{2}-5 y^{2}=-4$. Now $\phi(4)=2$ and $(1,1),(11,5)$ are C_{1}, C_{3} primitive solutions, respectively. As $(9,4)$ is the least positive solution of $x^{2}-5 y^{2}=1$ and $9+4 \sqrt{5}=(2+\sqrt{5})^{2}$, so the primitive positive solutions are pairs (x, y), where $x+y \sqrt{5}=(1+\sqrt{5})(2+\sqrt{5})^{2 n-2}$ or $(11+5 \sqrt{5})(2+\sqrt{5})^{2 n-2}$.

Since the common divisors of x, y divide 4 , the nonprimitive positive solutions are the cases x and y are even. This reduces to considering $u^{2}-5 v^{2}=-1$, where we take $u=x / 2$ and $v=y / 2$. The least positive solution for $u^{2}-5 v^{2}=-1$ is $(2,1)$. So $x+y \sqrt{5}=2(u+v \sqrt{5})=2(2+\sqrt{5})^{2 n-1}$.

In attempt to combine these solutions, we look at the powers of $1+\sqrt{5}$ coming from the least positive solutions $(1,1)$. The powers are $1+\sqrt{5}, 6+$ $2 \sqrt{5}, 16+8 \sqrt{5}=8(2+\sqrt{5}), 56+24 \sqrt{5}, 176+80 \sqrt{5}=16(11+5 \sqrt{5}), \ldots$. Thus, the primitive positive solutions are (x, y) with $x+y \sqrt{5}=2\left(\frac{1+\sqrt{5}}{2}\right)^{6 n-5}$ or $2\left(\frac{1+\sqrt{5}}{2}\right)^{6 n-1}$. The nonprimitive positive solutions are (x, y) with $x+y \sqrt{5}=$ $2\left(\frac{1+\sqrt{5}}{2}\right)^{6 n-3}$. So the general positive solutions are (x, y) with

$$
x+y \sqrt{5}=2\left(\frac{1+\sqrt{5}}{2}\right)^{k} \quad \text { for odd } k
$$

Then

$$
y=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right)=F_{k},
$$

where F_{k} is the k-th term of the famous Fibonacci sequence. Finally, $y^{2} \equiv$ $1(\bmod 19)$ and k should be odd. The smallest such $y=F_{17}=1597$, which leads to $n=\left(F_{17}^{2}-1\right) / 19=134232$.

Comments: For the readers not familiar with the Fibonacci sequence, it is defined by $F_{1}=1, F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for $n>1$. By math induction, we can check that they satisfy Binet's formula $F_{n}=\left(r_{1}^{n}-r_{2}^{n}\right) / \sqrt{5}$, where $r_{1}=(1+\sqrt{5}) / 2$ and $r_{2}=(1-\sqrt{5}) / 2$ are the roots of the characteristic equation $x^{2}=x+1$. (Check cases $n=1,2$ and in the induction step, just use $r_{i}^{n+1}=r_{i}^{n}+r_{i}^{n-1}$.)

17. Mathematical Games (Part I)

An invariant is a quantity that does not change. A monovariant is a quantity that keeps on increasing or keeps on decreasing. In some mathematical games, winning often comes from understanding the invariants or the monovariants that are controlling the games.

Examples. (1) (1974 Kiev Math Olympiad) Numbers 1, 2, 3, ..., 1974 are written on a board. You are allowed to replace any two of these numbers by one number, which is either the sum or the difference of these numbers. Show that after 1973 times of performing this operation, the only number left on the board cannot be 0

Solution. There are 987 odd numbers on the board in the beginning. Every time the operation is performed, the number of odd numbers left either stays the same (when the numbers taken out are not both odd) or decreases by two (when the numbers taken out are both odd). So the number of odd numbers left on the board after each operation is always odd. So when there is one number left, it must be odd, hence it cannot be 0 .
(2) In an 8×8 board, there are 32 white pieces and 32 black pieces, one piece in each square. If a player can change all the white pieces to black and all the black pieces to white in any row or column in a single move, then is it possible that after finitely many moves, there will be exactly one black piece left on the board?

Solution. No. If there are exactly k black pieces in a row or column before a move is made to that row or column, then after the move, the number of black pieces in the row or column will become $8-k$, a change of $(8-k)-k=8-2 k$ black pieces to the board. Since $8-2 k$ is even, the parity of the number of black pieces stays the same before and after the move. Since at the start, there are 32 black pieces, there cannot be 1 black piece left at any time.
(3) Four x 's and five o 's are written around the circle in an arbitrary order. If two consecutive symbols are the same, then insert a new x between them, otherwise insert a new o between them. Remove the old x 's and o 's. Keep on repeating this operation. Is it possible to get nine o 's?

Solution. If we let $x=1$ and $o=-1$, then note that consecutive symbols are replaced by their product. If we consider the product P of all nine values before and after each operation, we will see that the new P is the square of the old P. Hence, P will always equal 1 after an operation. So nine o 's yielding $P=-1$ can never happen.
(4) There are three piles of stones numbering 19,8 and 9 , respectively. You are allowed to choose two piles and transfer one stone from each of these two piles to the third piles. After several of these operations, is it possible that each of the three piles has 12 stones?

Solution. No. Let the number of stones in the three piles be a, b and c, respectively. Consider $(\bmod 3)$ of these numbers. In the beginning, they are $1,2,0$. After one operation, they become $0,1,2$ no matter which two piles have stones transfer to the third pile. So the remainders are always $0,1,2$ in some order. Therefore, all piles having 12 stones are impossible.
(5) Two boys play the following game with two piles of candies. In the first pile, there are 12 candies and in the second pile, there are 13 candies. Each boy takes turn to make a move consisting of eating two candies from one of the piles or transfering a candy from the first pile to the second. The boy who cannot make a move loses. Show that the boy who played second cannot lose. Can he win?

Solution. Consider S to be the number of candies in the second pile minus the first. Initially, $S=13-12=1$. After each move, S increases or decreases by 2 . So $S(\bmod 4)$ has the pattern $1,3,1,3, \ldots$. Every time after the boy who played first made a move, $S(\bmod 4)$ would always be 3 . Now a boy loses if and only if there are no candies left in the first pile and one candy left in the second pile, then $S=1-0=1$. So the boy who played second can always make a move, hence cannot lose.

Since either the total number of candies decreases or the number of candies in the first pile decreases, so eventually the game must stop, so the boy who played second must win.
(6) Each member of a club has at most three enemies in the club. (Here enemies are mutual.) Show that the members can be divided into two groups so that each member in each group has at most one enemy in the group.

Solution. In the beginning, randomly divide the members into two groups. Consider the number S of pairs of enemies in the same group. If a member has at least two enemies in the same group, then the member has at most one enemy in the other group. Transferring the member to the other group, we will decrease S by at least one. Since S is a nonnegative integer, it cannot be decreased forever. So after finitely many transfers, each member can have at most one enemy in the same group.

Remarks. This method of proving is known as the method of infinite descent. It showed that you cannot always decrease a quantity when it can only have finitely many possible values.
(7) (1961 All-Russian Math Olympiad) Real numbers are written in an $m \times n$ table. It is permissible to reverse the signs of all the numbers in any row or column. Prove that after a number of these operations, we can make the sum of the numbers along each line (row or column) nonnegative.

Solution. Let S be the sum of all the $m n$ numbers in the table. Note that after an operation, each number stays the name or turns to its negative. Hence there are at most $2^{m n}$ tables. So S can only have finitely many possible values. To make the sum of the numbers in each line nonnegative, just look for a line whose numbers have a negative sum. If no such line exists, then we are done. Otherwise, reverse the sign of all the numbers in the line. Then S increases. Since S has finitely many possible values, S can increase finitely many times. So eventually the sum of the numbers in every line must be nonnegative.
(8) Given $2 n$ points in the plane with no three of them collinear. Show that they can be divided into n pairs such that the n segments joining each pair do not intersect.

Solution. In the beginning randomly pair the points and join the segments. Let S be the sum of the lengths of the segments. (Note that since there are finitely many ways of connecting these $2 n$ points by n segments, there are finitely many possible
values of S.) If two segments $A B$ and $C D$ intersect at O, then replace pairs $A B$ and $C D$ by $A C$ and $B D$. Since $A B+C D=A O+O B+C O+O D>A C+B D$ by the triangle inequality, whenever there is an intersection, doing this replacement will always decrease S. Since there are only finitely many possible values for S, so eventually there will not be any intersection.

Exercises

1. Every number from 1 to $1,000,000$ is replaced by the sum of its digits. The resulting numbers are repeatedly subjected to the same operation until all the numbers have one digit. Will the number of ones in the end be greater or less than the number of twos? (Hint: Show that the sum of digits of n is congruent to $n(\bmod 9)$.
2. (1989 Hungarian Math Olympiad) In the vertices of a square, we placed some matches. Intially there is one match at one vertex and no match at the other three vertices. In one move, it is allowed to remove any number of matches at one vertex and placed at the two adjacent vertices a total of twice the number of matches removed. After finitely many moves, can the number of matches be $1,9,8,9$ counting clockwise or counterclockwise at the four vertices?
*3. In each square of an 8×8 table an integer is written. We can choose an arbitrary 3×3 or 4×4 subtable and increase all the numbers in it by one. Is it possible to obtain numbers divisible by three in all squares of the 8×8 table after finitely many such operations? (Hint: Mark some squares so that every 3×3 or 4×4 subtable will cover a multiple of 3 marked squares.)
*4. The numbers $1,2, \ldots, n$ are arranged in some order on a line. We can exchange any two adjacent numbers. Prove that an odd number of such exchanges produces an arrangement necessarily different from the initial one.
3. Several numbers are written around a circle. If four consecutive numbers a, b, c, d satisfy $(a-d)(b-c)>0$, we can exchange b and c. Prove that we can perform this operation only finitely many times.
4. Each face of a cube has a number written on it, and not all the numbers are the same. Each of the numbers is replaced by the arithmetic mean of the numbers
written on the four adjacent faces. Is it possible to obtain the initial numbers on the faces again after at least one such operations?
5. Finitely many squares of an infinite square grid drawn on white paper are painted black. At each moment in time $t=1,2,3, \ldots$ each square takes the color of the majority of the following squares: the square itself and its top and right-hand neighbors. Prove that some time later there will be no black square at all.
6. In the plane, there are n points, no three collinear, and n lines, no two are parallel. Prove that we can drop a perpendicular from each point to one of the lines, one perpendicular per line, such that no two perpendiculars intersect.

18. Mathematical Games (Part II)

There are many mathematical games involving strategies to win or to defend. These games may involve number theoretical properties or geometrical decompositions or combinatorial reasonings. Some games may go on forever, while some games come to a stop eventually. A winning strategy is a scheme that allows the player to make moves to win the game no matter how the opponent plays. A defensive strategy cuts off the opponent's routes to winning. The following examples illustrate some standard techniques.

Examples. (1) There is a table with a square top. Two players take turn putting a dollar coin on the table. The player who cannot do so loses the game. Show that the first player can always win.

Solution. The first player puts a coin at the center. If the second player can make a move, the first player can put a coin at the position symmetrically opposite the position where the second player placed his coin with respect to the center of the table. Since the area of the available space is decreasing, the game must end eventually. The first player will win.
(2) (Bachet's Game) Initially, there are n checkers on the table, where $n>0$. Two persons take turn to remove at least 1 and at most k checkers each time from the table. The last person who can remove any checker wins the game. For what values of n will the first person have a winning strategy? For what values of n will the second person have a winning strategy?

Solution. By testing simple cases of n, we can easily see that if n is not a multiple of $k+1$ in the beginning, then the first person has a winning strategy, otherwise the second person has a winning strategy.

To prove this, let n be the numbers of checkers on the table. If $n=(k+1) q+r$ with $0<r<k+1$, then the first person can win by removing r checkers each time. (Note $r>0$ every time at the first person's turn since in the beginning it is so and the second person starts with a multiple of $k+1$ checkers each time and can only remove 1 to k checkers.)

However, if n is a multiple of $k+1$ in the beginning, then no matter how many checkers the first person takes, the second person can now win by removing r checkers every time
(3) (Game of Nim) There are 3 piles of checkers on the table. The first, second and third piles have x, y and z checkers respectively in the beginning, where $x, y, z>0$. Two persons take turn choosing one of the three piles and removing at least one to all checkers in that pile each time from the table. The last person who can remove any checker wins the game. Who has a winning strategy?

Solution. In base 2 representations, let

$$
x=\left(a_{1} a_{2} \cdots a_{n}\right)_{2}, y=\left(b_{1} b_{2} \cdots b_{n}\right)_{2}, z=\left(c_{1} c_{2} \cdots c_{n}\right)_{2}, N=\left(d_{1} d_{2} \cdots d_{n}\right)_{2}
$$

where $d_{i} \equiv a_{i}+b_{i}+c_{i}(\bmod 2)$. (Here we may have to add zeros on the left of the base 2 representations of x, y, z to ensure they have to the same number of digits.) The first person has a winning strategy if and only if N is not 0 , i.e. not all d_{i} 's are 0.

To see this, suppose N is not 0 . The winning strategy is to remove checkers so N becomes 0 . When the d_{i} 's are not all zeros, look at the smallest i such that $d_{i}=1$, then one of a_{i}, b_{i}, c_{i} equals 1 , say $a_{i}=1$. Then remove checkers from the first pile so that x has $\left(e_{i} e_{i+1} \cdots e_{n}\right)_{2}$ checkers left, where

$$
e_{j}= \begin{cases}a_{j} & \text { if } d_{j}=0 \\ 1-a_{j} & \text { if } d_{j}=1\end{cases}
$$

(For example, if $x=(1000)_{2}$ and $N=(1001)_{2}$, then change x to (0001) 2.) Note $e_{i}=0$ after the move so that the new x is less than the old x. Also, after the move, N becomes 0 as all the $d_{j}=1$ before the move will become 0 by the definition of e_{j}. So the first person can always make a move. The second person will always have $N=0$ at his turn and making any move will result in at least one d_{i} not 0 , i.e. $N \neq 0$. As the number of checkers is decreasing, eventually the second person cannot make a move and will lose the game.
(4) Twenty girls are sitting around a table and are playing a game with n cards. Initially, one girl holds all the cards. In each turn, if at least one girl holds at least two cards, one of these girls must pass a card to each of her two neighbors. The game ends if and only if each girl is holding at most one card.
(a) Prove that if $n \geq 20$, then the game cannot end.
(b) Prove that if $n<20$, then the game must end eventually.

Solution. (a) If $n>20$, then by pigeonhole principle, there is at least one girl holding at least two cards every moment. So the game cannot end.

If $n=20$, then label the girls $G_{1}, G_{2}, \ldots, G_{20}$ in the clockwise direction and let G_{1} be the girl holding all the cards initially. Define the current value of a card to be i if it is being held by G_{i}. Let S be the total value of the cards. Initially, $S=20$.

Consider before and after G_{i} passes a card to each of her neighbors. If $i=1$ then S increases by $-1-1+2+20=20$. If $1<i<20$, then S does not change because $-i-i+(i-1)+(i+1)=0$. If $i=20$, then S decreases by 20 because $-20-20+1+19=-20$. So before and after moves, S is always a multiple of 20. Assume the game will end. Then each girl holds a card and $S=1+2+\cdots+20=210$, which is not a multiple of 20 , a contradiction. So the game cannot end.
(b) To see the game must end if $n<20$, let's have the two girls sign the card when it is the first time one of them passes card to the other. Whenever one girl passes a card to her neighbor, let's require the girl to use the signed card between the pair if available. So a signed card will be stuck between the pair who signed it. If $n<20$, there will be a pair of neighbors who never signed any card, hence never exchange any card.

If the game can go on forever, record the number of times each girl passed cards. Since the game can go on forever, not every girl passed card finitely many time. Also, since there are $n<20$ cards and 20 pairs of girls sitting next to each other, there is a pair of girls who do not sign any card, hence have no exchange. Moving clockwise one girl at a time from this pair, eventually there is a pair G_{i} and G_{i+1} such that G_{i} passed cards finitely many times and G_{i+1} passed cards infinitely many times. This is clearly impossible since G_{i} will eventually stopped passing cards and would keep on receiving cards from G_{i+1}.
(5) (1996 Irish Math Olympiad) On a 5×9 rectangular chessboard, the following game is played. Initially, a number of discs are randomly placed on some of the squares, no square containing more than one disc. A turn consists of moving all of the discs subject to the following rules:
(i) each disc may be moved one square up, down, left or right;
(ii) if a disc moves up or down on one turn, it must move left or right on the next turn, and vice versa;
(iii) at the end of each turn, no square can contain two or more discs.

The game stops if it becomes impossible to complete another turn. Prove that if initially 33 discs are placed on the board, the game must eventually stop. Prove also that it is possible to place 32 discs on the board so that the game can continue forever.

Solution. If 32 discs are placed in the lower right 4×8 rectangle, they can all move up, left, down, right, repeatedly. To show that a game with 33 discs must stop eventually, label the board as shown below:

1	2	1	2	1	2	1	2	1
2	3	2	3	2	3	2	3	2
1	2	1	2	1	2	1	2	1
2	3	2	3	2	3	2	3	2
1	2	1	2	1	2	1	2	1

Note that there are eight 3 's. A disc on 1 goes to a 3 after two moves, a disc on 2 goes to a 1 or 3 immediately, and a disc on 3 goes to a 2 immediately. Thus if k discs start on 1 and $k>8$, the game stops because there are not enough 3's to accommodate these discs. Thus we assume $k \leq 8$, in which case there are at most sixteen discs with squares on 1 's or 3 's at the start, and so at least seventeen on 2's. Of these seventeen, at most eight can move onto 3's after one move, so at least nine end up on 1's. These discs will not all be able to move onto 3's two moves later. So the game will stop.
(6) (1995 Israeli Math Olympiad) Two players play a game on an infinite board that consists of 1×1 squares. Player I chooses a square and marks it with an O . Then, player II chooses another square and marks it with an X. They play until one of the players marks a row or a column of 5 consecutive squares, and this player wins the game. If no player can achieve this, the game is a tie. Show that player

II can prevent player I from winning.

	\vdots								
\ldots	1	2	3	3	1	2	3	3	\ldots
\ldots	1	2	4	4	1	2	4	4	\ldots
\ldots	3	3	1	2	3	3	1	2	\ldots
\ldots	4	4	1	2	4	4	1	2	\ldots
\ldots	1	2	3	3	1	2	3	3	\ldots
\ldots	1	2	4	4	1	2	4	4	\ldots
\ldots	3	3	1	2	3	3	1	2	\ldots
\ldots	4	4	1	2	4	4	1	2	\ldots
	\vdots								

Solution. Label the squares as shown above. Note that each number occurs in a pair. The 1's and the 2's are in vertical pairs and the 3's and the 4's are in horizontal pairs. Whenever player I marks a square, player II will mark the other square in the pair. Since any 5 consecutive vertical or horizontal squares must contain a pair of the same numbers, so player I cannot win.
(7) (1999 USAMO) The Y2K Game is played on a 1×2000 grid as follow. Two players in turn write either an S or an O in an empty square. The first player who produces three consecutive boxes that spell SOS wins. If all boxes are filled without producing SOS then the game is a draw. Prove that the second player has a winning strategy.

Solution. Call an empty square bad if playing an S or an O in that square will let the next player gets SOS in the next move.

Key Observation: A square is bad if and only if it is in a block of 4 consecutive squares of the form $\mathrm{S}^{* *} \mathrm{~S}$, where * denotes an empty square.
(Proof. Clearly, the empty squares in $\mathrm{S**}$ S are bad. Conversely, if a square is bad, then playing an O there will allow an SOS in the next move by the other player. Thus the bad square must have an S on one side and an empty square on the other side. Playing an S there will also lose the game in the next move, which means there must be another S on the other side of the empty square.)

Now the second player's winning strategy is as follow: after the first player made a move, play an S at least 4 squares away from either end of the grid and from the first player's first move. On the second move, the second player will play an S three squares away from the second player's first move so that the squares in between are empty. (If the second move of the first player is next to or one square away from the first move of the second player, then the second player will place the second S on the other side.) After the second move of the second player, there are 2 bad squares on the board. So eventually somebody will fill these squares and the game will not be a draw.

On any subsequent move, when the second player plays, there will be an odd number of empty squares and an even number of bad squares, so the second player can always play a square that is not bad.
(8) (1993 IMO) On an infinite chessboard, a game is played as follow. At the start, n^{2} pieces are arranged on the chessboard in an $n \times n$ block of adjoining squares, one piece in each square. A move in the game is a jump in a horizontal or vertical direction over an adjacent occupied square to an unoccupied square immediately beyond. The piece that has been jumped over is then removed. Find those values of n for which the game can end with only one piece remaining on the board.

Solution. Consider the pieces placed at the lattice points $\mathbb{Z}^{2}=\{(x, y): x, y \in \mathbb{Z}\}$. For $k=0,1,2$, let $C_{k}=\left\{(x, y) \in \mathbb{Z}^{2}: x+y \equiv k(\bmod 3)\right\}$. Let a_{k} be the number of pieces placed at lattice points in C_{k}.

A horizontal move takes a piece at (x, y) to an unoccupied point $(x \pm 2, y)$ jumping over a piece at $(x \pm 1, y)$. After the move, each a_{k} goes up or down by 1 . So each a_{k} changes parity. If n is divisible by 3 , then $a_{0}=a_{1}=a_{2}=n^{2} / 3$ in the beginning. Hence at all time, the a_{k} 's are of the same parity. So the game cannot end with one piece left causing two a_{k} 's 0 and the remaining 1 .

If n is not divisible by 3 , then the game can end. We show this by induction. For $n=1$ or 2 , this is easily seen. For $n \geq 4$, we introduce an L-trick to reduce the $n \times n$ square pieces to $(n-3) \times(n-3)$ square pieces.

Consider pieces at $(0,0),(0,1),(0,2),(1,0)$. The moves $(1,0) \mapsto(-1,0)$, $(0,2) \mapsto(0,0),(-1,0) \mapsto(1,0)$ remove 3 consecutive pieces in a column and
leave the fourth piece at its original lattice point. We can apply this trick repeatedly to the $3 \times(n-3)$ pieces on the bottom left part of the $n \times n$ square from left to right, then the $(n-3) \times 3$ pieces on the right side from bottom to top and finally the 3×3 pieces on top right part from right to left. This will leave $(n-3) \times(n-3)$ pieces. Therefore, the $n \times n$ case follows from the $(n-3) \times(n-3)$ case, completing the induction.

Exercises

1. In Bachet's game, if the rule changes to each person can remove 1 or 2 or 4 or 8 or 16 or ... (a power of 2) checkers each time, who can win? (Of course, the answer depends on the value of n.)
2. In Bachet's game, if the rule changes to each person can remove one or a prime number of checkers each time, who can win?
3. Initially there is a chip at the corner of an $n \times n$ board. A and B alternatively move the chip one square to the left, right, up or down. They may not move it to a square already visited. The loser is the one who cannot move.

Who wins if n is even? Who wins if n is odd? Who wins if the chip starts on a square, which is a neighbor to a corner square?
4. Start with two piles of p and q chips, respectively. A and B move alternately. A move consists in removing any pile and splitting the other piles into two piles (of not necessarily equal number of chips). The loser is the one who cannot make move any more. Who wins? (Hint: Depends on the parities of p and q.)
5. A and B alternately color squares of a 4×4 chessboard. The loser is the one who first completes a colored 2×2 subsquare. Who can force a win? Can B force a draw?
6. A and B alternately move a knight on a 1994×1994 chessboard. A makes only horizontal moves $(x, y) \mapsto(x \pm 2, y \pm 1), B$ makes only vertical moves $(x, y) \mapsto(x \pm 1, y \pm 2) . A$ starts by choosing a square and making a move. Visiting a square for a second time is not permitted. The loser is the one who cannot move. Prove that A has a winning strategy.

