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It is well known that estimating bilinear models is quite challenging. Many different ideas have been proposed to solve this
problem. However, there is not a simple way to do inference even for its simple cases. This article proposes a generalized
autoregressive conditional heteroskedasticity-type maximum likelihood estimator for estimating the unknown parameters for a
special bilinear model. It is shown that the proposed estimator is consistent and asymptotically normal under only finite fourth
moment of errors.
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1. INTRODUCTION

The general bilinear time-series model is defined by the equation

Yt D �C

pX
iD1

�iYt�i C

qX
jD1

 j "t�j C

mX
lD1

kX
l 0D0

bll0Yt�l"t�l 0 C "t ; (1)

where ¹"tº is a sequence of i.i.d. random variables with mean zero and variance �2. It was proposed by Granger
and Andersen (1978a) and has been widely applied in many areas such as control theory, economics and finance.
The structure of model (1) has been studied in the literature especially for some special cases. For example, Subba
Rao (1981) considered model (1) with  1 D � � � D  q D 0; Davis and Resnick (1996) studied the asymptotic
behaviour of the correlation function for the simple bilinear model Yt D bYt�1"t�1 C "t ; Pham and Tran (1981),
Turkman and Turkman (1997) and Basrak et al. (1999) studied the model Yt D �1Yt�1CbYt�1"t�1C "t ; Zhang
and Tong (2001) considered the model Yt D bYt�1"t C "t . A sufficient condition for stationarity of the general
model was obtained by Liu and Brockwell (1988), which is far away from the necessary one as pointed out by Liu
(1989). A simplified sufficient condition is given by Liu (1990a).

It is known that estimating the general bilinear model is quite challenging. Many different ideas have been
proposed to solve this problem for some special cases of (1); see Pham and Tran (1981), Guegan and Pham (1989),
Wittwer (1989), Liu (1990b), Kim and Billard (1990), Kim et al. (1990), Sesay and Subba Rao (1992), Gabr (1998)
and Hili (2008). However, the asymptotic theory is either rarely established or only derived by assuming that "t
follows a normal distribution in these papers. The Hellinger distance estimation in Hili (2008) even assumes that
the density of "t is known. To understand this difficulty, let us look at the least squares estimator (LSE) considered
by Pham and Tran (1981). The LSE is equivalent to the quasi-maximum likelihood estimator (quasi-MLE), which
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is the minimizer of Ln.�/ D
Pn

tD1 "
2
t .�/, where � is the vector consisting of all parameters in the model, and its

true value is �0; "t .�0/ D "t and

"t .�/ D Yt � � �

pX
iD1

�iYt�i �

qX
jD1

 j "t�j .�/ �

mX
lD1

kX
l 0D0

bll0Yt�l"t�l 0.�/:

Given a sample ¹Y1; : : : ; Ynº, one needs an efficient way to calculate the residual "t .�/ such that the effect from
the initial values ¹Y0; Y�1; : : :º is ignorable. This is the so-called invertibility of the model. Although Liu (1990a)
gave a sufficient condition for invertibility, it still remains unknown on how to use it to derive the asymptotic
limit of the aforementioned LSE. Another type of invertibility was proposed by Granger and Andersen (1978b).
That is, model (1) is said to be invertible if limt!1E."t � O"t /2 D 0, where O"t is an estimator of "t . Along this
direction, the invertibility of a special bilinear model was studied by Subba Rao (1981), Pham and Tran (1981) and
Wittwer (1989). This type of invertibility may be useful for forecasting, but it is not useful for proving asymptotic
normality of estimators of parameters. This is because we need the property of "t .�/ at a neighbourhood of the true
parameter �0 for deriving the asymptotic limit of the estimator. For example, to obtain the asymptotic normality of
the LSE, we need the score function @"t .�/=@� to have a finite second moment, which in general results in some
very restrictive requirements for model (1). Let us further illustrate this issue as follows.

For the following simple bilinear model

Yt D bYt�2"t�1 C "t ; (2)

one needs
Qm
iD1 Yt�i has a finite moment for any m so as to have E¹@"t .�/=@�º2 < 1. Grahn (1995) showed

thatEY 2mt <1 if and only if b2mE"2mt < 1. Note thatEjYt jm <1 for anym is equivalent to b D 0when "t �
N.0; �2/. Thus, it is almost impossible to establish the asymptotic normality of the LSE for model (2) unless some
special conditions are imposed. Instead, Grahn (1995) proposed a non-standard conditional LSE procedure for
model (2) by using the facts thatE.Y 2t jYs; s � t�2/ D �

2Cb2�2Y 2
t�2

andE.YtYt�1jYs; s � t�2/ D b�2Yt�2.
Although Grahn (1995) derived the asymptotic normality for the conditional LSE, the asymptotic variance and
its estimator are not given, so some ad hoc method such as bootstrap method is needed to construct confidence
intervals for b. Furthermore, the moment condition required is EY 8t <1, which reduces to b8�8 < 1=105 when
"t � N.0; �2/. This is quite restrictive on the parameter space of .b; �/. When "t � N.0; �2/, Giordano (2000)
and Giordano and Vitale (2003) obtained the formula of the asymptotic variance for the conditional LSE of b,
which can be estimated too. Liu (1990b) considered the LSE for the model Yt D �Yt�p C bYt�p"t�q C "t
with p � 1 and obtained its asymptotic normality by assuming that @"t .�/=@� has a finite second moment. As in
model (2), this condition may only hold when b D 0 if "t � N.0; �2/. When j"t j � c (a constant) holds almost
surely and � D 0, Liu (1990b) showed that this condition holds when jbj � 1=.2c/, which is a small parameter
space when c is large. In general, one cannot check whether this condition holds when "t is not bounded. That is,
a general asymptotic theory for LSE or MLE has not been established for the model in Liu (1990b) up to now.

In this article, we propose a generalized autoregressive conditional heteroskedasticity-type MLE (GMLE) for
estimating the unknown parameters. It is shown that the GMLE is consistent and asymptotically normal under only
finite fourth moment of errors. We organize this article as follows. Section 2 presents our main results. Section 3
reports some simulation results. For saving space, all proofs, additional simulation results and some remarks are
kept in the arXiv version (arXiv:1405.3029).

2. ESTIMATION AND ASYMPTOTIC RESULTS

Throughout, we consider the following special bilinear model:

Yt D �C �Yt�2 C bYt�2"t�1 C "t ; (3)
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where ¹"tº is a sequence of i.i.d. random variables with mean zero and variance �2 > 0. Then the follow-
ing statement is given as Theorem 1 in the arXiv version of this article, which also follows from Theorem 1 in
Kristensen (2009).

Assume E ln j� C b"1j < 0, and then there exists a unique strictly stationary solution to model (3), and the
solution is ergodic and has representation Yt D �C "t C

P1
iD1

Qi�1
rD0.� C b"t�2r�1/.�C "t�2i /:

Next, we estimate the unknown parameters. Let Ft be the � fields generated by ¹"s W s � tº. Assume
that ¹Y1; Y2; : : : ; Ynº are generated by model (3). By noting that EŒYt jFt�2� D � C �Yt�2;VarŒYt jFt�2� D
EŒ.Yt � � � �Yt�2/

2 jFt�2� D �2
�
1C b2Y 2

t�2

�
, we propose to estimate parameters by maximizing the

following quasi-log-likelihood function:

Ln.�/ D

nX
tD1

`t .�/ and `t .�/ D �
1

2

"
ln
�
�2
�
1C b2Y 2t�2

��
C
.Yt � � � �Yt�2/

2

�2
�
1C b2Y 2

t�2

� # ;
where � D .�; �; �2; b2/> is the unknown parameter and its true value is denoted by �0. The maximizer O�n of
Ln.�/ is called the GMLE of �0. Although the estimation idea has appeared in Francq and Zakoïn (2004), Ling
(2004) and Truquet and Yao (2012), the challenge here is that ¹@`t .�/=@�º is no longer a martingale difference,
which complicates the derivation of the asymptotic limit. A straightforward calculation shows that

@`t .�/

@�
D
Yt � � � �Yt�2

�2
�
1C b2Y 2

t�2

� ; @`t .�/

@�
D
Yt�2 .Yt � � � �Yt�2/

�2
�
1C b2Y 2

t�2

� ;

@`t .�/

@�2
D �

1

2�2

"
1 �

.Yt � � � �Yt�2/
2

�2
�
1C b2Y 2

t�2

� # ; @`t .�/

@b2
D �

Y 2
t�2

2
�
1C b2Y 2

t�2

� "1 � .Yt � � � �Yt�2/2
�2
�
1C b2Y 2

t�2

� # :
By solving

Pn

tD1 @`t .�/=@� D
Pn

tD1 @`t .�/=@� D
Pn

tD1 @`t .�/=@�
2 D 0, we can write the GMLE for

�; �; �2 explicitly in terms of b2. Hence, using these explicit expressions and the equation
Pn

tD1 @`t .�/=@b
2 D 0,

we can first obtain the GMLE for b2 and then obtain the GMLE for �; �; �2.
It is easy to check that EŒ@`t .�0/=@� jFt�2� D 0, but ¹@`t .�0/=@�º1tD1 cannot be a martingale difference.

Therefore, we cannot use the central limit theory for martingale difference to derive the asymptotic limit. Instead,
we will show that ¹@`t .�0/=@�º1tD1 is a near-epoch dependent sequence so that the asymptotic limit of the
proposed GMLE can be derived. Denote

� D E

�
@`t .�0/

@�
C
@`t�1.�0/

@�

� �
@`t .�0/

@�
C
@`t�1.�0/

@�

�>
�E

�
@`t .�0/

@�

@`t .�0/

@�>

�
;

† D diag

8̂<̂
:E

"
1

�2
0

�
1C b2

0
Y 2
t�2

�  1 Yt�2

Yt�2 Y
2
t�2

!#
; E

0B@
1

2�40

Y 2t�2

2�20 .1Cb
2
0Y

2
t�2/

Y 2t�2

2�20 .1Cb
2
0Y

2
t�2/

Y 4t�2

2.1Cb20Y
2
t�2/

2

1CA
9>=>; :

The following theorem gives the asymptotic properties of the GMLE, which is Theorem 2 in the arXiv version.

Theorem 1. Suppose the parameter space ‚ is a compact subset of ¹� W E ln j� C b"1j < 0; j�j � N�; j�j �
N�; ! � �2 � !; ˛ � b2 � ˛º, where �; �; !; !; ˛ and ˛ are some finite positive constants, and the true parameter
value �0 is an interior point in‚. Further assume E"4

1
<1. Then as n!1, we have (a) O�n ! �0 almost surely;

(b)
p
n. O�n � �0/

d
! N.0;†�1�†�1/.
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Since
Pn

tD1 @`t .�/=@b
2 D 0 is equivalent to

Pn

tD1 @`t .�/=@b D 0, one cannot estimate b by the above
GMLE. So as to estimate b, we need a consistent estimator for the sign of b. Write .Yt � � � �Yt�2/ .Yt�1 �
� � �Yt�3/ D "t .bYt�3"t�2 C "t�1/ C b2Yt�3Yt�2"t�2"t�1 C bYt�2"

2
t�1

. It is easy to see that
E ¹.Yt � � � �Yt�2/ .Yt�1 � � � �Yt�3/jFt�2º D b�2Yt�2, which motivates to estimate b by minimizing
the following least squares

Pn

tD2

®
.Yt � � � �Yt�2/ .Yt�1 � � � �Yt�3/ � b�

2Yt�2
¯2

with �; � and �2 being
replaced by the corresponding GMLE. However, so as to avoid requiring some moment conditions on
Yt , we propose to minimize the weighted least squares

Pn

tD2

®
.Yt����Yt�2/ .Yt�1����Yt�3/�b�

2Yt�2
¯2
=

¹
�
1C Y 2

t�2

�q
1C Y 2

t�3
º with �; �; �2 being replaced by the corresponding GMLE. This results in

Qbn D

0B@ O�n3 nX
tD2

Y 2
t�2�

1C Y 2
t�2

�q
1C Y 2

t�3

1CA
�1

nX
tD2

.Yt � O�n1 � O�n2Yt�2/.Yt�1 � O�n1 � O�n2Yt�3/Yt�2�
1C Y 2

t�2

�q
1C Y 2

t�3

:

Like Theorem 1(a), it is easy to show that Qbn D b C op.1/. Using Qbn to estimate the sign of b, we obtain an

estimator for b as Obn D sgn. Qbn/
q
O�n4. It easily follows from Theorem 1 that Obn D b C op.1/ and the asymptotic

limit of 2b
p
n. Obn � b/ is the same as that of

p
n. O�n4 � b

2/ given in Theorem 1. As stated in the simulation study,
we propose to use 2b

p
n. Obn�b/ rather than 2 Obn

p
n. Obn�b/ to construct a confidence interval for b, although both

share the same asymptotic limit. Moreover, we do not propose to estimate b directly by Qbn. The reason is that like
Grahn (1995), we cannot derive the formula and a consistent estimator for the asymptotic variance of

p
n. Qbn�b/.

Moreover, Qbn is a less efficient estimator than Obn in general.
Theorem 1 excludes the case of b D 0, which reduces the bilinear model to a linear model. Hence, testing

H0 W b D 0 is of interest. Write ‚ D Œ� N�; N�� � Œ� N�; N�� � Œ!; !� � Œ0; ˛�, where �; �; !; ! and ˛ are some finite
positive constants. Then the case of b D 0 means that � D .�; �; �2; b2/> lies at the boundary of the compact
set ‚, which implies that the case of b D 0 is the well-known non-standard situation of maximum likelihood
estimation. The following theorem is Theorem 3 in the arXiv version.

Theorem 2. Suppose the parameter space ‚ satisfies E ln j� C b"1j < 0, and the true parameter value
�0 D .�0; �0; �

2
0
; 0/> satisfies that .�0; �0; �20 /

> is an interior point of Œ� N�; N�� � Œ� N�; N�� � Œ!; !�. Fur-

ther assume E"4
1
< 1. Then as n ! 1, we have (a) O�n ! �0 almost surely; (b)

p
n. O�n � �0/

d
!

.Z1; Z2; Z3; Z4/
>I.Z4 > 0/ C .Z1 � �14�

�1
44
Z4; Z2 � �24�

�1
44
Z4; Z3 � �34�

�1
44
Z4; 0/

>I.Z4 < 0/, where
.Z1; Z2; Z3; Z4/

> � N.0;†�1�†�1/, †�1�†�1 D .�ij / and † and � are given in Theorem 1.

3. SIMULATION

We investigate the finite sample performance of the GMLE by drawing 1000 random samples of size n D 200

and 1000 from model (3) with � D 0; b D ˙0:1 or ˙1; � D 0 or 0.9, and "t � N.0; 1/. We compute the GMLE
O�n D . O�n1; : : : ; O�n4/

> for � D .�; �; �2; b2/> and Obn. For an estimator Ǒ, we use E. Ǒ/, SD. Ǒ/ and cSD. Ǒ/ to
denote the sample mean of Ǒ, sample standard deviation of Ǒ and sample mean of the standard deviation estimator
of Ǒ based on the 1000 samples.

Table I reports these quantities for the case of n D 200, which show that the proposed GMLE has a small bias
(i.e. E.�/ close to the true value) and the proposed variance estimator is accurate too (i.e. cSD.�/ close to SD.�/).
Results are n D 1000 can be found in the arXiv version, which show that SD. Ǒ/ and cSD. Ǒ/ are much smaller
when n D 1000 than those when n D 200. Although the proposed estimator for b has a small bias, the proposed
variance estimator performs badly when b is small. This is due to some very small values of O�n4. However, the
variance estimator for 2b Obn is reasonably well and much accurate than that for Obn. Hence, we suggest to use
2b
p
n. Obn � b/ instead of

p
n. Obn � b/ to construct a confidence interval for b in practice.
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Table I. Sample mean and sample standard deviation are reported for the proposed GMLE for .�; �; �2; b2/> and b with
n D 200

.b; �/ (0.1, 0) (0.1, 0.9) (�0.1, 0) (�0.1, 0.9) (1, 0) (1, 0.9) (�1, 0) (�1, 0.9)

E. O�n1/ 0.0008 �0:0020 0.0002 0.0021 �0:0014 0.0054 0.0039 �0:0009

SD. O�n1/ 0.0707 0.0890 0.0720 0.0882 0.1058 0.1315 0.1015 0.1369bSD. O�n1/ 0.0701 0.0740 0.0703 0.0740 0.0999 0.1244 0.0997 0.1241

E. O�n2/ �0:0026 0.8793 �0:0092 0.8797 �0:0113 0.8887 �0:0052 0.8892

SD. O�n2/ 0.0714 0.0399 0.0706 0.0400 0.1000 0.0878 0.0979 0.0891bSD. O�n2/ 0.0698 0.0352 0.0693 0.0350 0.0977 0.0868 0.0974 0.0869

E. O�n3/ 0.9648 0.9896 0.9744 0.9919 1.0209 1.0254 1.0263 1.0280

SD. O�n3/ 0.1115 0.1161 0.1047 0.1179 0.1976 0.2535 0.1993 0.2524bSD. O�n3/ 0.1196 0.1253 0.1209 0.1259 0.1855 0.2245 0.1880 0.2280

E. O�n4/ 0.0355 0.0124 0.0344 0.0117 0.9987 1.0256 0.9882 1.0201

SD. O�n4/ 0.0615 0.0166 0.0570 0.0168 0.3183 0.3205 0.3246 0.3041bSD. O�n4/ 0.0738 0.0174 0.0728 0.0172 0.2786 0.2667 0.2797 0.2671

E. Obn/ 0.0879 0.0780 �0:0986 �0:0736 0.9872 1.0015 �0:9812 �0:9996

SD. Obn/ 0.1666 0.0793 0.1572 0.0793 0.1555 0.1505 0.1593 0.1446bSD. Obn/ 4.7444 0.8028 4.5939 0.8511 0.1379 0.1294 0.1393 0.1303

E.2b Obn/ 0.0176 0.0156 0.0197 0.0147 1.9744 2.0030 1.9624 1.9992

SD.2b Obn/ 0.0333 0.0159 0.0314 0.0159 0.3111 0.3010 0.3187 0.2892bSD.2b Obn/ 0.0738 0.0174 0.0728 0.0172 0.2786 0.2667 0.2797 0.2671

Simulation results for testing H0 W b D 0 against Ha W b ¤ 0 can be found in the arXiv version, which shows
that the proposed test has a reasonably accurate size and non-trivial power.
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