Time Series Models on High Frequency Trading Data of SHA:600519

MAFS 5130

QUANTITATIVE ANALYSIS OF FINANCIAL TIME SERIES

EDITED BY

LU YIFAN
No.20305030

HUANG JINGYING
No.20294918

JIN GAOZHENG
No.20295467

WANG YILEI
No.20305250

GAO XIANG
No.09813967

TU JIA
No.09593359

APRIL 2016
Contents

1 Introduction

1.1 Introduction to High Frequency Trading ... 1
1.2 Introduction to High Frequency Trading Data Analysis 1
1.3 Bid Ask Price ... 2
1.4 Role of Market Maker ... 2
1.5 Motivation of the Project .. 4

2 Time Series Analysis on Price

2.1 Data Process .. 6
 2.1.1 Dickey-Fuller Unit Root Test .. 6
 2.1.2 Ljung–Box Test ... 8
2.2 ARIMA Model .. 9
2.3 ARIMA-GARCH Model .. 13
 2.3.1 Checking ARCH Effect .. 13
 2.3.2 Model Fitting and Checking ... 13
2.4 Conclusion .. 13

3 Time Series Analysis on Time Duration .. 14

3.1 Long Memory Phenomenon of Time Duration 14
3.2 ARFIMA Model and Regression .. 15
3.3 ARFIMA Model Fitting and Checking .. 16
 3.3.1 Profile-Least Squares Method ... 16
 3.3.2 Using AFIMA Package in R to Calculate d 18
 3.3.3 Comments on the Two Methods .. 19
3.4 ARIMA GARCH Model on Residuals e_t ... 20
3.5 Forecast .. 21

4 Conclusion .. 22

Appendices .. 24

Appendix .A Data ... 24
Appendix .B R Codes in Section 2 .. 27
Appendix .C R Codes in Section 3 .. 32
1 Introduction

1.1 Introduction to High Frequency Trading

High-frequency trading (HFT) is a type of algorithmic trading characterized by high speeds, high turnover rates, and high order-to-trade ratios that leverages high-frequency financial data and electronic trading tools. While there is no single definition of HFT, among its key attributes are highly sophisticated algorithms, specialized order types, co-location, very short-term investment horizons, and high cancellation rates of orders. HFT can be viewed as a primary form of algorithmic trading in finance. Specifically, it is the use of sophisticated technological tools and computer algorithms to rapidly trade securities. HFT uses proprietary trading strategies carried out by computers to move in and out of positions in seconds or fractions of a second. It is estimated that as of 2009, HFT accounted for 60-73% of all US equity trading volume, with that number falling to approximately 50% in 2012. High-frequency traders move in and out of short-term positions at high volumes and high speeds aiming to capture sometimes a fraction of a cent in profit on every trade. HFT firms do not consume significant amounts of capital, accumulate positions or hold their portfolios overnight. As a result, HFT has a potential Sharpe ratio (a measure of reward to risk) tens of times higher than traditional buy-and-hold strategies. High-frequency traders typically compete against other HFTs, rather than long-term investors. HFT firms make up the low margins with incredibly high volumes of trades, frequently numbering in the millions.

A substantial body of research argues that HFT and electronic trading pose new types of challenges to the financial system. Algorithmic and high-frequency traders were both found to have contributed to volatility in the Flash Crash of May 6, 2010, when high-frequency liquidity providers rapidly withdrew from the market. Several European countries have proposed curtailing or banning HFT due to concerns about volatility.

1.2 Introduction to High Frequency Trading Data Analysis

In recent years, high-frequency trading is becoming more and more popular. Due to the rapid development of computing capability and storage capacity, people are able to collect and process high frequency data, resulting in a great concern for high frequency data research in the both academic and industry field. For example, Wood [1] described some historical perspective of the high frequency data research; Eric Ghysels [2] reviewed the application of some econometrics methods in the field of high frequency data; LUO Zhongzhou [3] conducted researches on application of high frequency trading in the Chinese market.
The analysis on high frequency financial data is not only important for many issues like research, trading procedures and market microstructure, but also related to many fields of studies like econometrics, finance, statistics and etc. High frequency financial data can be used to compare the effectiveness of the price discovery in different trading systems (for example, open outcry trading system in NYSE and the Nasdaq computer system) and can also be used to study the dynamic changes of trading quotes on a specific stock, see Zhan [4], etc. It will be very helpful to answer the question, such as "who is providing market liquidity", by researching high frequency financial data.

High frequency data has some unique features: various of time intervals, such as that the time interval between each trades of stocks are generally not the same; discrete values of the price, such as that the prices of financial underlying are discrete variables during the transaction; there exists daily cycle, such as that the shape of trading intensity exhibits a U-shaped curve; multiple transactions within one second and multiple transaction prices within very short time (one second). Due to these characteristics, we cannot directly apply the common low frequency data analyzing method here. Therefore, it is a brand new challenge for financial economists and statisticians to bring up solutions of analyzing high frequency data.

1.3 Bid Ask Price

Bid ask Price is a two-way price quotation that indicates the best price at which a security can be sold and bought at a given point in time. The bid price represents the maximum price that a buyer or buyers are willing to pay for a security. The ask price represents the minimum price that a seller or sellers are willing to receive for the security. A trade or transaction occurs when the buyer and seller agree on a price for the security. The difference between the bid and asked prices, or the spread, is a key indicator of the liquidity of the asset - generally speaking, the smaller the spread, the better the liquidity.

Bid one price is the highest among all bid prices and ask one price is the lowest among all ask prices. Mid-quote price is the weighted average price of bid one price and ask one price.

1.4 Role of Market Maker

According to www.sec.gov, a "market maker" is "a firm that stands ready to buy and sell a particular stock on a regular and continuous basis at a publicly quoted price. You’ll most often hear about market makers in the context of the Nasdaq or other "over the counter" (OTC) markets. Market makers that stand ready to buy and sell stocks listed on an exchange, such as the New York Stock Exchange, are called "third market makers." Many OTC stocks have more than one market-maker.

Market-makers generally must be ready to buy and sell at least 100 shares of a stock they make a
Figure 1: Bid-Ask Spread

market in. As a result, a large order from an investor may have to be filled by a number of market-makers at potentially different prices."

There can be a significant overlap between a 'market maker' and 'HFT firm'. HFT firms characterize their business as "Market making"-a set of high-frequency trading strategies that involve placing a limit order to sell (or offer) or a buy limit order (or bid) in order to earn the bid-ask spread. By doing so, market makers provide counterpart to incoming market orders. Although the role of market maker was traditionally fulfilled by specialist firms, this class of strategy is now implemented by a large range of investors, thanks to wide adoption of direct market access. As pointed out by empirical studies this renewed competition among liquidity providers causes reduced effective market spreads, and therefore reduced indirect costs for final investors." A crucial distinction is that true market makers don’t exit the market at their discretion and are committed not to, where HFT firms are under no similar commitment.

Some high-frequency trading firms use market making as their primary strategy. Automated Trading Desk, which was bought by Citigroup in July 2007, has been an active market maker, accounting for about 6% of total volume on both the NASDAQ and the New York Stock Exchange. Building up market making strategies typically involves precise modeling of the target market microstructure together with stochastic control techniques.

These strategies appear intimately related to the entry of new electronic venues. Academic study of Chi-X’s entry into the European equity market reveals that its launch coincided with a large HFT that made markets using both the incumbent market, NYSE-Euronext, and the new market, Chi-X. The study
shows that the new market provided ideal conditions for HFT market-making, low fees (i.e., rebates for quotes that led to execution) and a fast system, yet the HFT was equally active in the incumbent market to offload nonzero positions. New market entry and HFT arrival are further shown to coincide with a significant improvement in liquidity supply.

1.5 Motivation of the Project

In our report, we would like to focus on the high frequency trading data of Kweichow Moutai Co Ltd (SHA: 600519) from January 4th, 2013 to February 26th, 2014 from the market makers’ perspective. Market makers are interested in two kind of information from the high frequency trading data.

Firstly, market makers are certainly interested in how the mid-quote price would change. Admittedly, market makers are often employed by the order-driven markets to quote prices continuously for the well being of the market, and therefore, market makers do not assume the goal of making money. They always tries to adjust their quoted bids and offer prices in order to facilitate the price discovery process of an exchange. However they really do not want to lose money either. That’s why they are interested in whether the price trend is upward or downward.

Secondly, market makers are even more interested in the duration time during which the mid-quote price remains unchanged. In the theory of Market Microstructure, such duration time is called "Market Microstructure Characteristics Time", which is a "time scale" during which the price process moves from a random bid-ask bounce into a random walk process.

Although a large number of high-frequency transactions may occur within one second, the bid one and ask one price stay unchanged most of time. Market makers like this kind of situation, because they can simply apply the strategy of "buy low, sell high". During the time duration that the bid one and ask one price stay unchanged, market makers can automatically buy at bid one price and sell at ask one price, making money at the same time when they facilitate the price discovery process of an exchange.

However, if the mid-quote price tends to change, market makers have to make a decision whether to change the bid ask spread or not. Market makers can remain their bid-ask spreads, losing money due to their duties. They can either change their bid-ask spreads in order to avoid losing money. No matter what decisions market makers make, they cannot simply apply a fixed strategy. As a result, Δt_i, the duration time during which the transaction prices remain unchanged is of great importance for market makers.

In our report, assuming we are a market maker in the SHA market, we would like to build some time series models on the two important random variables P_t and Δt_i according to the high frequency data analysis. From the market maker’s point of view, we are more concerned about the model focusing on
Admittedly, the forecast value of Δt_i might be quite small but still useful. Since low-latency communication technologies at both the software level and hardware level significantly contributed the development of algorithmic trading as a trading practice. Market makers can write a program to forecast the "Market Microstructure Characteristics Time" and use it to determine the algorithmic trading strategies.
2 Time Series Analysis on Price

2.1 Data Process

We firstly plot the data of price. It can be easily observed from Figure 2 that it is not stationary, so we take the log return and modified the data.

![Figure 2: Price-Time](image)

2.1.1 Dickey-Fuller Unit Root Test

After we change the data (seen in Appendix A Data), we can see from Figure 3 that the log return series look somehow stationary. We then make the Dickey-Fuller Unit Root Test by using SAS, getting the following results in Figure 4. As all P-values are smaller than 0.05, the log return series are stationary.
Figure 3: Log Return-Time

Figure 4: Dickey-Fuller Unit Root Test on Log Return
2.1.2 Ljung–Box Test

We then check the serial correlation of log return series by using Ljung–Box Test in SAS. As we can see from Figure 5 that all P-values are smaller than 0.05, which means that we will reject H_0 and that there exists serial correlation.

Figure 5: Ljung Box Test on Log Return
2.2 ARIMA Model

We try ARIMA (2,0,1) model, ARIMA (3,0,1) model and MA (1) model based on the ACF and partial ACF in Figure 6 of the log return series. Unfortunately, under no models the residual can be modeled as white noise. Based on the results of model checking, we can not find fitting model for our data using ARIMA. The result means that ARIMA model is not a good model for the high frequency trading data. We need to build some other models to deal with the problem.

![Figure 6: ACF and PACF](image-url)
Figure 7: ARIMA(2,0,1)

Figure 8: Model Checking on ARIMA(2,0,1)
Figure 9: ARIMA(3,0,1)

Figure 10: Model Checking on ARIMA(3,0,1)
Figure 11: MA(1)

Figure 12: Model Checking on MA(1)
2.3 ARIMA-GARCH Model

As ARIMA model is not a good model, we will then try to fit an ARIMA-GARCH model to the data. The R code is appended in Appendix B.

2.3.1 Checking ARCH Effect

As there is a strong correlation in the log returns, we first consider fit an AR (1) model to the log return in order to remove the serial correlation and then do the test of ARCH effect.

According to the test result from R, \(Q(12, a_t^2) = 14794 \), with a p-value near zero. Therefore, we reject \(H_0 \) that all ACF are zero. As a result, there is ARCH effect.

2.3.2 Model Fitting and Checking

We try different kinds of ARMA GARCH models by using R, finding that the AR(1)GARCH(1,1) model has the smallest AIC and BIC.

As we can see from Table 1 that all parameters have passed the T test.

However, when we check Table 2, we find that even though \(Q(20, R^2) = 28.32919 \) with a P-value of 0.101833, all \(Q(l, R) \) have a very small P-value for all \(l = 10, 15, 20 \).

Therefore, ARMA GARCH model can only remove ARCH effect. It cannot remove serial correlation, which corresponds to the result in Chapter 2.2.

| | Estimate | Std. Error | t value | Pr(>|t|) |
|-------|----------|------------|---------|----------|
| mu | -3.199e-05 | 1.143e-05 | -2.800 | 0.00511 |
| ar1 | -3.070e-01 | 4.191e-02 | -7.326 | 2.37e-13 |
| omega | 4.945e-09 | 1.160e-09 | 4.262 | 2.03e-05 |
| alpha1| 2.142e-01 | 3.503e-02 | 6.114 | 9.69e-10 |
| beta1 | 7.899e-01 | 2.484e-02 | 31.802 | < 2e-16 |

Table 1: Error Analysis

2.4 Conclusion

Both ARIMA model and ARIMA GARCH model cannot fit the data of mid-quote price well. Even though GARCH model can remove the ARCH effect, ARIMA model cannot remove the serial correlation well. The reason might be that the ARIMA model cannot describe the features of high frequency trading price. We have to build some new models.
3 Time Series Analysis on Time Duration

We would like to build a time series model on time duration in this section. We first define these variables as follows. Let t_i, $(i = 1, 2, ..., n)$ denote the time of the i^{th} change of transaction price. Let P_{ti} denote the transaction price of the i^{th} transaction price change, so $\triangle t_i = t_i - t_{i-1}$ is the duration time of price remain unchanged. Let S_i denote the changing amount of i^{th} price change, i.e. $S_i = P_{ti} - P_{t_{i-1}}$. Let N_i denote the number of transactions happened within time interval (t_{i-1}, t_i) during which the transaction prices remain unchanged. This variable N_i can represent the trading intensity during the time with no transaction price change.

3.1 Long Memory Phenomenon of Time Duration

Engle and Rusel [5] proposed the famous autoregressive conditional duration (ACD) model on the research of time duration $\triangle t_i$. McCuloch and Tsay [6] conducted researches on the nonlinearity of high frequency financial data through nonlinear layer model to describe the relationship between $\triangle t_i$, S_i and N_i. Together, they came up with the price changing and duration model (PCD) to describe the price changing feature and the multiple factors dynamic structure during the time durations.

However, we found the time duration of the Kweichow Moutai Co Ltd (SHA: 600519) has a long memory. The timing chart of its log time duration and the autocorrelation function are shown in Figures 13. We can neither see the up or down trend of its log time duration from the left one, but from the right one we can easily observe the log time duration has a long duration of memory. Therefore we need to build a time series model in order to remove this kind of long memory phenomenon.

The long memory phenomenon was already known by people long before many stochastic model was developed. For example, people observed that the Nile River has long-term behavioral characteristic since ancient time. A long period of drought and a long period of flooding always came one after each
other, so cycled. This phenomenon was recorded in the Bible (Genesis 41, 29-30) and was called Joseph effects by Mandelbrot [7] later. Since the pioneering of Mandelbrot [8] [9] [10], self-similarity and the associated long memory process were introduced to the field of statistics. In fact, long memory processes have a wide range of applications in many fields such as astronomy, geography, physics, chemistry and environmental science.

3.2 ARFIMA Model and Regression

Typically, in the field of time series, people often use the classic ARFIMA \((p, d, q)\) [11] to model the long memory feature of certain financial capital’s time duration \((-0.5 \leq d \leq 0.5)\). However, the classic ARFIMA \((p, d, q)\) model does not take many other factors that affects the time duration into account. Meanwhile, PCD model [6] though considers the effects from other factors, it ignores the long memory feature of the time duration itself. In order to study the relationship between other factors and the time duration of financial assets with long memory, CAO Zhiqiang [12] combined ARFIMA \((0, d, 0)\) and regression model then got the following long memory regression model:

\[
(1 - B)^d \ln(\Delta t_i) = c + \alpha S_{i-1} + \beta N_{i-1} + e_i ,
\]

where \(B\) is the delay operator, \(e_i\) is a short memory smooth sequence with a mean of zero. \(\alpha, \beta, c,\) and \(d\) are the parameters to be estimated, \(d\) can be decomposed into \(d = m + \delta\), \(m\) is an integer greater than or equal to zero with \(\delta \in (-0.5, 0.5)\). Here the estimated time duration must be a positive number as there is a log transform on the left side of the model.

However, as is discussed in section 3.3, if the model (1) is not applicable to the high frequency trading data of the Kweichow Moutai Co Ltd (SHA: 600519) from January 4th, 2013 to February 26th, 2014, i.e.,
the parameter α or β is not significant, we have to change the model. In order to adjust the model for our own data, we add cross terms and quadratic terms with regard to S_{i-1}, N_{i-1} that affect the time durations to the right side of the model (1). The new model (2) goes as follows.

\[(1 - B)^d \ln(\triangle t_i) = c + \alpha_1 S_{i-1} + \alpha_2 N_{i-1} + \beta_1 S_{i-1}^2 + \beta_2 N_{i-1}^2 + \beta_3 S_{i-1} N_{i-1} + e_i. \quad (2)\]

3.3 ARFIMA Model Fitting and Checking

As it is very difficult for us to figure out the maximum likelihood function of estimated parameters, we therefore give up on the maximum likelihood method but use other method instead to estimate the parameter in the model (1) or (2). We can use the profile-least squares method or use the ARFIMA package in R directly.

3.3.1 Profile-Least Squares Method

The idea of this method is similar to which of Jan Beran’s [13]. We give the brief introduction as followings: given d, we estimate the remaining parameters using least squares estimation method and calculate of the estimated residual variance $\hat{\sigma}^2_e(d)$. Then we set the value of d within a range and increase little by little. Therefore the d which gives out the minimum $\hat{\sigma}^2_e(d)$ is our estimated value of d. This method is very intuitive and easy to implement using R.

As the lag(n) autocorrelation function of $\ln(\triangle t_i)$ is not 0 significantly and no obvious trend is observed from its own timing chart, we can conclude that $d = 0 + \delta \in (-0.5, 0.5)$. Besides, as the P-value of the t test on α_1 in model (1)is larger than 0.05, and therefore we consider to fit the data into the following model (2). We take d from -0.5 to 0.5 by the step of 0.02, getting the following result in R.

```r
> order ( sigma2 )
[1] 37 36 38 35 39 34 40 41 33 42 43 32 44 45 31 46 47 30 48 49 50 29 51
[47] 6 5 4 3 2 1
```

As a result, the 37^{th} one has the minimum $\hat{\sigma}^2_e(d)$, and therefore, $d = -0.5 + 0.02 \times (37 - 1) = 0.22$. According to the definition of fraction difference proposed by Granger, Joyeux [14] and Hosking [15], we have

\[(1 - B)^\delta = \sum_{k=0}^{\infty} b_k(\delta) B^k,\]
where

\[b_k(\delta) = (-1)^k \frac{\Gamma(\delta + 1)}{\Gamma(k + 1)\Gamma(\delta - k + 1)}. \]

Here \(\Gamma(z) \) is the gamma function with \(\Gamma(z) = \int_0^\infty \frac{e^{-t}}{t^{z-1}} dt \). The remaining parameters could now be easily estimated. We estimate them in R, getting the following results as is shown in Table 3.

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------|-----------|------------|---------|----------|
| (Intercept) | 0.066833683 | 0.001378441 | 48.485 | <2e-16 |
| st1 | -0.002949702 | 0.014511981 | -0.203 | 0.83893 |
| nt | -0.040695953 | 0.000386792 | -105.214 | <2e-16 |
| st2 | -0.014885260 | 0.005129479 | -2.902 | 0.00371 |
| nt2 | 0.000200260 | 0.000004421 | 45.302 | <2e-16 |
| snt | -0.004813683 | 0.002913033 | -1.652 | 0.09844 |

Table 3: Parameters in Model2

As is shown in the results, the P-value of the t test on \(\alpha_1 \) and \(\beta_3 \) is larger than 0.05, and therefore we consider to fit the data into the following model (3).

\[
(1 - B)^d \ln(\triangle t_i) = c + \alpha_2 N_{i-1} + \beta_1 S_{i-1} + \beta_2 N_{i-1}^2 + e_i. \tag{3}
\]

The result is shown in Table 4.

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------|-----------|------------|---------|----------|
| (Intercept) | 0.06683717 | 0.00137843 | 48.488 | <2e-16 |
| nt | -0.04069426 | 0.00038676 | -105.218 | <2e-16 |
| st2 | -0.01494172 | 0.00512219 | -2.917 | 0.00353 |
| nt2 | 0.00019879 | 0.00000433 | 45.906 | <2e-16 |

Table 4: Parameters in Model3

All parameters pass the t-test. The model can be written as

\[
(1 - B)^{0.22} \ln(\triangle t_i) = 0.06683717 - 0.04069426 N_{i-1} - 0.01494172 S_{i-1}^2 + 0.00019879 N_{i-1}^2 + e_i, \tag{4}
\]

where \((1 - B)^{0.22} = \sum_{k=0}^{\infty} (-1)^k \frac{\Gamma(1.22)}{\Gamma(k+1)\Gamma(1.22-k)} B^k \).

Here \(\Gamma(z) \) is the gamma function and \(e_i \) is a short memory smooth sequence with a mean of zero.

Finally, we need to do the model checking in order to see whether \(e_i \) has a long memory phenomenon or not. We can compare the two graphics in Figure 14, finding that \(e_i \) has no long memory phenomenon now. Therefore, we can draw a conclusion that the model (4) is somewhat reasonable.
3.3.2 Using AFIMA Package in R to Calculate d

The other method is to use the AFIMA Package in R to calculate the value of d in model (1).

The result shows that $d = 0.139462$, which is quite different from the results estimated by Profile-Least Squares Method that $d = 0.22$.

We then estimate the remaining parameters in R, getting the following results as is shown in Table 5.

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|----------|
| (Intercept) | 0.0534654 | 0.0015391 | 34.74 | <2e-16 |
| st | -0.4684479 | 0.0160741 | -29.14 | <2e-16 |
| nt | -0.0181302 | 0.0002946 | -61.54 | <2e-16 |

Table 5: Parameters in Model1

As is shown in the results, the P-value of the t test on α and β is very small, and therefore we do not need to add any cross terms or quadratic terms with regard to S_{i-1}, N_{i-1}. The model (1) is already adequate.

The model can be written as

$$\log(\triangle t_i) = 0.0534654 - 0.4684479N_{i-1} - 0.0181302S_{i-1} + e_i,$$

where $$(1 - B)^{0.139462} = \sum_{k=0}^{\infty} (-1)^k \frac{\Gamma(1.139462)}{\Gamma(k+1)\Gamma(1.139462-k)} B^k.$$

Here $\Gamma(z)$ is the gamma function and e_i is a short memory smooth sequence with a mean of zero.

Finally, we need to do the model checking in order to see whether e_i has a long memory phenomenon or not. We can compare the two graphics in Figure 15, finding that e_i has no long memory phenomenon now. Therefore, we can draw a conclusion that the model (5) is also somewhat reasonable.
3.3.3 Comments on the Two Methods

We have used two methods in section 3.31 and section 3.32 respectively, getting two different values of \(d \) and two different models. Even though both of the models sound reasonable, we finally choose the second one. The reasons go as follows.

In section 3.31, as the parameter \(\alpha \) is not significant, we add cross terms and quadratic terms with regard to \(S_{i-1}, N_{i-1} \) to the right side of the model (1) in order to show how the price would affect the time durations. However, there exist some problems when using the Least Squares Method to estimate a model with quadratic terms. Therefore, if we use the Profile-Least Squares Method to estimate \(d \), we would either face some problems when estimating or ignore the influence of price on time duration.

Fortunately, if we use the ARFIMA package in R directly, the problem is solved. Both the parameter \(\alpha \) and the parameter \(\beta \) are significant. We therefore use the second method to estimate our model. The final model goes as follows.

\[
(1 - B)^{0.139462} \ln(\Delta t_i) = 0.0534654 - 0.4684479 N_{i-1} - 0.0181302 S_{i-1} + \epsilon_i,
\]

where \((1 - B)^{0.139462} = \sum_{k=0}^{\infty} (-1)^k \frac{\Gamma(1.139462)}{\Gamma(k+1)\Gamma(1.139462-k)} B^k\).

Here \(\Gamma(z) \) is the gamma function and \(\epsilon_i \) is a short memory smooth sequence with a mean of zero.
3.4 ARIMA GARCH Model on Residuals e_i

Notice that even though the residuals e_i do not have long memory phenomenon, e_i are not white noise series. When we do the Ljung Box Test on e_i and e_i^2 respectively, the results shows that both P-values are near to 0. As a result, there is not only serial correlation but also ARCH effect in the series of e_i. Therefore, we would like to fit an ARIMA GARCH model to the residuals e_i. Note that the mean of e_i should be equal to 0.

We have tried the different ARIMA GARCH models according to the ACF and PACF of e_i, getting the result that the ARMA(2,1)-GARCH(1,0) model with the residuals ϵ follows normal distribution has the least AIC. According to R, the estimated parameters go as Table 6. As all p-values are extremely close to 0, all parameters pass t-test.

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------|-----------|------------|---------|----------|
| ar1 | 0.926741 | 0.000067 | 13887.85 | 0 |
| ar2 | 0.073041 | 0.000055 | 1339.097 | 0 |
| ma1 | -0.996010 | 0.000010 | -100686.52 | 0 |
| omega | 0.466424 | 0.001411 | 330.518 | 0 |
| alpha1 | 0.036881 | 0.002012 | 18.332 | 0 |

Table 6: ARMA(2,1)-GARCH(1,0)

Therefore, the model of e_i could be written as

$$e_i = 0.926741e_{i-1} + 0.073041e_{i-2} + a_i - 0.996010a_{i-1}$$

$$a_i = \epsilon_i \sigma_i$$

$$\sigma_i^2 = 0.466424 + 0.036881a_{i-1}^2,$$

where $\epsilon_i \sim whitenoise(0,1)$.

Fortunately, when we make the model checking by using the Ljung Box test, the results go as Table 7. As all the p-value are larger than 0.05, we cannot reject any of the two H_0. We can conclude that e_i are white noises with no ARCH effect.

<table>
<thead>
<tr>
<th>variable</th>
<th>X-squared</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>residepsi</td>
<td>18.613</td>
<td>12</td>
<td>0.09832</td>
</tr>
<tr>
<td>residepsi2</td>
<td>15.625</td>
<td>12</td>
<td>0.209</td>
</tr>
</tbody>
</table>

Table 7: Ljung Box Test
The final model of $\triangle t_i$ that we build goes as follows.

$$(1 - B)^{0.139462} \ln(\triangle t_i) = 0.0534654 - 0.4684479 N_{i-1} - 0.0181302 S_{i-1} + e_i$$

$$e_i = 0.926741 e_{i-1} + 0.073041 e_{i-2} + a_i - 0.996010 a_{i-1}$$

$$a_i = \epsilon_i \sigma_i$$

$$\sigma_i^2 = 0.466424 + 0.036881 a_{i-1}^2,$$

where $\epsilon_i \sim \text{white noise}(0, 1), \ (1 - B)^{0.139462} = \sum_{k=0}^{\infty} (-1)^k \frac{\Gamma(1.139462)}{\Gamma(k+1) \Gamma(1.139462-k)} B^k$, and $\Gamma(z)$ is the gamma function.

3.5 Forecast

According to our final model, we can forecast the $(1 - B)^{0.139462} \ln(\triangle t_i(1)) = 0.0534654 - 0.4684479 N_i - 0.0181302 S_i + e_i(1)$, where $e_i(1) = 0.926741 e_{i-1} + 0.073041 e_{i-2} + a_i - 0.996010 a_i$.

Besides, the 1-step 95% forecasting interval of $e_i(1)$ is $(e_i(1) - 1.96 \sigma_i(1), e_i(1) + 1.96 \sigma_i(1))$, where $\sigma_i(1)^2 = 0.466424 + 0.036881 a_i^2$.

The forecasting result goes as Table 8.

<table>
<thead>
<tr>
<th>forecast value</th>
<th>$(1 - B)^{0.139462} \ln(\triangle t)$</th>
<th>$\ln(\triangle t)$</th>
<th>$\triangle t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4461</td>
<td>0.393037815</td>
<td>-2.3606</td>
<td>0.9436</td>
</tr>
<tr>
<td>low boundary</td>
<td>-0.897284</td>
<td>-0.950346185</td>
<td>-3.7041</td>
</tr>
<tr>
<td>high boundary</td>
<td>1.789484</td>
<td>1.736421815</td>
<td>-1.0171</td>
</tr>
</tbody>
</table>

Table 8: Forecast
4 Conclusion

In our report, we focus on the high frequency trading data of Kweichow Moutai Co Ltd (SHA: 600519) from January 4th, 2013 to February 26th, 2014 from the market makers’ perspective. Market makers are interested in two kind of information from the high frequency trading data.

Firstly, market makers are certainly interested in how the mid-quote price would change. However, even though the log return series are stationary according to the Dickey-Fuller Unit Root Test, both ARIMA model and ARIMA GARCH model cannot fit the data of mid-quote price well. There exists serial correlation and ARCH effect in log return series, while only ARCH effect can be removed by ARIMA GARCH model. Under no models can the serial correlation be removed. The result means that ARIMA model is not a good model for the high frequency trading data. Fortunately, market makers are often employed by the order-driven markets to quote prices continuously for the well being of the market, and therefore, market makers do not assume the goal of making money.

Secondly, market makers are even more interested in the duration time during which the mid-quote price remains unchanged. Market makers like this kind of situation, because they can simply apply the strategy of "buy low, sell high". During the time duration that the bid one and ask one price stay unchanged, market makers can automatically buy at bid one price and sell at ask one price, making money at the same time when they facilitate the price discovery process of an exchange. If the mid-quote price tends to change, market makers cannot simply apply a fixed strategy. Fortunately, a ARFIMA and regression model can be fitted to the duration time during which the mid-quote price remains unchanged. Market makers can use the model to forecast the duration time.

Admittedly, the forecast value of Δt_i might be quite small but still useful. Since low-latency communication technologies at both the software level and hardware level significantly contributed the development of algorithmic trading as a trading practice. Market makers can write a program to forecast the "Market Microstructure Characteristics Time" and use it to determine the algorithmic trading strategies.
References

Appendices

Appendix A Data

The following data is part of our raw data.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>time</td>
<td>price</td>
</tr>
<tr>
<td>2</td>
<td>930</td>
<td>210.84</td>
</tr>
<tr>
<td>3</td>
<td>930</td>
<td>210.28</td>
</tr>
<tr>
<td>4</td>
<td>930</td>
<td>210.84</td>
</tr>
<tr>
<td>5</td>
<td>930</td>
<td>210.83</td>
</tr>
<tr>
<td>6</td>
<td>930</td>
<td>210.28</td>
</tr>
<tr>
<td>7</td>
<td>930</td>
<td>210.1</td>
</tr>
<tr>
<td>8</td>
<td>930</td>
<td>210.05</td>
</tr>
<tr>
<td>9</td>
<td>930</td>
<td>210</td>
</tr>
<tr>
<td>10</td>
<td>930</td>
<td>210</td>
</tr>
<tr>
<td>11</td>
<td>930</td>
<td>210</td>
</tr>
<tr>
<td>12</td>
<td>930</td>
<td>210.05</td>
</tr>
<tr>
<td>13</td>
<td>930</td>
<td>210.31</td>
</tr>
<tr>
<td>14</td>
<td>930</td>
<td>210.22</td>
</tr>
<tr>
<td>15</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>16</td>
<td>930</td>
<td>210.5</td>
</tr>
<tr>
<td>17</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>18</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>19</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>20</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>21</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>22</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>23</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>24</td>
<td>930</td>
<td>210.6</td>
</tr>
<tr>
<td>25</td>
<td>930</td>
<td>210.84</td>
</tr>
<tr>
<td>26</td>
<td>930</td>
<td>210.84</td>
</tr>
<tr>
<td>27</td>
<td>930</td>
<td>210.84</td>
</tr>
</tbody>
</table>
After we treat the raw data, the settled data go as follows. The first table is the data of log return price. The second one is the data of time duration that mid-quote price keeps unchanged.

<table>
<thead>
<tr>
<th>newdata</th>
<th>mre_price</th>
<th>obs</th>
<th>lg rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>20130104-90001</td>
<td>210.2625</td>
<td>2</td>
<td>-0.001413890</td>
</tr>
<tr>
<td>20130104-90002</td>
<td>210.87820613</td>
<td>3</td>
<td>0.0029203985</td>
</tr>
<tr>
<td>20130104-90003</td>
<td>211.644</td>
<td>4</td>
<td>0.0007859026</td>
</tr>
<tr>
<td>20130104-90004</td>
<td>210.768</td>
<td>5</td>
<td>0.001366387</td>
</tr>
<tr>
<td>20130104-90005</td>
<td>211.725</td>
<td>6</td>
<td>0.004577707</td>
</tr>
<tr>
<td>20130104-90006</td>
<td>210.71166667</td>
<td>7</td>
<td>-0.004797573</td>
</tr>
<tr>
<td>20130104-90007</td>
<td>210.42575</td>
<td>8</td>
<td>0.000134574</td>
</tr>
<tr>
<td>20130104-90009</td>
<td>211</td>
<td>9</td>
<td>0.0027110175</td>
</tr>
<tr>
<td>20130104-90011</td>
<td>210.95</td>
<td>10</td>
<td>0.000236696</td>
</tr>
<tr>
<td>20130104-90015</td>
<td>210.06</td>
<td>11</td>
<td>-0.004276541</td>
</tr>
<tr>
<td>20130104-90016</td>
<td>210.06</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>20130104-90017</td>
<td>210.06</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>20130104-90019</td>
<td>210.06</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>20130104-90021</td>
<td>210.84</td>
<td>15</td>
<td>0.0037539644</td>
</tr>
<tr>
<td>20130104-90022</td>
<td>211.1025</td>
<td>16</td>
<td>0.0012442455</td>
</tr>
<tr>
<td>20130104-90024</td>
<td>210.05</td>
<td>17</td>
<td>-0.0049082</td>
</tr>
<tr>
<td>20130104-90026</td>
<td>210.63</td>
<td>18</td>
<td>-0.0009522</td>
</tr>
<tr>
<td>20130104-90028</td>
<td>210.00908909</td>
<td>19</td>
<td>0.00138518</td>
</tr>
<tr>
<td>20130104-90029</td>
<td>209.90333333</td>
<td>20</td>
<td>-0.000646756</td>
</tr>
<tr>
<td>20130104-90030</td>
<td>209.74666667</td>
<td>21</td>
<td>-0.000746654</td>
</tr>
<tr>
<td>20130104-90031</td>
<td>209.686</td>
<td>22</td>
<td>-0.00024189</td>
</tr>
<tr>
<td>20130104-90032</td>
<td>209.62</td>
<td>23</td>
<td>0.000362496</td>
</tr>
<tr>
<td>20130104-90033</td>
<td>209.61</td>
<td>24</td>
<td>0.0009059015</td>
</tr>
<tr>
<td>20130104-90034</td>
<td>209.62</td>
<td>25</td>
<td>-0.000905902</td>
</tr>
<tr>
<td>20130104-90035</td>
<td>209.68</td>
<td>26</td>
<td>0.0008853282</td>
</tr>
<tr>
<td>20130104-90036</td>
<td>209.68</td>
<td>27</td>
<td>-0.000872137</td>
</tr>
<tr>
<td>20130104-90037</td>
<td>209.62</td>
<td>28</td>
<td>-0.000265591</td>
</tr>
<tr>
<td>20130104-90038</td>
<td>209.61</td>
<td>29</td>
<td>0.0009059915</td>
</tr>
<tr>
<td>20130104-90039</td>
<td>209.62</td>
<td>30</td>
<td>-0.000905992</td>
</tr>
<tr>
<td>20130104-90041</td>
<td>209.62</td>
<td>31</td>
<td>0.0002366955</td>
</tr>
<tr>
<td>20130104-90042</td>
<td>209.5</td>
<td>32</td>
<td>-0.000342793</td>
</tr>
<tr>
<td>20130104-90044</td>
<td>209.415</td>
<td>33</td>
<td>0.001656907</td>
</tr>
<tr>
<td>20130104-90046</td>
<td>209.44333333</td>
<td>34</td>
<td>-0.001728973</td>
</tr>
<tr>
<td>20130104-90048</td>
<td>209.405</td>
<td>35</td>
<td>0.000718986</td>
</tr>
<tr>
<td>20130104-90047</td>
<td>209.62</td>
<td>36</td>
<td>0.000718986</td>
</tr>
<tr>
<td>20130104-90049</td>
<td>209.115</td>
<td>37</td>
<td>-0.002807065</td>
</tr>
<tr>
<td>20130104-90050</td>
<td>209.006</td>
<td>38</td>
<td>-0.00504643</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>d_t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.005682</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.005682</td>
<td>0.56</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.005682</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0.005682</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0.005682</td>
<td>0.18</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.005682</td>
<td>0.05</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>0.005682</td>
<td>0.05</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>0.017047</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.005682</td>
<td>0.26</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>0.005682</td>
<td>0.09</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>0.005682</td>
<td>0.38</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>0.005682</td>
<td>0.1</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>0.005682</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>0.039777</td>
<td>0.24</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>0.051141</td>
<td>0.05</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>0.005682</td>
<td>0.91</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>0.005682</td>
<td>1.58</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>0.005682</td>
<td>0.66</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>0.011365</td>
<td>0.92</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>0.005682</td>
<td>0.8</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>0.005682</td>
<td>0.12</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>0.017047</td>
<td>0.92</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>0.005682</td>
<td>0.92</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.005682</td>
<td>0.3</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>0.017047</td>
<td>0.62</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>0.005682</td>
<td>0.92</td>
</tr>
</tbody>
</table>
Appendix B R Codes in Section 2

ARCH effect
> at=lgrt-mean(lgrt)
> Box.test(at^2,lag=12,type='Ljung')

Box–Ljung test

data: at^2
X-squared = 2378.4, df = 12, p-value < 2.2e-16

> Box.test(arima(lgrt,order=c(1,0,0))$resid^2,lag=12,type = 'Ljung')

Box–Ljung test

data: arima(lgrt, order = c(1, 0, 0))$resid^2
X-squared = 14794, df = 12, p-value < 2.2e-16

ARMA–GARCH model

> fitq1=garchFit(lgrt~arma(1,0)+garch(1,1),data=lgrt,trace=F)
> summary(fitq1)

Title:
GARCH Modelling

Call:
garchFit(formula = lgrt ~ arma(1, 0) + garch(1, 1), data = lgrt, trace = F)

Mean and Variance Equation:
 data ~ arma(1, 0) + garch(1, 1)
<environment: 0x1212f7ca0>
Conditional Distribution:

Coefficient(s):

<table>
<thead>
<tr>
<th></th>
<th>mu</th>
<th>ar1</th>
<th>omega</th>
<th>alpha1</th>
<th>beta1</th>
</tr>
</thead>
</table>

Std. Errors:

based on Hessian

Error Analysis:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------|----------|------------|---------|---------|
| mu | -3.199e-05 | 1.143e-05 | -2.800 | 0.00511 ** |
| ar1 | -3.070e-01 | 4.191e-02 | -7.326 | 2.37e-13 *** |
| omega | 4.9455e-09 | 1.160e-09 | 4.262 | 2.03e-05 *** |
| alpha1 | 2.1421e-01 | 3.503e-02 | 6.114 | 9.69e-10 *** |
| beta1 | 7.8991e-01 | 2.484e-02 | 31.802 | < 2e-16 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log Likelihood:

4387.835 normalized: 6.268335

Description:

Sun May 1 21:14:33 2016 by user:

Standardised Residuals Tests:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarque-Bera Test R Chi^2</td>
<td>226.6154 0</td>
</tr>
</tbody>
</table>
Shapiro–Wilk Test

<table>
<thead>
<tr>
<th>Test</th>
<th>R</th>
<th>W</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shapiro–Wilk</td>
<td>W</td>
<td>0.956208</td>
<td>1.386691e−13</td>
</tr>
</tbody>
</table>

Ljung–Box Test

<table>
<thead>
<tr>
<th>Test</th>
<th>R</th>
<th>Q</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ljung–Box</td>
<td>Q(10)</td>
<td>28.83545</td>
<td>0.001324794</td>
</tr>
<tr>
<td>Ljung–Box</td>
<td>Q(15)</td>
<td>32.80012</td>
<td>0.005001912</td>
</tr>
<tr>
<td>Ljung–Box</td>
<td>Q(20)</td>
<td>49.91691</td>
<td>0.0002276229</td>
</tr>
</tbody>
</table>

Ljung–Box Test

<table>
<thead>
<tr>
<th>Test</th>
<th>R^2</th>
<th>Q</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ljung–Box</td>
<td>Q(10)</td>
<td>19.5223</td>
<td>0.03410873</td>
</tr>
<tr>
<td>Ljung–Box</td>
<td>Q(15)</td>
<td>27.39051</td>
<td>0.02571104</td>
</tr>
<tr>
<td>Ljung–Box</td>
<td>Q(20)</td>
<td>28.32919</td>
<td>0.101833</td>
</tr>
</tbody>
</table>

Information Criterion Statistics

<table>
<thead>
<tr>
<th>AIC</th>
<th>BIC</th>
<th>SIC</th>
<th>HQIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>−12.52238</td>
<td>−12.48988</td>
<td>−12.52249</td>
<td>−12.50982</td>
</tr>
</tbody>
</table>

GARCH Model

```r
# GARCH model
> fitq2 = garchFit(~garch(1, 1), data = lgrt, trace = F)
> summary(fitq2)
```

Title:
GARCH Modelling

Call:
garchFit(formula = ~garch(1, 1), data = lgrt, trace = F)

Mean and Variance Equation:
data ~ garch(1, 1)

Conditional Distribution:
norm

Coefficient(s):

29
\[\begin{align*}
\text{mu} & \quad 5.4495 \times 10^{-9} & \text{omega} & \quad 2.2163 \times 10^{-1} & \text{alphal} & \quad 7.8535 \times 10^{-1} \\
& \quad -2.6592 \times 10^{-5} & & & & \\
\end{align*} \]

Std. Errors:

Based on Hessian

Error Analysis:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| mu | -2.659e-05 | 1.151e-05 | -2.310 | 0.0209 * |
| omega | 5.450e-09 | 1.234e-09 | 4.416 | 1.01e-05 *** |
| alphal | 2.216e-01 | 3.556e-02 | 6.233 | 4.59e-10 *** |
| betal | 7.853e-01 | 2.449e-02 | 32.066 | < 2e-16 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log Likelihood:

4365.56 normalized: 6.236515

Description:

Sun May 1 21:14:33 2016 by user:

Standardised Residuals Tests:

Jarque–Bera Test	R	Chi^2	262.0727	0
Shapiro–Wilk Test	R	W	0.9447482	1.744111e-15
Ljung–Box Test	R	Q(10)	47.44318	0.0000007841877
Ljung–Box Test	R	Q(15)	50.55803	0.00000975758
Ljung–Box Test	R	Q(20)	64.81859	0.00001247344
Ljung–Box Test	R^2	Q(10)	21.65193	0.01697939
Ljung–Box Test	R^2	Q(15)	29.73687	0.0129065
Ljung–Box Test	R^2	Q(20)	31.49438	0.04899305
LM Arch Test \[R \quad TR^2 \quad 28.22129 \quad 0.005134042 \]

Information Criterion Statistics:

\begin{tabular}{cccc}
AIC & BIC & SIC & HQIC \\
-12.46160 & -12.43559 & -12.46167 & -12.45155 \\
\end{tabular}
Appendix C R Codes in Section 3

```r
rm(list=ls(all=TRUE))
setwd("C:/Users/Ted/Desktop/TSProject/Rcodes")
xgsj=read.csv("midquote.csv", header=T)
time=xgsj[,1]
un=length(unique(time)); un  # different time
sjbh=cbind(time, xgsj[,2])
date=xgsj[,3]
colnames(sjbh)=c("time","price")
# import the origin data
logtime=log(sjbh[,1])
price=sjbh[,2]
plot.ts(price)
# change the time from factor to numeric
t.set=unique(sjbh[,1])  # set of time
nt=numeric(un)
for(i in 1:un){
  nt[i]=sum(t.set[i]==sjbh[,1])
}
plot(ts(nt), xlab="trade minute", ylab="trade times in one minute")

# no difference between morning and afternoon
tt=NULL
for(i in 1:un){
  temp.t=seq((i-1)*60, i*60 - 0.5, length=nt[i])
  tt=c(tt, temp.t)
}
data=cbind(tt, sjbh[,2])

pt=data[,2]  # trade price
dpt=diff(pt)  # dp[t]=p[t]−p[t−1]
index=which(dpt!=0)
```

32
\(c_t = t_t[c(1, \text{index} + 1)] \)
*that's \(c_t \) be the calendar time

\# of the \(i \)th price change of an asset

\(d_t = \text{diff}(c_t) \)

\(s_t = \text{abs}(dpt[\text{index}]) \)
*size of the \(i \)th price change measured in ticks

\(n_t = c(0, \text{diff}(\text{index}) - 1) \)
*the number of trades in the time interval \([t[i-1], t[i]] \)

\(m = \text{length}(n_t) \);

\(\text{delta} = \text{numeric}(m) \)

\(i_{up} = \text{which}(dpt[\text{index}] > 0) \)

\(i_{down} = \text{which}(dpt[\text{index}] < 0) \)

\(\text{delta}[i_{up}] = 1 \)

\(\text{delta}[i_{down}] = -1 \)

\(\text{newdata519} = \text{cbind}(d_t, s_t, n_t, \text{delta}) \)

\text{write.csv}(\text{newdata519}, \text{file} = "C:/Users/Ted/Desktop/TSPproject/Rcodes/quote.csv")

\text{setwd}("C:/Users/Ted/Desktop/TSPproject/Rcodes")

\text{ndata} = \text{read.csv}("trade600519.csv", \text{header} = \text{TRUE})

\(d_t1 = \text{ndata}[, 2] \)

\(s_t1 = \text{ndata}[, 3] \)

\(n_t1 = \text{ndata}[, 4] \)

\(\text{delta1} = \text{ndata}[, 5] \)

\(\text{index} = d_t1 != 0 \)

\(d_t = d_t1[\text{index}] \)

\(s_t = s_t1[\text{index}] \)

\(n_t = n_t1[\text{index}] \)

\(\text{delta} = \text{delta1}[\text{index}] \)

\(n = \text{length}(d_t) \)

\(d_t = d_t[2:n] \)

\(s_t = s_t[1:(n-1)] \)

\(n_t = n_t[1:(n-1)] \)

\(\text{delta} = \text{delta}[1:(n-1)] \)

\(s_t1 = s_t \times \text{delta} \)

\(s_t2 = s_t1^2 \)

\(n_t2 = n_t^2 \)
snt = st1 * nt
n = n - 1
ldt = log(dt)
md = mean(ldt)
lldt = ldt - md
cor(cbind(ldt, st1, nt, st2, nt2, snt))

plot.ts(lldt)
acf(ldt, lag.max = 96, plot = TRUE)

#MLE
require(fracdiff)
arfima1 = fracdiff(ldt, nar = 0, nma = 0, drange = c(0, 0.5))
arfima1
d = 0.139462
#Granger, Joyeux, Hosking
options(sicpen = 3)

for (j in 1:n) {
 if (j <= m1) {
 } else ed[j] = sum(nb * rev(ldt[(j - m1 + 1):j])) - sum(nb) * md
}
lm.reg1 = lm(ed ~ st + nt)
summary(lm.reg1)

#LSE
delta = seq(-0.5, 0.5, by = 0.02)
m = length(delta)
sigma2 = numeric(m)
ed = numeric(n)
m1=171
nb=numeric(m1)
i=1:m1

for(k in 1:m){
 if(k!=26){
 nb=((-1)^(i-1))*gamma(delta[k]+1)/(gamma(i-1+1)*gamma(delta[k]-i+1+1))
 }
 for(j in 1:n){
 if(j<=m1) {
 }
 else ed[j]=sum(nb*rev(ldt[(j-m1+1):j]))-sum(nb)*md
 }
 lm.reg=summary(lm(ed~nt+st2+nt2+snt))
 sigma2[k]=lm.reg$sigma
}
else{
 lm.reg=summary(lm(ldt~nt+st2+nt2+snt))
 sigma2[k]=lm.reg$sigma
}
cat("iteration =",k,"\n")
}
order(sigma2)
#Granger, Joyeux, Hosking
options(scipen = 3)
k=37
nb=((-1)^(i-1))*gamma(delta[k]+1)/(gamma(i-1+1)*gamma(delta[k]-i+1+1))
for(j in 1:n){
 if(j<=m1) {
 }
 else ed[j]=sum(nb*rev(ldt[(j-m1+1):j]))-sum(nb)*md
}
\(\text{lm.reg1 = lm(ed ~ nt + st2 + nt2) } \)
\(\text{summary(lm.reg1)} \)

\textit{# residuals analysis}
\(\text{resid = resid(lm.reg1)} \)
\(\text{acf(resid, lag.max = 24, plot = TRUE)} \)
\(\text{plot(ts(resid))} \)
\(\text{boxplot(resid)} \)
\(\text{fivenum(resid)} \)
\(\text{fu} = 0.4764604 \)
\(\text{fl} = -0.5965162 \quad \# MLE \)
\(\text{fu} = 0.4721599 \)
\(\text{fl} = -0.6038488 \)
\(\text{df} = \text{fu} - \text{fl} \)
\(\text{ol} = \text{fl} - 3*\text{df} \)
\(\text{ou} = \text{fu} + 3*\text{df} \)
\(\text{ou1} = \text{fl} - 1.5*\text{df} \)
\(\text{ou} = \text{fu} + 1.5*\text{df} \)
\(\text{resid1 = resid[resid <= ou1 & resid >= ou1]} \)
\(\text{length(resid1)/length(resid)} \)

\textit{require(FinTS)}
\(\text{AutocorTest(resid1)} \)
\(\text{ArchTest(resid1)} \)

\(\text{acf(resid1, lag.max = 24, plot = FALSE)} \)
\(\text{pacf(resid1, lag.max = 24, plot = FALSE)} \)

\textit{# rugarch}
\textit{require(rugarch)}
spec <- ugardchspec(variance = model = list(model = "sGARCH", garchOrder = c(1, 0)), mean = model = list(armaOrder = c(2, 1), include.mean = FALSE), distribution = model = "norm")
garch3 <- ugardchfit(spec = spec, data = resid1)
garch3
AutocorTest(garch3@fit$z)
 AutocorTest((garch3@fit$z)^2)
ArchTest(garch3@fit$z)
ArchTest((garch3@fit$z)^2)

fGarch
library(fGarch)
garch4 = garchFit(resid1 ~ arma(2, 1) + garch(1, 0), data = resid1, trace = F)

summary(garch4)

epsilon
residepsi = residuals(garch3, standardize = TRUE)
boxplot(residepsi)
mean(residepsi)
var(residepsi)
acf(residepsi, lag.max = 24, plot = TRUE)
pacf(residepsi, lag.max = 12, plot = TRUE)
Box.test(residepsi, lag = 12, type = "Ljung")

MLE predict
predictgarch3 = ugardchforecast(garch3, data = NULL, n.ahead = 4, conf = .95)
predictgarch3

d = 0.139462
newed = c(ed, 0)
newldt = c(ldt, -2.3606)
nb = (-1)^(i - 1)*gamma(d + 1)/(gamma(i - 1 + 1)*gamma(d - i + 1 + 1))
for (j in 1:(n+1)) {
 if (j<=m1) {
 newed[j] = sum(nb[1:j]*rev(newldt[1:j])) - sum(nb[1:j])*md
 }
 else newed[j] = sum(nb*rev(newldt[(j-m1+1):j])) - sum(nb)*md
}
rev(newed)[1]

0.393037815
-0.950346185
1.736421815

#LSE predict
predictgarch3 = ugarchforecast(garch3, data = NULL, n.ahead = 4, conf = .95)
predictgarch3

newed = c(ed, 0)
newldt = c(ldt, -2.31592)
k=37
nb = (-1)^(i-1)*gamma(delta[k]+1)/(gamma(i-1+1)*gamma(delta[k]-i+1+1))
for (j in 1:(n+1)) {
 if (j<=m1) {
 newed[j] = sum(nb[1:j]*rev(newldt[1:j])) - sum(nb[1:j])*md
 }
 else newed[j] = sum(nb*rev(newldt[(j-m1+1):j])) - sum(nb)*md
}
rev(newed)[1]

0.147155676
-1.203088324
1.497399676

38