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ESTIMATION OF CHANGE-POINTS IN
LINEAR AND NONLINEAR TIME

SERIES MODELS

SHIQING LING
Hong Kong University of Science and Technology

This paper develops an asymptotic theory for estimated change-points in linear
and nonlinear time series models. Based on a measurable objective function, it
is shown that the estimated change-point converges weakly to the location of
the maxima of a double-sided random walk and other estimated parameters are
asymptotically normal. When the magnitude d of changed parameters is small,
it is shown that the limiting distribution can be approximated by the known dis-
tribution as in Yao (1987, Annals of Statistics 15, 1321–1328). This provides a
channel to connect our results with those in Picard (1985, Advances in Applied
Probability 17, 841–867) and Bai, Lumsdaine, and Stock (1998, Review of Eco-
nomic Studies 65, 395–432), where the magnitude of changed parameters de-
pends on the sample size n and tends to zero as n → ∞. The theory is applied
for the self-weighted QMLE and the local QMLE of change-points in ARMA-
GARCH/IGARCH models. A simulation study is carried out to evaluate the per-
formance of these estimators in the finite sample.

1. INTRODUCTION

Structural change has been an important issue in econometrics, engineering, and
statistics for a long time. As a recent comment by Hendry and Johansen (2014),
the breaks and regime shifts are ubiquitous in economic time series and were
widely recognized even by the time of Haavelmo (1944). More real examples are
in Stock and Watson (1996) and Hansen (2001). The earliest test statistics go back
to Chow (1960) and Quandt (1960). After that, many approaches have been de-
veloped to detect whether or not structural change exists in a statistical model.
Examples are the weighted likelihood ratio test in Picard (1985) and Andrews
and Ploberger (1994); Wald and Lagrange multiplier tests in Hansen (1992),
Andrews (1993), and Bai and Perron (1998); the exact likelihood ratio test in
Horváth (1993) and Davis, Huang, and Yao (1995); the empirical approach in Bai
(1996) for regression models; and the sequential test in Lai (1995). Su and White
(2010) proposed two tests for change-points in partially linear models. Breitung
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and Eickmeier (2011) and Han and Inoue (2014) studied some tests for struc-
tural breaks in dynamic factor models. Ling (2007a) developed an asymptotic
theory of the Quandt-type tests for linear and nonlinear time series models. Aue,
Hörmann, Horváth, and Reimherr (2009) studied the break detection in the covari-
ance structure of multivariate time series models. Shao and Zhang (2010) studied
Quandt-type test for the change of mean in time series. This type of tests was fur-
ther developed by Hidalgo and Seo (2013) under a larger framework. Empirically,
we want to know not only that structural change exists, but also the location of
change-point.

The first paper on the estimation of change-points is by Hinkley (1970),
in which he investigated the maximum likelihood estimator (MLE) of the
change-points in a sequence of i.i.d. random variables and proved that the esti-
mated change-point converges in distribution to the location of the maxima of a
double-sided random walk. Under the normality assumption, he showed that the
limiting distribution can be tabulated by a numerical method. Hinkley and Hink-
ley (1970) used a similar method to investigate the binomial random variables
and showed that the limiting distribution has a computable form. However, for the
nonnormal or nonbinomial cases, their results cannot be used as statistical infer-
ence for the change point. When the magnitude d of changed parameters is small,
Yao (1987) showed that Hinkley’s (1970) limiting distribution can be approxi-
mated by a very nice distribution. Ritov (1990) studied the asymptotic efficient
estimation of the change-point. Dümbgen (1991) investigated the nonparamet-
ric method for change-point estimators. Bai (1995) studied a structure-changed
regression model with a fixed d and showed that the estimated change-point con-
verges in distribution to the location of the maxima of a double-sided random
walk. Qu and Perron (2007) investigated estimating and testing structural changes
in multivariate regressions. Hansen (2009) proposed an averaging estimator for re-
gressions with a possible structural break. Perron and Yamamoto (2014) studied
estimating and testing for multiple structural changes in models with endogenous
regressors.

In the field of time series, Picard (1985) first studied the MLE of change-
points in AR models. She assumed that the magnitude of changed parameters
is dn which depends on the sample size n with dn → 0 as n → ∞, and obtained
the same limiting distribution as that in Yao (1987). Picard’s method was devel-
oped for the regression models by Bai (1994, 1995). Bai et al. (1998) also used
Picard’s method for the structure-changed multivariate AR model and cointegrat-
ing time series model (see also Chong, 2001 for AR(1) models and Ling, 2003 for
ARMA-GARCH models). Davis, Lee, and Rodriguez-Yam (2006) proposed a
minimum description length principle to locate the change points in the multi-
ple structural change AR models. Saikkonen, Lükepohl, and Trenkler (2006) and
Kejriwal and Perron (2008) used a similar method to estimate the change-point
in VAR models and cointegrated regression models, respectively. Under Hink-
ley’s framework, as far as we know, no result has been obtained for the limiting
distribution of the estimated change-points with a fixed d in time series models.
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This paper develops an asymptotic theory for estimating change-points in linear
and nonlinear time series models. Based on a measurable objective function, it
is shown that the estimated change-point converges weakly to the location of
the maxima of a double-sided random walk and other estimated parameters are
asymptotically normal. When the magnitude d of changed parameters is small, it
is shown that the limiting distribution can be approximated by the known distri-
bution as in Yao (1987). This provides a channel to connect our results with those
in Picard (1985) and Bai et al. (1998). The theory is applied for the self-weighted
QMLE and the local QMLE of change-points in ARMA-GARCH/IGARCH
models. A simulation study is carried out to evaluate the performance of these
estimators in the finite sample.

This paper proceeds as follows. Section 2 presents our main results. Section 3
gives the approximating distribution of the estimated change-points. Section 4
presents the results for the structure-change ARMA-GARCH/IGARCH models.
Section 5 reports simulation results. Sections 6 and 7 give the proofs of results in
Sections 2 and 4, respectively. Section 8 gives a concluding remark. The consis-
tency of the estimated change-point and its proof are given in Appendix.

2. MAIN RESULTS

Assume that the real time series {yt : t = 0,±1,±2, . . .} is F t -measurable, strictly
stationary, and ergodic, and is generated by

yt = g(ϑ,Yt−1,ηt ), (2.1)

where Ft is the σ -field generated by {ηt ,ηt−1, . . .}, Yt = (yt , . . . , yt−p+1), or
Yt = (yt , yt−1, . . .), ϑ is an m̃ × 1 unknown parameter vector, and {ηt } is inde-
pendently and identically distributed (i.i.d.). The structure of the time series {yt }
is characterized by g and the parameter ϑ . We assume that the parameter space �
is a bounded compact subset of Rm . We denote model (2.1) by M(ϑ0) when the
true parameter is ϑ = ϑ0.

Let {y1, . . . , yn} be the random sample. We assume

{y1, . . . , yk0} ∈ M(θ10) and {yk0+1, . . . , yn} ∈ M(θ20) with θ10 �= θ20,

when 1 ≤ k < n, we parameterize it as k = [nτ ] with τ ∈ (0,1), where [x] is the
integer part of x . k = [nτ ] is called the unknown change-point and k0 = [nτ0] is its
true change-point. For each k, we use the following objective function to estimate
θ10 and θ20, based on the presample and the postsample, respectively:

L1n(k,θ1) =
k∑

t=1

lt (θ1) and L2n(k,θ2) =
n∑

t=k+1

lt (θ2), (2.2)

where lt (ϑ) = l(ϑ, yt , yt−1, . . .) is a measurable function in terms of {yt } and is
almost surely (a.s.) continuous with respect to ϑ . The objective function based
on the whole sample is

Ln(k,θ1,θ2) = L1n(k,θ1)+ L2n(k,θ2).
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We can take lt (ϑ) as that in LSE, MLE, quasi-MLE, LAD-type, or M-estimators,
among others. Assume θ10 and θ20 are interior points in �. When t > k0, lt (ϑ) =
l(ϑ, yt , . . . , yk0+1, Yk0) and when t ≤ k0, lt (ϑ) = l(ϑ, yt , . . . , y1, Y0). We assume

Yk0 ∈ M(θ20) and Y0 ∈ M(θ10). (2.3)

That is, there are two processes {y1t } ∈ M(θ10) and {y2t } ∈ M(θ20) and we observe
yt = y2t when t > k0 and yt = y1t when t ≤ k0. This assumption keeps the sta-
tionarity and ergodicity of yt when t > k0 and requires its initial values from
M(θ20). Thus, the objective function (2.2) always involves these initial values and
we need to replace Y0 by some chosen constants in practice. Their effect needs to
be addressed case by case. We will discuss them in Section 4 for ARMA-GARCH
models.

Let θ̂1n(k) and θ̂2n(k) be the maximizers of L1n(k,θ1) and L2n(k,θ2) on � for
each given k. k0 is estimated by

k̂n = argmax1≤k≤n Ln

[
k, θ̂1n(k), θ̂2n(k)

]
.

In practice, 1 ≤ k ≤ n can be replaced by p̃ ≤ k ≤ n − p̃ for some integer p̃. Other
parameters are estimated by

(θ̂1n, θ̂2n) ≡ [θ̂1n(k̂n), θ̂2n(k̂n)] = argmax(θ1,θ2)∈�2

[
Ln(k̂n,θ1,θ2)

]
.

In this procedure, one needs to run two sequential estimates for the same model.
Given the advanced computing technology today, it is not difficult to implement
such a procedure. It has been used for AR models and the regression models (see
for example, Bai, 1995 and Bai et al., 1998). We now introduce two assumptions
as follows.

Assumption 2.1. When {ys : s ≤ t} ∈ M(ϑ0), E supϑ∈� |lt (ϑ)| < ∞, and
E[lt (ϑ)] has a unique maximizer at ϑ = ϑ0.

Assumption 2.2. When {yt : t = 0,±1,±2, . . .} ∈ M(ϑ0),

1

u
sup
�

∣∣∣∣∣
−1∑

t=−u

[lt (ϑ)− Elt (ϑ)]

∣∣∣∣∣= o(1), a.s., as u → ∞.

We should mention that the ergodic theorem cannot be applied to
Assumption 2.2. We need to check its near-epoch dependence (NED). A time
series {Xt } is called to be L p(ν) NED in terms of {ηt } if sup−∞<t<∞ ‖Xt‖p < ∞
and

sup
−∞<t<∞

‖Xt − E[Xt |Fk(t)]‖p = O(k−ν),

where ‖A‖ = [tr(AA′)]1/2 for a vector or matrix A, Fi ( j) is the σ -field gener-
ated by {ηj ,ηj−1, . . . , ηj−i+1} with i ≥ 1, and F0( j) = {∅,	}, p ≥ 1 and ν > 0.
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This holds for many time series models. Theorem 2.1 of Ling (2007a) can be used
to verify Assumption 2.2 if lt (ϑ) is L p(ν) NED with p > 1 and ν > 0 (see the
proof of Theorem 4.1 in Section 7).

THEOREM 2.1. If Assumptions 2.1 and 2.2 hold, then

(a) θ̂in = θi0 +op(1), i = 1,2;
(b) k̂n = k0 + Op(1).

We can write k̂n = [nτ̂n]. Then τ̂n is an estimator of τ0. This theorem implies
that the rate of convergence of τ̂n is n which is faster than that in Picard (1985)
and Bai et al. (1998) for AR models.

Assumption 2.3. When {yt : t = 1, . . . ,n} ∈ M(ϑ0), the following statements
hold:

(i) for any ϑn →p ϑ0,
n∑

t=1

[lt (ϑn)− lt (ϑ0)] = (ϑn −ϑ0)
′

n∑
t=1

Dt (ϑ0)−n(ϑn −ϑ0)
′

×
[

1

2

ϑ0 +op(1)

]
(ϑn −ϑ0),

(ii) Dt (ϑ0) is a martingale difference in terms of Ft with the covariance 	ϑ0 ,

(iii) 	ϑ0 and 
ϑ0 are positive definite matrices.

This assumption holds for the various estimators of time series models. The
sufficient conditions for Assumption 2.3(i) is given in Ling and McAleer (2010)
for a differentiable lt (θ). We now define a double-sided random walk:

W (k,θ10,θ20) =

⎧⎪⎨
⎪⎩
∑k

t=1[lt (θ10)− lt (θ20)], k > 0,

0, k = 0,∑−1
t=k[lt (θ20)− lt (θ10)], k < 0,

where yt ∈ M(θ20) when k > 0 and yt ∈ M(θ10) when k < 0. The limiting distri-
bution of (k̂n, θ̂1n, θ̂2n) is as follows.

THEOREM 2.2. If Assumptions 2.1–2.3 hold when ϑ0 = θ10 and θ20, respec-
tively, then k̂n, θ̂1n, and θ̂2n are asymptotically independent and, when n → ∞,
it follows that

(a)
√

n(θ̂1n − θ10) −→L N (0,
1

τ0

−1

θ10
	θ10


−1
θ10

)

and
√

n(θ̂2n − θ20) −→L N (0,
1

1− τ0

−1

θ20
	θ20


−1
θ20

),

(b) k̂n − k0 −→L argmaxk W (k,θ10,θ20),

where −→L denotes convergence in distribution.
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Unlike the i.i.d. case in Hinkley (1970) and Bai (1995), the double-sided
random walk W (k,θ10,θ20) is neither independent nor symmetric.

3. APPROXIMATING DISTRIBUTION OF ESTIMATED K0

The distribution of argmaxk W (k,θ10,θ20) does not have a closed form and is
therefore difficult to be used directly for statistical inference. Denote

d = θ10 − θ20 and Wd(k) = W (k,θ10,θ20).

This section investigates the limiting distribution of argmaxk Wd(k) when
‖d‖ → 0. Note that yt ∈ M(θ10) is a function of θ10 and {ηt } and similarly for
yt ∈ M(θ20). Thus, yt changes when the value of d is changed. To make it sim-
ple, we fix θ20 and assume that d = θ10 − θ20 → 0. In this case, when k > 0,
yt ∈ M(θ20) and is not changed when d → 0. But when k < 0, yt ∈ M(θ10) and
is changed when d → 0. To make it clear, when yt ∈ M(θi0), yt is denoted by
yit , lt (θ) by li t (θ), and Dt (θ) by Dit (θ), i = 1,2, etc. We make the following
assumptions.

Assumption 3.1. Let m = [(d ′
20d)−2(d ′	20d)]. For each z ∈ R, we have

−1∑
t=−[mz]

[l1t (θ20)− l1t (θ10)] = −
−1∑

t=−[mz]

d ′D2t (θ20)− [mz]

2
d ′ [
θ20 +op(1)

]
d,

where op(1) → 0 in probability as d → 0.

In this assumption, y1t = g(θ10, y1t−1, y1t−2, . . . ,ηt ) is a composite function of
θ10 and {ηt } and it is changing when θ10 changes, and so is l1t (θ10). To check it,
one needs to explore a function of θ10 and {ηt } (see Lemma 7.3 in Section 7).
It is usually more complicated than that for Assumption 2.3(i) in which one only
needs to study a function of θ and {yt } since {yt } is generated by the same ϑ0. This
issue also appears in the change-point problem with assuming d = dn , changing
over sample size n.

Assumption 3.2. D2t (θ20) is L2+ι(ν) NED in terms of {ηt } with ι > 0, where
either 2ν > 1 or 2ν = 1 and there exist constants ν1 > 0 and ι1 > 0 with 2ν1 > 1
such that

sup
−∞<t<∞

‖E[D2t |Fk+1(t)]− E[D2t |Fk(t)]‖2+ι1 = O(k−ν1). (3.1)

This assumption is to use the invariance principle in Ling (2007a) for the back-
ward sum

∑−1
t=−k D2t (θ10). The usual invariance principle for the forward sum

cannot be applied in this case. Our approximating distribution is as follows.
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THEOREM 3.1. Suppose that Assumptions 2.3(i) with ϑn = ϑ0 + Op(1/
√

n),
Assumption 2.3(ii) and (iii), and Assumptions 3.1–3.2 hold. Then, for any fixed
M, we have

(d ′
20d)2(d ′	20d)−1argmaxz∈[−M,M]Wd([mz])

−→L argmaxz∈[−M,M]

[
B(z)− 1

2
|z|
]
,

as 0 < ‖d‖ → 0, where B(z) is the standard Brownian motion in R.

Proof. Let γd = (d ′
θ20 d)(d ′	θ20d)−1. Then mγ 2
d d ′	20d → 1 as d → 0.

By Assumptions 2.3(ii) and (iii) and 3.2, and Theorem 2.2 of Ling (2007a), we
can show that

γd W +
m (z) ≡ (

√
mγdd ′) 1√

m

[mz]∑
t=1

D2t (θ20) −→L B(z), (3.2)

γd W −
m (z) ≡ (

√
mγdd ′) 1√

m

−1∑
t=−[mz]

D2t (θ20) −→L B(z), (3.3)

on D[−M, M] for any given M , as m → ∞, where D[−M, M] denotes the
space of functions on [−M, M] which are right continuous and have left-hand
limits, equipped with the Skorokhod topology as in Billingsley (1968). By
Assumptions 2.3(i) and 3.1, we can show that γd Wd([mz]) has the uniform ex-
pansion on z ∈ [−M, M],

γd Wd([mz]) = −1

2
|z|+γd W +

m (z)I{z > 0}+γd W −
m (z)I{z ≤ 0}+op(1)

−→L −1

2
|z|+ B(z) on D[−M, M],

as 0 < ‖d‖ → 0, where the last step holds by (3.2) and (3.3). The random
element argmaxz∈[−M,M]Wd([mz]) has the same distribution as argmaxz∈[−M,M]
{γd Wd([mz])}. By the previous equations and using the continuous mapping
theorem for the argmax function, we can claim that the conclusion holds. n

Let Fd(x) be the distribution of argmaxk Wd(k). Then, Fd(x) and the distribu-
tion of argmaxz{γd Wd([z])} are identical. In practice, d is fixed. Thus, there is a
M such that∣∣Fd(x)− P(argmaxz∈[−s,s]{γd Wd([z])} ≤ x)

∣∣≤ ε,

when s > M . Thus,∣∣Fd(x)− P(m argmaxz∈[−M,M]{γd Wd([mz])}x)
∣∣

= ∣∣Fd(x)− P(argmaxz∈[−mM,mM]{γd Wd([z])} ≤ x)
∣∣≤ ε.
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Since the probability of −|z|/2+ B(z) when z /∈ [−M, M] is small as M is large,
we can see that

Fd(x) ≈ P(argmaxγ∈R[B(γ )−|γ |/2] ≤ x),

when d is small. Yao (1987) showed that the distribution F(x) of argmaxγ∈R
[B(γ )−|γ |/2] has the density function:

f (x) = 3

2
e|x |�

(
3

2

√|x |
)

− 1

2
�

(√|x |
2

)
, where �(x) =

∫ ∞

x

1√
2π

exp

(
−u2

2

)
du,

and x ∈ R ≡ (−∞,∞). By Theorem 3.1, it is reasonable to approximate the
distribution of (d ′
20d)2(d ′	20d)−1(k̂n − k0) by F(x) when d is small. F(x)
can be used to construct the confidence interval of k0 and its percentiles can be
found in Yao (1987). The simulation results in Yao (1987) for i.i.d. data show that
F(x) approximates the empirical distribution of k̂n very well in finite samples.
For time series models, some simulation results can be found in Bai et al. (1998)
and Ling (2003). We note that our framework is different from that in Picard
(1985) and Bai et al. (1998), where they assume that θ10 = θn and θ20 = θ1n ,
d = dn = θn − θ1n → 0 and ‖dn‖√n → ∞ as n → ∞. They estimate (θn,θ1n)
and show that the limiting distribution of the normalized k̂n is F(x). Their true
parameter (θn,θ1n) is changed with n, while the true parameter (θ10,θ20) in our
model in Theorems 2.1 and 2.2 is fixed and hence d is fixed. Theorem 3.1 is
only to give a reasonable approximating distribution to the limiting distribution
of k̂n in Theorem 3.2 when d is small. The confidence intervals of k0 based on
the two frameworks are identical when d or dn is small since we use the same
approximating distribution.

4. ESTIMATION OF CHANGE-POINT IN ARMA-GARCH/IGARCH
MODEL

This section considers the following autoregressive moving-average (ARMA)
model with the generalized autoregressive conditional heteroscedasticity
(GARCH) errors:

φ(B)yt = ψ(B)εt , (4.1)

εt = ηt

√
ht and ht = α0 +

r∑
i=1

αiε
2
t−i +

s∑
i=1

βi ht−i , (4.2)

where φ(z) = 1 − φ1z − ·· · − φpz p, ψ(z) = 1 + ψ1z + ·· · + ψq zq , p, q, r , and
s are known, α0 > 0, αi ≥ 0 (i = 1, . . . ,r), βj ≥ 0 ( j = 1, . . . ,s), and {ηt } are
a sequence of i.i.d. random variables with zero mean and variance 1. Denote
γ = (φ1, . . . ,φp,ψ1, . . . ,ψq)′, δ = (α0,α1, . . . ,αr ,β1, . . . ,βs)

′, and ϑ = (γ ′,δ′)′.
The parameter space is � = �γ ×�δ , where �γ ⊂ R p+q and �δ ⊂ Rr+s+1

0 are
compact, where R0 = [0,∞). We denote models (4.1) and (4.2) by M(ϑ0) when
the true value of ϑ is ϑ0. We introduce the following conditions:
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Assumption 4.1. For each ϑ ∈ �, φ(z) �= 0 and ψ(z) �= 0 when |z| ≤ 1, and
φ(z) and ψ(z) have no common root with φp �= 0 or ψq �= 0.

Assumption 4.2. α(z) ≡∑r
i=1 αi zi and β(z) ≡ 1 −∑s

i=1 βi zi have no com-
mon root, α(1) �= 0, αr +βs �= 0, and

∑r
i=1 αi +∑s

j=1 βj ≤ 1 for each ϑ ∈ �.

Assumption 4.3. η2
t has a nondegenerate distribution with Eη2

t = 1.

Models (4.1) and (4.2) have a finite second moment when
∑r

i=1 αi +∑s
j=1 βj < 1. When

∑r
i=1 αi +∑s

j=1 βj = 1, model (4.2) is called the IGARCH

model and in this case, Ey2
t = ∞ and E |yt |2ι < ∞ for any ι ∈ (0,1). We assume

that

{y1, . . . , yk0} ∈ M(θ10) and {yk0+1, . . . , yn} ∈ M(θ20), (4.3)

and θ10 and θ20 are interior points in �. We first consider the self-weighted quasi-
maximum likelihood estimator (SQMLE) of parameters (k0,θ10,θ20). In this case,

L1n(k,θ1) =
k∑

t=1

wt lt (θ1) and L2n(k,θ2) =
n∑

t=k+1

wt l t (θ2), (4.4)

where

lt (ϑ) = −1

2

[
loght (ϑ)+ ε2

t (ϑ)

ht (ϑ)

]
, (4.5)

εt (ϑ) = yt −∑p
i=1 φi yt−i −∑q

i=1 ψiεt−i (ϑ), ht (ϑ) = α0 +∑r
i=1 αiε

2
t−i (ϑ) +∑s

i=1 βi ht−i (ϑ), and

wt =
[

1+
∞∑

i=1

i−2|yt−i |
]−3

.

This particular weight wt is just for simplicity. We refer to Ling (2007b) for other
choices.

We assume that the initial condition (2.3) is satisfied. Denote Ut (ϑ) =(
[∂εt (ϑ)/∂ϑ]/

√
ht (ϑ),∂ht (ϑ)/∂ϑ/[

√
2ht (ϑ)]

)
and ξt (ϑ) = [εt (ϑ)/

√
ht (ϑ),

(1− ε2
t (ϑ)/ht (ϑ))/

√
2]′. Then

Dt (ϑ) = ∂lt (ϑ)/∂ϑ = Ut (ϑ)ξt (ϑ), (4.6)

Pt (ϑ) = −∂2lt (ϑ)

∂ϑ∂ϑ ′

= Ut (ϑ)Ut (ϑ)′ +
[ε2

t (ϑ)

ht (ϑ)
−1
]

R1t (ϑ)+ εt (ϑ)√
ht (ϑ)

R2t (ϑ), (4.7)

where R1t (ϑ) = [∂ht (ϑ)/∂ϑ][∂ht (ϑ)/∂ϑ ′]/2h2
t (ϑ)− [∂2ht (ϑ)/∂ϑ∂ϑ ′]/2ht (ϑ)

and R2t (ϑ) = 2[∂ εt (ϑ)/∂ϑ] [∂ht (ϑ)/∂ϑ ′]/
√

ht (ϑ) + [∂2εt (ϑ)/∂ϑ∂ϑ ′]/x
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√
ht (ϑ). When {yt } ∈ M(ϑ0), εt (ϑ0) = εt and ht (ϑ0) = ht , and ξt (ϑ0) = [ηt , (1−

η2
t )/

√
2]′. Let J = E[ξt (ϑ0)ξ

′
t (ϑ0)]. We have the following result:

THEOREM 4.1. Suppose that Assumptions 4.1–4.3 hold, Eη4
t < ∞ and J > 0.

Then, k̂n, θ̂1n, and θ̂2n are asymptotically independent and, when n → ∞, it fol-
lows that

(a)
√

n(θ̂1n − θ10) −→L N (0,
1

τ0

−1

s1 	s1

−1
s1 ),

√
n(θ̂2n − θ20) −→L N (0,

1

1− τ0

−1

s2 	s2

−1
s2 ),

(b) k̂n − k0 −→L argmax
k

Ws(k,θ10,θ20),

where 
si = E[wtUt (θi0)U ′
t (θi0)] and 	si = E[w2

t Ut (θi0)JU ′
t (θi0)] as i = 1,2

and Ws(k,θ10,θ20) is defined as W (k,θ10,θ20) in Theorem 2.2 with lt (ϑ) replaced
by wt lt (ϑ).

The SQMLE of (θ10,θ20) may not be as efficient as its QMLE (see a discussion
in Ling, 2007b). This may affect the estimator of k0. When Ey4

t < ∞, we can
take wt = 1 such that the SQMLE reduces to the QMLE. We refer to Francq and
Zakoan (2004) for the QMLE of models (4.1) and (4.2) when Ey4

t < ∞. However,
we cannot show that Theorem 4.1 holds when Ey4

t = ∞ with wt = 1. We now
consider the local QMLE without a weighted function wt . Specifically, using θ̂in

in Theorem 4.1 as an initial estimator of θi0, i = 1,2, the local QMLE is obtained
via the following one-step iteration:

θ̃1n = θ̂1n −
⎡
⎣ k̂n∑

t=1

Pt (θ̂1n)

⎤
⎦

−1
k̂n∑

t=1

Dt (θ̂1n), (4.8)

θ̃2n = θ̂2n −
⎡
⎣ n∑

t=k̂n+1

Pt (θ̂2n)

⎤
⎦

−1
n∑

t=k̂n+1

Dt (θ̂2n), (4.9)

k̃n = argmaxkL≤k≤n−kL

⎡
⎣ k∑

t=1

lt (θ̃1n)+
n∑

t=k+1

lt (θ̃2n)

⎤
⎦ . (4.10)

For this local QMLE, we have the following result:

THEOREM 4.2. Suppose that Assumptions 4.1–4.3 hold, Eη4
t < ∞ and J > 0.

If (θ̃1n, θ̃2n, k̃n) is obtained through (4.8)–(4.10), then, when n → ∞, it follows
that

(a)
√

n(θ̃1n − θ10) −→L N (0,
1

τ0

−1

1 	1

−1
1 ),

√
n(θ̃2n − θ20) −→L N (0,

1

1− τ0

−1

2 	2

−1
2 ),
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(b) k̃n − k0 −→L argmax
k

W (k,θ10,θ20),

where 
i = E[Ut (θi0)U ′
t (θi0)] and 	i = E[Ut (θi0)JU ′

t (θi0)], i = 1,2.

The approximating distribution in Theorem 3.1 can be used for both k̂n and k̃n .
We only state one for k̃n here.

THEOREM 4.3. If the assumptions of Theorem 4.2 hold, then for any fixed M,
we have

(d ′
2d)2(d ′	2d)−1argmaxz∈[−M,M]W ([mz],θ10,θ20)

−→L argmaxz∈[−M,M]

[
B(z)− 1

2
|z|
]
,

as 0 < ‖d‖ → 0, where d = θ10 − θ20 and m = [(d ′
2d)−2(d ′	2d)].

For models (4.1) and (4.2), the initial condition (2.3) is not satisfied in practice.
Since we have only one data set {yn, . . . , y1}, we use this and replace Y0 by some
constant Ỹ0 to calculate lt (θ). Although we do not know k0, this calculation has
implied that we replace Yk0 by Ỹk0 = {yk0 , . . . , y1, Ỹ0} when t > k0. With these
initial values, the expansion in Assumption 2.3(i) still holds and hence they do
not affect the asymptotic results of θ̂1n and θ̂2n (see Zhu, 2010 for models (4.1)
and (4.2)). Ling and McAleer (2010) gave a set of initial conditions for a class of
time series models. To see their effect on the estimated change-point k0, we denote

l̃t (θ1) = l(θ1, yt , . . . , y1, Ỹ0) when t ≤ k0

and l̃t (θ2) = l(θ2, yt , . . . , yk0+1.Ỹk0) when t > k0.

From the proof of Theorem 4.2, we can see that

k̃n − k0 = argmink W̃t (k,θ10,θ20)+op(1),

where

W̃t (k,θ10,θ20) =

⎧⎪⎨
⎪⎩
∑k

t=k0+1[l̃t (θ20)− l̃t (θ10)], k > k0,

0, k = k0,∑k0
t=k+1[l̃t (θ10)− l̃t (θ20)], k < k0.

Since the distributions of W (k,θ10,θ20) and W̃t (k,θ10,θ20) are different, the ini-
tial values always affect the asymptotic distribution of the estimated k0. However,
by Taylor’s expansion, we have

k0∑
t=k+1

{[lt (θ10)− l̃t (θ10)]− [lt (θ20)− l̃t (θ20)]}

= d
k0∑

t=k+1

[Dt (ξ
∗
1 )− D̃t (ξ

∗
1 )] = d Op(ρ

k0−k) = o(1),
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when d → 0, where ξ∗
1 is between θ10 and θ20, ρ ∈ (0,1) and the second equation

is from Zhu (2010). Similarly, we have

k∑
t=k0+1

{[lt (θ10)− l̃t (θ10)]− [lt (θ20)− l̃t (θ20)]} = o(1),

when d → 0. Thus, we can see that the approximation distribution in Theorem 4.3
is still valid in this case.

Models (4.1) and (4.2) include the ARMA model (i.e., the case with ht = α0)
and the GARCH model (i.e., the case with yt = εt ) as two important special
cases. By deleting the corresponding components in Theorem 4.1, we can ob-
tain the asymptotic results of the self-weighted LSE of the structural change
ARMA model with a finite variance. By deleting the corresponding components
in Theorem 4.2, we can obtain the asymptotic results of the local QMLE of the
structural change GARCH/IGARCH models. Similarly, the approximating distri-
bution in Theorem 4.3 still can be used. Even for the two special cases, our results
are the first time to be given in the literature.

5. SIMULATION STUDY

This section examines the performance of our asymptotic results in the finite sam-
ples via some Monte Carlo experiments. The data are generated by the following
AR(1)-GARCH(1,1) model:

yt = φ1 yt−1 I{t≤k0} +φ2 yt−1 I{t>k0} + εt ,

εt = ηt

√
ht ,

and ht = (α10 +α11ε
2
t−1 +β11ht−1)I{t≤k0} + (α20 +α21ε

2
t−1 +β22ht−1)I{t>k0},

where ηt ∼ i.i.d. N (0,1). The true parameters are θ10 = (0.6,0.1,0.1,0.45)′ and
θ20 = θ10 + d(1,1,1,1)′ with d = 0.05, 0.1, and 0.2, respectively. We use 4,000
replications in all the experiments. The simulations are carried out by MATLAB
and the optimization algorithm in the package Fmincon. Under the two sets of
parameters, the model has a finite fourth moment. We can take the weight wt = 1
in which case self-weighted MLE (SMLE) is the MLE since ηt ∼ N (0,1). The
SMLE here is the SQMLE defined in Section 4. We compare the performances of
MLEs, SMLE, and local MLEs (LMLE).

The empirical means, standard deviations (SD), and asymptotic standard devi-
ations (AD) of these estimators for θ10 and θ20 are summarized in Tables 1 and 2
when the sample sizes are n = 400 and n = 600 with d = 0.1, respectively. The
results are similar for other cases and hence they are not reported here. From the
two tables, we can see that the SD and AD of the MLE and LMLE are almost
identical, but they are smaller than those of the SMLE, respectively. Furthermore,
we see that the SDs and ADs of all estimators become smaller and SDs and ADs
become closer as the sample size n is increased from 400 to 600. This is the same
as the usual results in the AR-GARCH model.
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TABLE 1. Mean and standard deviation of MLE, SMLE, and LMLE of θ10 and
θ20, n = 400 and k0 = 200

θ10 = (0.6,0.1,0.1,0.45) θ20 = (0.7,0.2,0.2,0.55)

φ̂1n α̂10n α̂11n β̂11n φ̂2n α̂20n α̂21n β̂21n

MLE Mean .5911 .0986 .1166 .4340 .6942 .2718 .2088 .4575
SD .0648 .0475 .0798 .2271 .0564 .1384 .0947 .2014
AD .0586 .0590 .0799 .2810 .0533 .1474 .0964 .2275

SMLE Mean .5899 .0915 .1427 .4448 .7015 .3096 .2520 .3790
SD .0828 .0560 .1331 .2791 .0842 .1899 .1489 .2691
AD .0720 .0616 .1062 .3018 .0754 .2185 .1453 .3334

LMLE Mean .5861 .0957 .1350 .4300 .6898 .2446 .2207 .4880
SD .0682 .0534 .1004 .2564 .0574 .1531 .1112 .2318
AD .0598 .0540 .0838 .2580 .0529 .1281 .0943 .1992

TABLE 2. Mean and standard deviation of MLE, SMLE, and LMLE of θ10 and
θ20, n = 600 and k0 = 300

θ10 = (0.6,0.1,0.1,0.45) θ20 = (0.7,0.2,0.2,0.55)

φ̂1n α̂10n α̂11n β̂11n φ̂2n α̂20n α̂21n β̂21n

MLE Mean .5952 .0992 .1092 .4396 .6958 .2562 .2059 .4749
SD .0519 .0462 .0659 .2241 .0458 .1216 .0795 .1841
AD .0479 .0551 .0655 .2642 .0434 .1179 .0788 .1852

SMLE Mean .5944 .0988 .1227 .4294 .7009 .2891 .2380 .4085
SD .0636 .0568 .0966 .2834 .0674 .1666 .1169 .2501
AD .0581 .0611 .0847 .2977 .0619 .1713 .1181 .2675

LMLE Mean .5918 .1004 .1161 .4285 .6927 .2370 .2128 .4982
SD .0527 .0526 .0742 .2544 .0461 .1345 .0878 .2075
AD .0483 .0527 .0664 .2512 .0433 .1060 .0774 .1675

Table 3 reports the mean, SD, 90% range, and estimated asymptotic confidence
interval (EACI) of k0 when n = 400, 600, and 900. The empirical mean and SD
are the average and SD of the estimated k0 from the 4,000 replications. The 90%
range is the range between the 5% and 95% quantiles of the distribution of the
estimated k0. For the case with LMLE, the EACI is computed by the following
formula:[
k̃n − [�Fω/2]−1, k̃n − [�Fω/2]+1

]
,

where Fω/2 is the ωth quantile of the distribution F , � = (d̃ ′	̃2d)(d̃ ′
̃2d̃)−2,
d̃ = θ̃2n − θ̃1n , and 
̃2 and 	̃2 are the corresponding sample estimators of 
2
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TABLE 3. MLE, SMLE, LMLE, and confidence intervals of the change point k0

n k0 Mean SD 90% Range EACI

d = 0.05

400 200 MLE 203.2733 36.2125 [136,273] [175,231]
SMLE 191.3768 42.4147 [110,269] [163,221]
LMLE 194.9743 41.4121 [113,270] [164,225]

600 300 MLE 303.9853 35.4312 [239,372] [271,336]
SMLE 295.0708 40.3188 [217,369] [260,333]
LMLE 299.5288 38.0858 [225,369] [267,331]

900 450 MLE 453.4170 33.5231 [391,515] [417,488]
SMLE 445.9773 39.6844 [370,519] [405,487]
LMLE 451.7503 35.9959 [383,519] [416,486]

d = 0.1

400 200 MLE 202.7985 15.8064 [183,227] [193,212]
SMLE 195.0858 26.0558 [140,228] [182,206]
LMLE 198.3490 24.3610 [150,229] [188,208]

600 300 MLE 302.5913 15.6842 [282,328] [292,312]
SMLE 296.9988 22.7459 [254,327] [283,310]
LMLE 300.3470 19.0976 [270,327] [290,310]

900 450 MLE 452.6083 14.6081 [433,475] [441,463]
SMLE 447.9118 20.9562 [409,477] [432,462]
LMLE 451.0370 16.9072 [426,474] [440,462]

d = 0.2

400 200 MLE 201.3980 5.6372 [195,210] [198,204]
SMLE 195.0540 17.7501 [157,207] [187,200]
LMLE 197.7855 14.4514 [176,208] [194,201]

600 300 MLE 301.4453 5.5491 [295,310] [298,304]
SMLE 296.4353 15.4377 [271,307] [289,302]
LMLE 298.6930 11.8694 [286,308] [295,302]

900 450 MLE 451.4530 5.2890 [445,460] [448,454]
SMLE 447.8860 11.7595 [430,458] [440,454]
LMLE 449.9695 8.3877 [441,458] [446,453]

and 	2, respectively, based on the LMLE θ̃2n of θ20 and the data set {yk̃, . . . , yn}.
Using the density function f (x) in Section 3, we obtain F0.05 = 7.792. The EACI
is computed similarly for other cases. From Table 3, we see that the means are
almost unbiased in all cases. The SD and the length of EACI change just a little
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when n increases. This is because the estimated k0 is not a consistent estima-
tor of k0. This finding is similar to those in Bai (1995) for the structure-change
regression model and in Bai et al. (1998) for the structure-change multivariate AR
models and cointegrating time series models. However, the SD and the length of
EACI decrease a lot when d increases, which implies that the estimators are more
accurate when d is larger. The 90% range is slightly wider than EACI in all cases.
The EACIs based on MLE and SMLE are almost identical, but they are generally
narrower than those based on the SMLE. This simulation study indicates that our
results should be useful in practice.

6. PROOFS OF THEOREMS 2.1 AND 2.2

Proof of Theorem 2.1. First, when yt ∈ M(ϑ), using the ergodic theorem and
Assumption 2.1 and partitioning � into finite balls with radius δ small enough,
we can show that

lim
n→∞max

�

∣∣∣∣∣∣
1

[nτ2]− [nτ1]

[nτ2]∑
t=[nτ1]+1

[lt (ϑ)− Elt (ϑ)]

∣∣∣∣∣∣= 0 a.s., (6.1)

for any fixed τ1 and τ2 with τ2 > τ1 ≥ 0, as n → ∞.
(a) We prove only for the case when k̂n ≤ k0, while other case is similar. Denote

�n(k,θ1,θ2) = Ln(k,θ1,θ2)− Ln(k0,θ10,θ20).

We use the convention:
∑k0

t=k0+1 Xt = 0 for any series Xt . When k ≤ k0, we have

�n(k,θ1,θ2) =
k∑

t=1

{lt (θ1)− lt (θ10)}+
n∑

t=k0+1

{lt (θ2)− lt (θ20)}

+
k0∑

t=k+1

{lt (θ2)− lt (θ10)}. (6.2)

By Lemma 9.1 in Appendix, we can assume that k̂n,k ∈ [kL ,n − kL ], where
kL = [nτ̃ ], τ̃ ∈ (0,1/2) and τ0 ∈ (τ̃ ,1 − τ̃ ). Let �δ = {θ1 : ‖θ1 − θ10‖ ≥ δ}. By
Assumption 2.1, C = maxθ1∈�δ [Elt (θ1) − Elt (θ10)] < 0 when t ≤ k0. Thus, by
(6.1) and Lemma 1 in Chow and Teicher (1968, p. 31), we have

1

n
max

kL≤k≤k0
max
θ1∈�δ

[
k∑

t=1

{lt (θ1)− lt (θ10)}
]

≤ 2

n
max

kL≤k≤k0
max
θ1∈�δ

∣∣∣∣∣
k∑

t=1

[lt (θ1)− Elt (θ1)]

∣∣∣∣∣+ τ̃ max
θ1∈�δ

[Elt (θ1)− Elt (θ10)]

= τ̃C +op(1). (6.3)
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Since maxθ2∈�[Elt (θ2)− Elt (θ20)] = 0 when t > k0, by (6.1), it follows that

1

n
max
θ2∈�

⎡
⎣ n∑

t=k0+1

{lt (θ2)− lt (θ20)}
⎤
⎦

≤ 2

n
max
θ2∈�

∣∣∣∣∣∣
n∑

t=k0+1

[lt (θ2)− Elt (θ2)]

∣∣∣∣∣∣+ (1− τ0)max
θ2∈�

[Elt (θ2)− Elt (θ20)]

= op(1). (6.4)

Note that maxθ∈�[Elt (θ)− Elt (θ10)] = 0 when t ≤ k0. When |k0 − k| ≥ M ,

1

n
max

k−k0≤−M
sup
θ2∈�

⎡
⎣ k0∑

t=k+1

{lt (θ2)− lt (θ10)}
⎤
⎦

≤ 2

n
max

k−k0≤−M
sup
θ∈�

∣∣∣∣∣∣
k0∑

t=k+1

[lt (θ)− Elt (θ)]

∣∣∣∣∣∣+
k0 − k

n
max
θ∈�

[Elt (θ)− Elt (θ10)]

≤ 2 max
k−k0≤−M

sup
θ∈�

1

k0 − k

∣∣∣∣∣∣
k0∑

t=k+1

[lt (θ)− Elt (θ)]

∣∣∣∣∣∣
=d 2max

u≥M
sup
θ∈�

1

u

∣∣∣∣∣∣
0∑

t=−u+1

[lt (θ)− Elt (θ)]

∣∣∣∣∣∣ (by stationarity of {yt })

= opM (1), (6.5)

where opM (1) → 0 in probability when M → ∞ and it holds uniformly in n,
where the last step holds by Assumption 2.2 and Lemma 1 in Chow and Teicher
(1968, p. 31), and “ =d ” denotes “ = ” in distribution. On the event {‖θ̂1n −θ10‖ ≥
δ, |k̂n − k0| ≥ M},

max
(θ1,θ2)∈�δ×�

max|k0−k|≥M
�n(k,θ1,θ2) ≥ 0.

Furthermore, by (6.2)–(6.5), we have

P(‖θ̂1n − θ10‖ ≥ δ, |k̂n − k0| ≥ M) ≤ P

(
1

n
max

(θ1,θ2)∈�δ×�
max|k0−k|≥M

�n(k,θ1,θ2) ≥ 0

)
≤ P(τ̃C +opM (1)+op(1) ≥ 0) → 0, (6.6)

as M , n → ∞. When |k0 − k| ≤ M , the third term of (6.2) is less than

2
k0∑

t=k+1

max
θ1∈�

|lt (θ1)| = op(n). (6.7)



ESTIMATION OF CHANGE-POINTS IN TIME SERIES MODELS 17

On the event {‖θ̂1n − θ10‖ ≥ δ, |k̂n − k0| ≤ M},
max

(θ1,θ2)∈�δ×�
max|k0−k|≤M

�n(k,θ1,θ2) ≥ 0.

Furthermore, by (6.2)–(6.4) and (6.7), we have

P(‖θ̂1n − θ10‖ ≥ δ, |k̂n − k0| ≤ M) ≤ P

(
1

n
max
�δ

max|k0−k|≤M
�n(k,θ1,θ2) ≥ 0

)
≤ P(τ̃C +op(1) ≥ 0) → 0, (6.8)

as n → ∞ for any given M . By (6.6) and (6.8), we can see that θ̂1n −θ10 = op(1).
Similarly, we can show that θ̂2n − θ20 = op(1). Thus, (a) holds.

(b) We note that

k̂n∑
t=1

lt (θ̂1n)+
n∑

k̂n+1

lt (θ̂2n) ≥ Ln[k0, θ̂1n(k0), θ̂2n(k0)] ≥
k0∑

t=1

lt (θ̂1n)+
n∑

k0+1

lt (θ̂2n).

Thus,

−
k0∑

t=k̂n+1

lt (θ̂1n)+
k0∑

t=k̂n+1

lt (θ̂2n) ≥ 0.

By (a) of this Theorem, Assumption 2.1, and the dominated convergence theorem,

lim
n→∞|Elt (θ̂in)− Elt (θi0)|

≤ lim
δ→0

[
E sup

‖θi −θi0‖<δ
|lt (θi )− lt (θi0)|+ lim

n→∞ Eξt I{‖θ̂in − θi0‖ ≥ δ}
]

= 0,

i = 1,2, uniformly in t , where ξt = 2maxθi ∈� |lt (θi )|.
Denote C0 = Elt (θ10)− Elt (θ20). Then C0 > 0 when t ≤ k0 by Assumption 2.1.

Thus, by the previous two inequalities, we have

2

k0 − k̂n
sup
θ∈�

∣∣∣∣∣∣
k0∑

t=k̂n+1

[lt (θ)− Elt (θ)]

∣∣∣∣∣∣
≥ 1

k0 − k̂n

⎧⎨
⎩−

k0∑
t=k̂n+1

[lt (θ̂1n)− Elt (θ̂1n)]+
k0∑

t=k̂n+1

[lt (θ̂2n)− Elt (θ̂2n)]

⎫⎬
⎭

≥ 1

k0 − k̂n

k0∑
t=k̂n+1

[
Elt (θ̂1n)− Elt (θ̂2n)

]
= C0 +o(1),
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as n → ∞. By the previous inequality and Assumption 2.2, for any ε > 0, we have

P(k0 − k̂n > M) = P

⎛
⎜⎝k0 − k̂n > M,

2

k0 − k̂n
sup
θ∈�

∣∣∣∣∣∣∣
k0∑

t=k̂n+1

[lt (θ)− Elt (θ)]

∣∣∣∣∣∣∣≥ C0 +o(1)

⎞
⎟⎠

≤ P

⎛
⎝ max

k0−k>M

2

k0 − k
sup
θ∈�

∣∣∣∣∣∣
k0∑

t=k+1

[lt (θ)− Elt (θ)]

∣∣∣∣∣∣≥ C0 +o(1)

⎞
⎠

≤ P

⎛
⎝ max

k0−k>M

2

k0 − k
sup
θ∈�

∣∣∣∣∣∣
k0∑

t=k+1

[lt (θ)− Elt (θ)]

∣∣∣∣∣∣≥
C0

2

⎞
⎠+ ε

2

= P

⎛
⎝max

u>M

2

u
sup
θ∈�

∣∣∣∣∣∣
−1∑

t=−u

[lt (θ)− Elt (θ)]

∣∣∣∣∣∣≥
C0

2

⎞
⎠+ ε

2
< ε,

as M > 0 is large enough, where the last equation holds by the stationarity of {yt }.
Thus, k0 − k̂n = Op(1). This completes the proof. n

Proof of Theorem 2.2. Denote

û1 =√k0(θ̂1n − θ10),

û2 =√n − k0(θ̂2n − θ20),

u∗
1 = 
−1

θ10√
k0

k0∑
t=1

Dt (θ10),

u∗
2 = 
−1

θ20√
n − k0

n∑
t=k0+1

Dt (θ10).

By Assumption 2.3, we have

k0∑
t=1

{lt (θ̂1n)− lt (θ10)} = û′
1
θ10 u∗

1 − û′
1

[
1

2

θ10 +op(1)

]
]û1

= 1

2

[
−‖
1/2

θ10
(û1 −u∗

1)‖2 +‖

1/2
θ10

u∗
1‖2
]
(1+op(1)), (6.9)

n∑
t=k0+1

{lt (θ̂2n)− lt (θ20)} = û′
2
θ20 u∗

2 − û′
2

[
1

2

θ20 +op(1)

]
û2

= 1

2

[
−‖
1/2

θ20
(û2 −u∗

2)‖2 +‖

1/2
θ20

u∗
2‖2
]
(1+op(1)). (6.10)

When k̂n < k0, by (6.2), (6.9), and (6.10), we have

�n

(
k̂n, θ̂1n, θ̂2n

)
= −1

2

[
‖
1/2

θ10
(û1 −u∗

1)‖2 +‖

1/2
θ20

(û2 −u∗
2)‖2

]
(1+op(1))
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+ 1

2

(
‖
1/2

θ10
u∗

1‖+‖

1/2
θ20

u∗
2‖2
)
(1+op(1))

+
k0∑

t=k̂n+1

{lt (θ̂2n)− lt (θ̂1n)}. (6.11)

Let θ∗
1 = θ10 + u∗

1/
√

k0 and θ∗
2 = θ20 + u∗

2/
√

n − k0. By Assumption 2.3, similar
to (6.11), we have

�n(k̂n,θ∗
1 ,θ∗

2 ) = 1

2
(‖
1/2

θ10
u

∗
1
‖2 +‖


1/2
θ20

u∗
2‖2)(1+op(1))

+
k0∑

t=k̂n+1

{lt (θ∗
2 )− lt (θ

∗
1 )}.

Note that lt (θ∗
i ) →p lt (θi0) and lt [θ̂in] →p lt (θi0), i = 1,2. Given any M > 0, on

the event Kn = {0 < k0 − k̂n < M},

0 ≤ �n

(
k̂n, θ̂1n, θ̂2n

)
−�n(k̂n,θ∗

1 ,θ∗
2 )

= −1

2

[
‖
1/2

θ10
(û1 −u∗

1)‖2 +‖

1/2
θ20

(û2 −u∗
2)‖2

]
(1+op(1))+op(1).

Thus, we can claim that, on Kn ,

ûi −u∗
i = op(1), i = 1,2. (6.12)

Similarly, we can show that on the event Kn = {−M < k0 − k̂n < 0}, (6.12) holds.
Since k̂n − k0 = Op(1), we can claim that (a) holds by the central limit theorem.
Furthermore, we have

�n

(
k̂n, θ̂1n, θ̂2n

)
= 1

2

(
‖
1/2

θ10
u∗

1‖2 +‖

1/2
θ20

u∗
2‖2
)

+ I{k̂n ≤ k0}
k0∑

t=k̂n+1

[lt (θ20)− lt (θ10)]

+ I{k̂n > k0}
k̂n∑

t=k0+1

[lt (θ20)− lt (θ10)]+op(1).

Thus, by the strict stationarity of {yt },

k̂n − k0 = argmaxk

⎧⎨
⎩I{k ≤ k0}

k0∑
t=k+1

[lt (θ20)− lt (θ10)]+ I{k > k0}

×
k∑

t=k0+1

[lt (θ10)− lt (θ20)]

⎫⎬
⎭
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− k0 +op(1) −→L argmaxk W (k,θ10,θ20),

as n → ∞. This completes the proof. n

7. PROOFS OF THEOREMS 4.1–4.3

We first give one lemma which is used for the L p(ν)-NED of wt lt (ϑ). Its proof
is given in Ling (2014).

LEMMA 7.1. Suppose that {yt } ∈ M(ϑ). If Assumptions 4.1–4.2 hold, then, for
any ι ∈ (0,1), it follows that

(a) E |ht − E[ht |Fk(t)]|ι = O(ρk),

(b) E |εt − E[εt |Fk(t)]|2ι = O(ρk),

(c) E |yt − E[yt |Fk(t)]|2ι = O(ρk).

Proof of Theorem 4.1. Assumption 2.1 was verified in Ling (2007b). We only
need to verify Assumption 2.2. First, by Assumptions 4.1–4.2, εt (ϑ) and ht (ϑ)
have the following expansions:

εt (ϑ) =
∞∑

i=0

ai (ϑ)yt−i and ht (ϑ) =
∞∑

i=0

bi (ϑ)ε2
t (ϑ), (7.1)

where sup� ai (ϑ) = O(ρi ) and sup� bi (ϑ) = O(ρi ) with ρ ∈ (0,1). Thus,
we have supϑ∈� |εt (ϑ)| ≤ ξρt and supϑ∈� ht (ϑ) ≤ ξ2

ρt , where ξρt = C + C∑∞
i=0 ρi |yt−i | and C is a constant. Using this, we can show that E supϑ∈�

|wt lt (ϑ)|1+ι < ∞.
We now show that

E sup
�

|wlt (ϑ)− E[wt lt (ϑ)|Fk(t)]|1+ι = O(k−ν), (7.2)

for some ν > 0. By Lemma 7.1 and (7.1), it is straightforward to show that

E sup
�

|ε2
t (ϑ)− E[ε2

t (ϑ)|Fk(t)]|2ι = O(ρk) and

E sup
�

|ht (ϑ)− E[ht (ϑ)|Fk(t)]|ι = O(ρk),

for any ι ∈ (0,1). Furthermore, we can show that, for small enough ι > 0,

E |wt − E[wt |Fk(t)]|ι = O(k−ν) and E sup
�

∣∣∣ε2
t (ϑ)

ht (ϑ)
− E

[ε2
t (ϑ)

ht (ϑ)

∣∣∣Fk(t)
]∣∣∣2ι = o(ρk).

Note that wt and h−1
t is bounded and E |εt (ϑ)|8ι < ∞ as ι < 1/4. By the previous

equations, we have
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E sup
�

∣∣∣wtε
2
t (ϑ)

ht (ϑ)
− E

[wtε
2
t (ϑ)

ht (ϑ)

∣∣∣Fk(t)
]∣∣∣2ι

≤ O(1)E sup
�

∣∣∣wtε
2
t (ϑ)

ht (ϑ)
− E

[
wt

∣∣∣Fk(t)
]

E
[ε2

t (ϑ)

ht (ϑ)

∣∣∣Fk(t)
]∣∣∣2ι

≤ O(1)E

{
wt sup

�

∣∣∣ε2
t (ϑ)

ht (ϑ)
− E

[ε2
t (ϑ)

ht (ϑ)

∣∣∣Fk(t)
]∣∣∣
}2ι

+ O(1)E sup
�

{ε2
t (ϑ)

ht (ϑ)

∣∣∣wt − E[wt |Fk(t)]
∣∣∣}2ι

≤ O(1)E sup
�

∣∣∣ε2
t (ϑ)

ht (ϑ)
− E

[ε2
t (ϑ)

ht (ϑ)

∣∣∣Fk(t)
]∣∣∣2ι

+ O(1)

(
E sup

�

{ε2
t (ϑ)

ht (ϑ)

}4ι
E
∣∣∣wt − E[wt |Fk(t)]

∣∣∣4ι
)1/2

= O(k−ν).

By Holder’s inequality and the previous inequality, we have

E sup
�

∣∣∣wtε
2
t (ϑ)

ht (ϑ)
− E

[wtε
2
t (ϑ)

ht (ϑ)

∣∣∣Fk(t)
]∣∣∣1+ι

≤
[

E sup
�

∣∣∣wtε
2
t (ϑ)

ht (ϑ)
− E

[wtε
2
t (ϑ)

ht (ϑ)

∣∣∣Fk(t)
]∣∣∣2
]1/2

×
[

E sup
�

∣∣∣wtε
2
t (ϑ)

ht (ϑ)
− E

[wtε
2
t (ϑ)

ht (ϑ)

∣∣∣Fk(t)
]∣∣∣2ι
]1/2

≤
√

E(wtξ
2
ρt )

2 O(k−ν) = O(k−ν).

Similarly, we can show that

E sup
�

∣∣∣wt loght (ϑ)− E
[
wt loght (ϑ)|Fk(t)

]∣∣∣1+ι = O(k−ν).

By the previous two equations, we can see that (7.2) holds.
By (7.2), {wt lt (ϑ)} is an L1+ι(v)-NED sequence. By Theorem 2.1 of Ling

(2007a), for each ϑ ∈ �,

1

n

−1∑
t=−n

wt lt (ϑ) = E(wt lt (ϑ))+o(1), (7.3)

as n → ∞. Denote Vδ = {ϑ∗ : ‖ϑ −ϑ∗‖ ≤ δ} ⊂ �. Let

ξt = sup
θ∗∈Vδ

|wlt (ϑ
∗)−wlt (ϑ)| and ξ̃t = sup

θ∗∈Vδ

|E[wlt (ϑ
∗)|Fk(t)]− E[wlt (ϑ)|Fk(t)]|.
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Then, by (7.2),

E |ξt − ξ̃t | ≤ E sup
θ∗∈Vδ

∣∣∣wlt (ϑ
∗)− E[wlt (ϑ

∗)|Fk(t)]−wlt (ϑ)+ E[wlt (ϑ)|Fk(t)]
∣∣∣

≤ 2E sup
θ∗∈Vδ

|wlt (ϑ
∗)− E[wlt (ϑ

∗)|Fk(t)]| = O(k−ν).

By the previous inequality, we have

E |ξt − E[ξt |Fk(t)]|1+ ι ≤ E |ξt − ξ̃t + E[ξt − ξ̃t |Fk(t)]|1+ ι

≤ C E |ξt − ξ̃t |1+ ι = O(k−ν).

Thus, {ξt } is an L1+ι(v)-NED sequence. By Theorem 2.1 of Ling (2007a),
we have

1

n

−1∑
t=−n

ξt = Eξt +o(1), (7.4)

as n → ∞. Using (7.3) and (7.4) and partitioning � into finite balls with a radius δ
small enough, we can show that Assumption 2.2 holds. By Theorem 2.3, we com-
plete the proof. n

Proof of Theorem 4.2. First, from the proof of Lemma A.6 in Ling (2007b),
we can see that

1

n

k0∑
t=1

∥∥∥Pt (θ̂1n)− Pt (θ10)
∥∥∥= op(1). (7.5)

Note that k̂ − k0 is bounded in probability. When k̂n < k0, we can show that

1

n

k0∑
t=k̂n+1

∥∥∥Pt (θ̂1n)
∥∥∥≤ 1

n

k0∑
t=k̂n+1

∥∥∥Pt (θ̂1n)− Pt (θ10)
∥∥∥

+ 1

n

k0∑
t=k̂n+1

‖Pt (θ10)‖ = op(1). (7.6)

Thus, by the previous two inequalities, we have

1

n

k̂n∑
t=1

Pt (θ̂1n) = 1

n

k0∑
t=1

Pt (θ̂1n)− 1

n

k0∑
t=k̂n+1

Pt (θ̂1n) = τ0
1 +op(1). (7.7)

By Taylor’s expansion, we have

1√
n

k̂n∑
t=1

Dt (θ̂1n) = 1√
n

k̂n∑
t=1

Dt (θ10)+
⎡
⎣1

n

k̂n∑
t=1

Pt (ξ̂1n)

⎤
⎦ [

√
n(θ̂1n − θ10)], (7.8)



ESTIMATION OF CHANGE-POINTS IN TIME SERIES MODELS 23

where ξ̂1n lies between θ̂1n and θ10. By (7.7) and (7.8), we have

θ̃1n = θ10 + 
−1
1

τ0n

k0∑
t=1

Dt (θ10)+op

(
1√
n

)
. (7.9)

A similar expansion holds for θ̃2n . Thus, by the central limiting theorem, we see
that (a) holds when k̂n < k0. Similarly, we can show that (a) holds when k̂n > k0.

For (b), using (7.9) and by Taylor’s expansion, we have

Ln(k̃, θ̃1n, θ̃2n)− Ln(k0,θ10,θ20)

= I{k̃n ≤ k0

k0∑
t=k̂n+1

[lt (θ20)− lt (θ10)]+ I{k̃n > k0

k̃n∑
t=k0+1

[lt (θ20)− lt (θ10)]

+1

2

(
‖
1/2

1 u∗
1‖2 +‖


1/2
2 u∗

2‖2
)

+op(1),

where u∗
1 = √

nτ0(θ̃1n − θ10) and u∗
2 = √

n(1− τ0)(θ̃2n − θ20). Thus, by the strict
stationarity of {yt },

k̃n − k0 = argmaxk

⎧⎨
⎩I{k ≤ k0}

k0∑
t=k+1

[lt (θ20)− lt (θ10)]

+ I{k > k0}
k∑

t=k0+1

[lt (θ10)− lt (θ20)]

⎫⎬
⎭

− k0 +op(1) −→L argmaxk W (k,θ10,θ20),

as n → ∞. This completes the proof. n
We now give one more lemma. It is for the NED property of Dt (ϑ0) and Pt (ϑ0)

when {yt } ∈ M(ϑ0).

LEMMA 7.2. If {yt } ∈ M(ϑ0) and Assumptions 4.1–4.2 hold, then there exists
a constant ι ∈ (0,1) such that

(a) E
∥∥∥ 1√

ht

∂εt (ϑ0)

∂γ
− E

[ 1√
ht

∂εt (ϑ0)

∂γ

∣∣∣Fk(t)
]∥∥∥2+ι = O(ρk),

(b) E
∥∥∥ 1

ht

∂ht (ϑ0)

∂ϑ
− E

[ 1

ht

∂ht (ϑ0)

∂ϑ

∣∣∣Fk(t)
]∥∥∥2+ι = O(ρk),

where ρ is a constant with ρ ∈ (0,1).

To make notation clear in the proof of Theorem 4.3, when yt ∈ M(θi0), yt is
denoted by yit , εt (θ) by εi t (θ), ht (θ) by hit (θ), lt (θ) by li t (θ), and similarly for
Dit (θ), Pit (θ), Ri1t (θ), Ri2t (θ), and Uit (θ), i = 1,2, etc. We further give one
lemma as follows. The proofs of Lemmas 7.2 and 7.3 are in Ling (2014).
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LEMMA 7.3. If Assumptions of Theorem 4.2 hold, then, as d = θ10 −θ20 → 0,

(a) E
∥∥∥ 1√

h1t

∂ε1t (θ10)

∂γ
− 1√

h2t

∂ε2t (θ20)

∂γ

∥∥∥2 = o(1),

(b) E
∥∥∥ 1

h1t

∂h1t (θ10)

∂ϑ
− 1

h2t

∂h2t (θ20)

∂ϑ

∥∥∥2 = o(1).

Proof of Theorem 4.3. Assumption 2.3(i) holds by Taylor’s expansion and
Lemma A.7 of Ling (2007b). Assumption 2.3(ii) and (iii) hold by Theorem 4.1 of
Ling (2007b). Taking Taylor expansion at θ10, we have

−1∑
t=−[mz]

[l1t (θ20)− l1t (θ10)]

= −
−1∑

t=−[mz]

d ′D1t (θ10)− 1

2
d ′

−1∑
t=−[mz]

P1t (ξ
∗)d, (7.10)

where ξ∗ lies between θ10 and θ20 and D1t (θ10) = U1t (θ10)ξt , where ξt = [ηt ,
(1 − η2

t )/
√

2]′. Since ξ∗ = θ10 + O(1/
√

m), by Lemma A.7 of Ling (2007b),
we have

1

m

−1∑
t=−[mz]

P1t (ξ
∗) = 1

m

−1∑
t=−[mz]

P1t (θ10)+op(1), (7.11)

where P1t (θ10) = U1t (θ10)U ′
1t (θ10) + ηt R11t (θ10) + (η2

t − 1)R12t (θ10). Using
Lemma 7.3, we can show that

lim‖d‖→0
E‖U1t (θ10)−U2t (θ20)‖2 = 0 and lim‖d‖→0

‖P1t (θ10)− P2t (θ20)‖ = 0, (7.12)

where P2t (θ20) = U2t (θ20)U ′
2t (θ20)+ηt R21t (θ20)+(η2

t −1)R22t (θ20). By (7.10)–
(7.12), we can show that

−1∑
t=−[mz]

[l1t (θ20)− l1t (θ10)]

= −
−1∑

t=−[mz]

d ′U2t (θ20)ξt − 1

2
d ′

−1∑
t=−[mz]

P2t (θ20)d +op(1). (7.13)

Using Lemma 7.2, we can show that ‖U2t (θ20)‖2 is L1+ι(v)-NED. Similarly,
we can show that ‖Ri2t (θ20)‖, i = 1,2, are also L1+ι(v)-NED. By Theorem 2.1
of Ling (2007a), we have

1

m

−1∑
t=−[mz]

P2t (θ20) = 
θ20 z +op(1).
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By the previous three equations, we can see that Assumption 3.1 holds.
By Lemma 7.2, U2t (θ20) is L2+ι(v)-NED and hence so is D2t (θ20), i.e.,
Assumption 3.2 holds. This completes the proof. n

8. CONCLUDING REMARKS

This paper has established an asymptotic theory for change-points in linear
and nonlinear time series models under some regular conditions. It was shown
that the estimated change-point converges weakly to the location of the max-
ima of a double-sided random walk. When the magnitude of changed parame-
ters is small, this limiting distribution can be further approximated by a known
distribution to obtain its approximating quantiles. For the structure-changed
ARMA-GARCH/IGARCH model, the self-weighted QMLE and the local QMLE
were studied and the corresponding limiting distributions of the estimated change-
point are derived, respectively. Our framework includes many other models as
a special case, such as long memory FARIMA model, exponential GARCH
model, random coefficient AR model, ARCH-type model, and smooth thresh-
old AR model, among others. It can be readily extended to include the stationary
multivariate time series models with exogenous variables. However, it cannot be
applied for the threshold AR model with unknown thresholds for which some
additional techniques are needed. Furthermore, it is still a challenging issue on
the estimation of change-points in the unit root/cointegrated time series models if
the parameters are fixed before and after the change-point. Some projects on these
are ongoing.

REFERENCES

Andrews, D.W.K. (1993) Tests for parameter instability and structural change with unknown change
point. Econometrica 61, 821–855.

Andrews, D.W.K. & W. Ploberger (1994) Optimal tests when a nuisance parameter is present only
under the alternative. Econometrica 62(6), 1383–1414.
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APPENDIX A: Consistency of τ̂n

The following lemma shows that τ̂n is a consistent estimator of τ0.

LEMMA A.1. For any given τ̃ , τ̃1 ∈ (0,1) with τ̃ < τ̃1, if Assumptions 2.1 and 2.2 hold
and τ0 ∈ (τ̃ , τ̃1), then it follows that

lim
n→∞ P(τ̂n /∈ [τ̃ , τ̃1]) = 0.

Proof. We only consider the case with τ̂n < τ̃ . By (6.1) and Lemma 1 in Chow and
Teicher (1968, p. 31), for any ε > 0, we have

lim
n→∞ P

⎛
⎝ 1

n
max

logn≤k≤[nτ̃ ]
max
θ1∈�

∣∣∣∣∣∣
k∑

t=1

[lt (θ1)− Elt (θ1)]

∣∣∣∣∣∣> ε

⎞
⎠= 0.

Thus, we have

1

n
max

logn≤k≤[nτ̃ ]
max
θ1∈�

k∑
t=1

[lt (θ1)− lt (θ10)]

≤ 2

n
max

logn≤k≤[nτ̃ ]
max
θ1∈�

∣∣∣∣∣∣
k∑

t=1

[lt (θ1)− Elt (θ1)]

∣∣∣∣∣∣
+ 1

n
max

logn≤k≤[nτ̃ ]
k max

θ1∈�
[Elt (θ1)− Elt (θ10)]

= op(1),
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since maxθ1∈�[Elt (θ1)− Elt (θ10)] = 0 when t ≤ k0. By Assumption 2.1 and the ergodic
theorem, we have

1

n
max

1≤k≤logn
max
θ1∈�

k∑
t=1

[lt (θ1)− lt (θ10)] ≤ 2

n

logn∑
t=1

max
θ1∈�

|lt (θ1)| = op(1).

By the previous two inequalities, we can claim that

1

n
max

1≤k≤[nτ̃ ]
max
θ1∈�

k∑
t=1

[lt (θ1)− lt (θ10)] ≤ op(1). (A.1)

By Assumption 2.2 and Lemma 1 in Chow and Teicher (1968), for any ε > 0, we have

P

⎧⎨
⎩ 1

n
max

1≤k≤[nτ̃ ]
max
θ2∈�

∣∣∣∣∣∣
k0∑

t=k+1

[lt (θ2)− Elt (θ2)]

∣∣∣∣∣∣> ε

⎫⎬
⎭

= P

⎧⎨
⎩ 1

n
max

k0−[nτ̃ ]≤u≤k0

max
θ2∈�

∣∣∣∣∣∣
−1∑

t=−u

[lt (θ2)− Elt (θ2)]

∣∣∣∣∣∣> ε

⎫⎬
⎭ (by stationarity)

→ 0. (A.2)

Denote �2δ = {θ2 : ‖θ2 −θ20‖ ≤ δ} and C = Elt (θ10)− Elt (θ20). Then, C > 0 when t ≤ k0
by Assumption 2.1. Since Elt (θ2) is a continuous function, we can take a small δ such that

max
θ2∈�2δ

[Elt (θ2)− Elt (θ10)] = −C + max
θ2∈�2δ

[Elt (θ2)− Elt (θ20)] ≤ −C/2.

Furthermore, by (8.2), we have

1

n
max

1≤k≤[nτ̃ ]
max

θ2∈�2δ

k0∑
t=k+1

[lt (θ2)− lt (θ10)]

≤ 2

n
max

1≤k≤[nτ̃ ]
max

θ2∈�2δ

∣∣∣∣∣∣
k0∑

t=k+1

[lt (θ2)− Elt (θ2)]

∣∣∣∣∣∣
+ 1

n
max

1≤k≤[nτ̃ ]
(k0 − k) max

θ2∈�2δ

[Elt (θ2)− Elt (θ10)]

≤ −τ̃C/2+op(1). (A.3)

Note that maxθ2∈�2δ
[Elt (θ2)− Elt (θ20)] = 0 when t > k0. By (6.1), we have

1

n
max

θ2∈�2δ

n∑
t=k0+1

[lt (θ2)− lt (θ20)]

≤ 2

n
max

θ2∈�2δ

∣∣∣∣∣∣
n∑

t=k0+1

[lt (θ2)− Elt (θ2)]

∣∣∣∣∣∣+
n − k0

n
max

θ2∈�2δ

[Elt (θ2)− Elt (θ20)]

= op(1). (A.4)
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Let �c
2δ = �−�2δ . Since θ10 �= θ20, we can take a small δ such that θ10 ∈ �c

2δ . Thus,
maxθ2∈�c

2δ
[Elt (θ2)− Elt (θ10)] = 0 when t ≤ k0. Thus, by (8.2), we have

1

n
max

1≤k≤[nτ̃ ]
max

θ2∈�c
2δ

k0∑
t=k+1

[lt (θ2)− lt (θ10)]

≤ 2

n
max

1≤k≤[nτ̃ ]
max

θ2∈�c
2δ

∣∣∣∣∣∣
k0∑

t=k+1

[lt (θ2)− Elt (θ2)]

∣∣∣∣∣∣
+ 1

n
max

1≤k≤[nτ̃ ]
(k0 − k) max

θ2∈�c
2δ

[Elt (θ2)− Elt (θ10)]

= op(1). (A.5)

Denote C1δ = −maxθ2∈�c
2δ

[Elt (θ2) − Elt (θ20)]. Then C1δ > 0 when t > k0 by
Assumption 2.1. By (6.1), we have

1

n
max

θ2∈�c
2δ

n∑
t=k0+1

[lt (θ2)− lt (θ20)]

≤ 2

n
max

θ2∈�c
2δ

∣∣∣∣∣∣
n∑

t=k0+1

[lt (θ2)− Elt (θ2)]

∣∣∣∣∣∣+
n − k0

n
max

θ2∈�c
2δ

[Elt (θ2)− Elt (θ20)]

≤ −(1− τ0)C1δ +op(1). (A.6)

By (6.2), (8.1), and (8.3)–(8.6), it follows that

P(τ̂n < τ̃)

≤ P

(
1

n
max

1≤k≤[nτ̃ ]
max

(θ1,θ2)∈�2
�n(k,θ1,θ2) ≥ 0

)

≤ P

⎛
⎝ 1

n
max

1≤k≤[nτ̃ ]
max
θ2∈�

⎧⎨
⎩

k0∑
t=k+1

[lt (θ2)− lt (θ10)]+
n∑

t=k0+1

[lt (θ2)− lt (θ20)]

⎫⎬
⎭

+op(1) ≥ 0

⎞
⎠

≤ P(max{−(1− τ0)C1δ,−τ̃C/2}+op(1) ≥ 0) → 0,

as n → ∞. This completes the proof. n


