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a b s t r a c t

This paper investigates a class of multiple-threshold models, called Multiple Threshold Double AR
(MTDAR) models. A sufficient condition is obtained for the existence and uniqueness of a strictly
stationary and ergodic solution to the first-orderMTDARmodel.We study theQuasi-MaximumLikelihood
Estimator (QMLE) of the MTDAR model. The estimated thresholds are shown to be n-consistent,
asymptotically independent, and to converge weakly to the smallest minimizer of a two-sided compound
Poisson process. The remaining parameters are

√
n-consistent and asymptotically multivariate normal.

In particular, these results apply to the multiple threshold ARCH model, with or without AR part, and to
themultiple threshold ARmodels with ARCH errors. A score-based test is also presented to determine the
number of thresholds in MTDAR models. The limiting distribution is shown to be distribution-free and is
easy to implement in practice. Simulation studies are conducted to assess the performance of the QMLE
and our score-based test in finite samples. The results are illustrated with an application to the quarterly
US real GNP data over the period 1947–2013.
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1. Introduction

Tong’s (1978) threshold autoregressive (TAR)models have been
extensively investigated in the literature and are arguably themost
popular class of nonlinear time series models for the conditional
mean. For financial time series, however, the conditional mean
modeling has to be completed by a specification of the condi-
tional variance. Indeed, typical effects such as the volatility clus-
tering or the leverage effect have been widely documented in the
empirical finance literature and such effects cannot be captured
with independent innovations. For the conditional variance, the
popularity of GARCH-type models, both in applied and theoret-
ical works, has always increased since their introduction by En-
gle (1982). See, for example, Francq and Zakoïan (2010) for an
overview on GARCH models. When the GARCH model is not di-
rectly applied to observations, but rather to the innovations of
linear or nonlinear time series model, it can be more natural and
convenient to specify the volatility as a function of the past obser-
vations rather than the past innovations. An example of suchmodel
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is the double AR model introduced by Weiss (1984) and studied
by Ling (2004, 2007).

In this article, we study the probabilistic properties and the
estimation of a Multiple Threshold Double AR (MTDAR) model.
More precisely, the model we consider in this article is the
MTDAR(m; p) defined by

yt =

m
i=1


ci +

p
j=1

φijyt−j + ηt


ωi +

p
j=1

αijy2t−j

1/2
× I{yt−d ∈ Ri}, (1.1)

wherem, p and d are positive integers, ci, φij ∈ R, ωi > 0, αij ≥ 0,
the m sets Ri = (ri−1, ri] constitute a partition of the real line,
−∞ = r0 < r1 < · · · < rm−1 < rm = +∞, I{B} denotes
the indicator function of some event B, and {ηt} is a sequence of
independent and identically distributed (i.i.d.) random variables
with zero mean. The standard ARCH(p) model can be obtained as
a particular case by taking ci = φij = 0 and αij = αj for all i and j,
while a version of TAR(p) model is obtained by canceling the αij’s.

The first aim of this paper is to study the stability properties
of the MTDAR(m; 1) model. The probabilistic structure of TAR
models was studied by Chan et al. (1985), Chan and Tong (1985)
and Tong (1990). Relying on the approach developed in the
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book by Meyn and Tweedie (1996), we obtain explicit ergodicity
conditions depending on the parameters of the extremal regimes
(when yt−d ∈ R1 or yt−d ∈ Rm) and the innovations distribution.
A different approach was used by Cline and Pu (2004) who
established sharp ergodicity conditions for a general class of
threshold AR–ARCH models under assumptions we will discuss
further.

The second aim of this article is to study the asymptotic
properties of the Gaussian Quasi-Maximum Likelihood (QML)
estimator of the vector of parameters, including the double-AR
coefficients and the thresholds. The third aim of this article is to
develop a score-based test to determine the number of thresholds
in MTDAR models.

The literature on the estimation of threshold time-series mod-
els is vast. To cite but a few of such articles, let us mention Chan
(1993), Hansen (2000), and more recently, Li and Ling (2012), Li
et al. (2013a). These articles study the asymptotic properties of
least-squares estimators (LSE) in threshold linear (AR orMA)mod-
els. Our framework is that of a threshold nonlinear1 time-series
model, for which a QML criterion allows to simultaneously esti-
mate the conditional mean and variance. Simultaneous QML esti-
mation of the conditionalmean andvariancewas studied by Francq
and Zakoian (2004) in the case of ARMA–GARCH, and byMeitz and
Saikkonen (2011) for a general class of nonlinear AR–GARCH(1,1)
models. A difference with these papers is that the conditional
variance in Model (1.1) is specified in function of the observa-
tions rather than the innovations. Bardet andWintenberger (2009)
proved the asymptotic properties of the Gaussian QMLE for a gen-
eral class of multidimensional causal processes, in which both the
conditional mean and variance are specified as functions of the ob-
servations. However, their conditions for consistency and asymp-
totic normality require the existence of moments of orders 2 and
4, respectively, which we do not need for the class (1.1). Moreover,
their assumptions rule out the possibility of thresholds in the pa-
rameter vector. To our knowledge, asymptotic results for estima-
tion of nonlinearmultiple threshold time seriesmodels had not yet
been established in the literature.

The article is organized as follows. In Section 2, we study
the existence of a strictly stationary and geometrically ergodic
solution. In Section 3, we derive the asymptotic properties of the
QML estimator. Some special cases of MTDARmodels are analyzed
in Section 4. Section 5 develops a score-based test to determine
the number of thresholds in MTDAR models. Section 6 reports
simulation results on the QMLE and the score test in finite samples.
An empirical application is proposed in Section 7. All proofs of
Theorems are displayed in the Appendix.

2. Stability properties of the MTDAR model

2.1. First-order model

We focus on the MTDAR(m; 1) model

yt =

m
i=1


ci + φiyt−1 + ηt


ωi + αiy2t−1


I{yt−1 ∈ Ri}. (2.1)

Without loss of generality, we assume in this section that r1 ≤

0 ≤ rm−1. The aim of this section is to establish conditions for the
existence of a strictly stationary and nonanticipative solution2 to
(2.1). We make the following assumption.

1 nonlinearity having two causes: the thresholds and the presence of a volatility.
2 A solution (yt ) is called nonanticipative if yt can be written as a measurable

function of {ηj : j ≤ t}.

A0: Thedistribution ofηt has a positive density f overR.Moreover,
E|ηt |

s < ∞ for some s > 0.

Let

µ1 = E log |φ1 − ηt
√

α1|, p1 = P(ηt < φ1/
√

α1),

µm = E log |φm + ηt
√

αm|, pm = P(ηt > −φm/
√

αm).

By convention, P(η0 < a/b) = I{a > 0} if b = 0. Under A0, µ1
and µm are well-defined but may be equal to −∞ when φ1 = 0
or φm = 0. We will prove the following result, using the approach
developed by Meyn and Tweedie (1996) for establishing the geo-
metric ergodicity of Markov chains.

Theorem 2.1. Let Assumption A0 hold and assume

γ := max{(1 + p1)µ1 + (1 − p1)µm,

(1 − pm)µ1 + (1 + pm)µm} < 0. (2.2)

Then there exists a strictly stationary, nonanticipative solution {yt}
to the MTDAR(m;1) Model (2.1) and the solution is unique and
geometrically ergodic with E|yt |u < ∞ for some u > 0.

Remark 2.1. A simple sufficient condition for (2.2) is µ1 < 0 and
µm < 0. Note that the strict stationarity condition only depends
on the coefficients of the two extremal regimes. This remarkable
feature was obtained in the first-order multiple threshold AR
model by Chan et al. (1985).

Remark 2.2. When the model is the multiple-threshold AR(1)
model (or simply, when α1 = αm = 0), condition (2.2) reduces
to

(0 < φ1 < 1, 0 < φm < 1) or (φ1 < 0, φm < 0, φ1φm < 1)

or

(−1 < φ1φm < 0, φ1 < 1, φm < 1),

which is slightly stronger, when φ1φm < 0, than the necessary and
sufficient condition (φ1 < 1, φm < 1 and φ1φm < 1) established
by Chan et al. (1985). For a standard AR(1) model (φ1 = φm) we
obtain the standard stationarity constraint |φ1| < 1. Fig. 1 gives
the regions of (φ1, φm) when (α1, αm) = (0.1, 0.5), (1, 0.5), (1, 1)
and (1, 3)with ηt ∼ N(0, 1). We can see thatφ1,φm andφ1φm may
be greater than 1, the upper boundary given by Chan et al. (1985)
for TAR(1,m) models.

Remark 2.3. When Model (2.1) reduces to a multiple threshold
ARCH model, at least in its extremal regimes (i.e. φ1 = φm = 0)
with a symmetric density f , the condition (2.2) reduces to

max

α1α

3
m, α3

1αm


< exp{−4E log η2
t }.

In particular, if α1 = αm, we retrieve the standard ARCH(1)
condition: α1 < exp{−E log η2

t }. When α1 = αm = α and φ1 =

φm = φ (which is in particular the casewhenm = 1), the condition
(2.2) reduces to µ1 + µm < 0, that is, E log |φ2

− αη2
t | < 0.

Moreover, if the distribution of ηt is symmetric, we then get the
condition µ1 = µm < 0, that is, E log |φ − ηt

√
α| < 0. This is

the necessary and sufficient strict stationarity condition obtained
by Ling (2004) and Ling and Li (2008) for the double AR(1) model
when ηt is normally distributed.

Remark 2.4. Cline and Pu (2004) obtained sharp ergodicity
conditions for a general class of models encompassingModel (2.1),
by an alternative approach called the piggybackmethod. From their
Example 4.1, a condition for geometric ergodicity for our model is
(1−pm)µ1+(1−p1)µm < 0 in our notations, which is in general a
bit less restrictive than our condition (2.2). On the other hand, they
need the assumption that supx∈R{(1+|x|)f (x)} < ∞ which we do
not require.
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Fig. 1. Region of (φ1, φm) with (α1, αm) = (0.1, 0.5), (1, 0.5), (1, 1) and (1, 3).

Remark 2.5. In the proof, we show that, for some constants u, K >
0 and ρ ∈ (0, 1), we have

E(V (y2) | y0 = y) ≤ K + ρV (y) for all y,

where V (y) = 1 + |y|u. This condition entails that (yt) is V -
uniformly ergodic: with ρ1 ∈ (ρ, 1), there exists a constantM > 0
such that

sup
A

|P(yk ∈ A | y0 = y) − P(yk ∈ A)| ≤ Mρk
1V (y)

for all y ∈ R, k ≥ 1, (2.3)

see Meyn and Tweedie (1996, Theorem 16.0.1). Thus, (2.2) is a
sufficient condition for Assumption A.6 in the next section for
MTDAR(m, 1) models.

The following theorem provides a sufficient second-order
stationarity condition. Let

β1 =
E[(φ1 − ηt

√
α1 )2I{φ1 − ηt

√
α1 > 0}]

φ2
1 + α1

,

βm =
E[(φm + ηt

√
αm )2I{φm + ηt

√
αm > 0}]

φ2
m + αm

,

with, by convention, βi = 0 if φi = αi = 0.

Theorem 2.2. Let Assumption A0 hold and assume Eη2
t < ∞ and

(φ2
1 + α1){(φ

2
1 + α1)β1 + (φ2

m + αm)(1 − β1)} < 1,

(φ2
m + αm){(φ2

1 + α1)(1 − βm) + (φ2
m + αm)βm} < 1.

(2.4)

Then, there exists a strictly stationary, nonanticipative solution (yt)
with Ey2t < ∞.

Note that a simple sufficient condition for (2.4) to hold is that
φ2
1 + α1 < 1 and φ2

m + αm < 1. However, in (2.4) the volatility
coefficients α1, αm are not both constrained to be less than 1: for
instance when φ1 = φm = 0 and ηt has a symmetric distribution
with Eη2

t = 1, the second-order stationarity condition becomes:
(α1 + αm)max(α1, αm) < 2.

2.2. Higher-order model

For the general pth order Model (1.1), a simple sufficient
geometric ergodicity condition can be obtained by applying Cline
and Pu (2004), Corollary 2.2. Under Assumption A0, and assuming
that f is locally bounded away from 0 and satisfies supx∈R{(1 +

|x|)f (x)} < ∞, then Model (1.1) admits a strictly stationary,
geometrically ergodic solution if one of the following conditions
holds:

1.
p

j=1


sup1≤i≤m |φij|

r
+ sup1≤i≤m(α

r/2
ij )E|ηt |

r


< 1,
r ∈ (0, 1);

2.
p

j=1 sup1≤i≤m |φij|
r

+
p

j=1 sup1≤i≤m(α
r/2
ij )E|ηt |

r < 1 with
either r ∈ (1, 2), or r = 2 and f symmetric.

Such conditions are simple but are over restrictive for the first-
order model when compared to those of Theorem 2.1. Obtaining
stability conditions that only depend on the extreme regime
coefficients for the pth order model with p > 1 seems difficult
and is left for further research.
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3. QML estimation of MTDAR(m;p) models

We now turn to the estimation of the MDTAR(m; p) model
by the Gaussian QML method, assuming that the orders m
and p are known positive integers. This method, which uses a
Gaussian likelihoodwithout assuming that the errors are Gaussian,
has proven useful for GARCH-type models because it provides
a consistent and asymptotically normal estimator under mild
assumptions. In particular, it does not require high-ordermoments
of the observed process.

The parameter, consisting of the AR and volatility coefficients
and the thresholds, is denoted ϑ = (λ′, r′)′ ≡ (φ′

1, α
′

1, . . . ,φ
′

m,
α′
m, r′)′, with φi = (ci, φi1, . . . , φip)

′ and αi = (ωi, αi1, . . . , αip)
′,

i = 1, . . . ,m, and r = (r1, . . . , rm−1)
′. The true parameter value is

denoted ϑ0 = (λ′

0, r
′

0)
′.

Assume that a sample {y1, . . . , yn} is generated from Model
(2.1). Given initial values {y1−p, . . . , y0}, the conditional log-
likelihood function (omitting a constant) is defined as

Ln(ϑ) =

n
t=1

lt(ϑ) with

lt(ϑ) = −
1
2

m
i=1


log(α′

iXt−1) +
(yt − φ′

iYt−1)
2

α′

iXt−1


× I{ri−1 < yt−d ≤ ri},

where Yt−1 = (1, yt−1, . . . , yt−p)
′, Xt−1 = (1, y2t−1, . . . , y

2
t−p)

′,
r0 = −∞, rm = ∞. It can be shown that the choice of initial
values does not matter for the asymptotic properties of the QML
estimator. To save space the proof will be omitted (see Berkes et al.
(2003), Francq and Zakoian (2004) for a proof in the case of GARCH
and ARMA–GARCH models). In practice, d is unknown and can be
estimated following the lines of proof of Chan (1993), Li and Ling
(2012) among others. For simplicity, we assume that d is known
and 1 ≤ d ≤ max(p, 1).

Let Θr = {r = (r1, . . . , rm−1)
′
∈ [−Γ , Γ ]

m−1
: ri+1 − ri ≥ δ}

for some constants δ > 0 and Γ > 0. The parameter space is
Θ = Θλ × Θr , where Θλ is a compact subset of R2m(p+1) with
ωi ≥ ω for some constant ω > 0 and αij ≥ α for some constant
α > 0. The maximizer of Ln(ϑ) is denoted by ϑ̂n, i.e.,

ϑ̂n = argmax
Θ

Ln(ϑ).

Since Ln(ϑ) is not continuous in r, one can use two steps to find ϑ̂n:

• For each fixed r, maximize Ln(ϑ) over Θλ and get its maximizer
λ̂n(r).

• Since the profile log-likelihood L∗
n(r) ≡ Ln(λ̂n(r), r) is a

piecewise constant function over Rm−1 and only takes a finite
number of possible values, one can get themaximizer r̂n of L∗

n(r)
by the enumeration approach and finally obtain the estimator
ϑ̂n = (λ̂

′

n(r̂n), r̂n)
′ by a plug-in method.

Let {y(1), . . . , y(n)} denote the order statistics of the sample
{y1, . . . , yn}. If (y(j1), . . . , y(jm−1))

′ is an estimate of r0 for some
j1 < · · · < jm−1, then L∗

n(r) is a constant over the (m − 1)-
dimensional cube A defined by A = {r = (r1, . . . , rm−1)

′
: ri ∈

[y(ji), y(ji+1)), i = 1, . . . ,m − 1}. Thus, there exist infinitely many
r such that Ln(·) can achieve its global maximum and each r ∈ A
can be considered as an estimate of r0. In this case, we generally
take r̂n = (y(j1), . . . , y(jm−1))

′ as a QMLE of r0.
The strong consistency of the QMLE ϑ̂n of ϑ0 relies on the

following assumptions.

A1: The true valueϑ0 belongs toΘ and (φ′

i0, α
′

i0)
′
≠ (φ′

i+1,0, α
′

i+1,0)
′

for i = 1, . . . ,m − 1.

A2: (ηt) is a sequence of i.i.d. random variables with zero mean
and unit variance, and η1 has a positive density over R.

A3: The process {yt} is a strictly stationary, nonanticipative and
ergodic solution of Model (1.1) such that E|yt |v < ∞ for some
v > 0.

Theorem 3.1. Assume that A1–A3 hold. Then ϑ̂n → ϑ0 a.s.

To obtain the asymptotic normality of λ̂n, we make the
following additional assumptions.

A4: ϑ0 is an interior point of Θ.
A5: Eη4

0 < ∞.

To obtain the convergence rate of r̂n, we also require two
additional assumptions.

A6: The process (yt) is V -uniformly ergodic.
A7: There exist nonrandom vectors w∗

i = (wi1, . . . , wip)
′ with

wid = ri0 and W∗

i = (1,Wi1, . . . ,Wip)
′ with Wid = r2i0 such

that for i = 1, . . . ,m − 1,

{(φi0 − φi+1,0)
′w∗

i }
2
+ {(αi0 − αi+1,0)

′W∗

i }
2 > 0.

Remark 3.1. Assumption A7 is similar to the Condition 4 in Chan
(1993) and implies that either the conditional mean function or
volatility function inModel (2.1) is discontinuous at each threshold
ri0. It is a necessary condition for the n-convergence rate ofrn.
If αi0 = αj0 for all i and j, then Assumption A7 is equivalent to
(φi0 − φi+1,0)

′w∗

i ≠ 0 for all i, which is Assumption 3.4 in Li and
Ling (2012) that the conditional mean function is discontinuous at
each threshold ri0.

The next theorem gives the convergence rate of r̂n and shows
that the asymptotic distribution of the estimators of the AR and
ARCH coefficients is the same as if the thresholds were known.

Theorem 3.2. If the assumptions A1–A7 hold, then
(i). n(r̂n − r0) = Op(1);
(ii).

√
n sup∥r−r0∥≤B/n

λ̂n(r) − λ̂n(r0)
 = op(1) for any fixed

constant 0 < B < ∞. Further, it follows that
√
n(λ̂n − λ0) =

√
n (λ̂n(r0) − λ0) + op(1)

d
−→ N (0, J),

where J = diag{J1, . . . , Jm} and Ji = 6−1
i �i6

−1
i with

�i = E


Yt−1Y′

t−1Iit
α′

i0Xt−1

κ3

2
Yt−1X′

t−1Iit
(α′

i0Xt−1)3/2

κ3

2
Xt−1Y′

t−1Iit
(α′

i0Xt−1)3/2

κ4 − 1
4

Xt−1X′

t−1Iit
(α′

i0Xt−1)2

 ,

6i = E

diag


Yt−1Y′

t−1Iit
α′

i0Xt−1
,
1
2
Xt−1X′

t−1Iit
(α′

i0Xt−1)2


,

Iit = I{ri−1,0 < yt−d ≤ ri0} and κj = Eη
j
t for i = 1, . . . ,m and

j = 3, 4.

To construct confidence intervals for λ0, we need to estimate
the matrices 6i and �i by their sample counterparts. For example,
we can estimate 6i by

6i = diag


1
n

n
t=1

Yt−1Y′

t−1I{r̂i−1,n < yt−d ≤ r̂in}α′

inXt−1
,

1
2n

n
t=1

Xt−1X′

t−1I{r̂i−1,n < yt−d ≤ r̂in}
(α′

inXt−1)2


.

It can be shown that 6i is a consistent estimator of 6i by using
Theorem 3.2.
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To study the limiting distribution of n(r̂n − r0), we first define
(m−1) independent 1-dimensional two-sided compound Poisson
processes {Pi(z), z ∈ R} as

Pi(z) = I{z < 0}
N(i)
1 (|z|)
k=1

Y (i,i+1)
k + I{z ≥ 0}

N(i)
2 (z)
k=1

Z (i+1,i)
k , z ∈ R,

(3.1)

for i = 1, . . . ,m−1,where {N (i)
1 (z), z ≥ 0} and {N (i)

2 (z), z ≥ 0} are
two independent Poisson processes with N (i)

1 (0) = N (i)
2 (0) = 0 a.s.

andwith the same jump rateπ(ri0), whereπ(·) is the density func-
tion of y1. The sequences of variables {Y (i,i+1)

k : k ≥ 1} and {Z (i+1,i)
k :

k ≥ 1} are i.i.d., mutually independent, and are distributed as
F(i,i+1)(·|ri0) and F(i+1,i)(·|ri0), respectively, where F(i,j)(·|rk0) is the
conditional distribution function of ξ (i,j)

d+1 given y1 = rk0, and

ξ
(i,j)
t = log

α′
j0Xt−1

α′
i0Xt−1

+


(φi0−φj0)

′Yt−1+ηt
√

α′
i0Xt−1

2

α′
j0Xt−1

− η2
t .

Here, we work with the left continuous version for N (i)
1 (·) and the

right continuous version for N (i)
2 (·) for i = 1, . . . ,m − 1.

We further define a spatial compound Poisson process ℘(s) as
follows,

℘(s) =

m−1
i=1

Pi(si), s = (s1, . . . , sm−1)
′
∈ Rm−1. (3.2)

Clearly, ℘(s) goes to ∞ a.s. when ∥s∥ → ∞ since EY (i,i+1)
1 > 0

and EZ (i+1,i)
1 > 0 by a conditional argument for i = 1, . . . ,m − 1.

Therefore, there exists a unique random (m−1)-dimensional cube
[M−, M+) ≡ [M(1)

− , M(1)
+ )×· · ·× [M(m−1)

− , M(m−1)
+ ) on which the

process ℘(s) attains its global minimum a.s. That is,

[M−, M+) = arg min
s∈Rm−1

℘(s),

which is equivalent to

[M(i)
− , M(i)

+ ) = argmin
z∈R

Pi(z), i = 1, . . . ,m − 1.

Note that, the processes {Pi(z) : i = 1, . . . ,m−1} being indepen-
dent, so are {M(i)

− : i = 1, . . . ,m − 1}. By a technique similar to
that used in the proof of Theorem 3.3 in Li and Ling (2012), we can
show that ℘n(s) ⇒ ℘(s) as n → ∞, and we deduce the following
result. The proof is omitted.

Theorem 3.3. If Assumptions A1–A7 hold, then n(r̂n − r0) converges
weakly to M− and its components are asymptotically independent as
n → ∞. Furthermore, n(r̂n − r0) is asymptotically independent of
√
n(λ̂n − λ0).

In practice, it is difficult to use M(i)
− to construct confidence

intervals for ri0 sinceM
(i)
− does not have a closed form. A simulation

procedure is needed to obtain the percentiles of M(i)
− . Such a

procedure is exactly the same as that given in Li et al. (forthcoming)
for the MTDAR(1, p) model and hence the details are omitted, see
also Li and Ling (2012) and Gonzalo and Wolf (2005).

4. Special cases

This section applies the results in Section 3 to several popu-
lar conditionally heteroscedastic thresholdmodels. Asymptotic re-
sults for such models are new in the literature, to our knowledge.

4.1. Multiple threshold ARCH models

The multiple threshold ARCH (MTARCH) model is defined as

yt = ηt


ht and ht =

m
i=1


ωi +

p
j=1

αijy2t−j


I{ri−1 < yt−d ≤ ri}.

When threshold parameters are known, variants of this class of
MTARCHmodels were studied by Gouriéroux and Monfort (1992),
Rabemananjara and Zakoïan (1993), Zakoïan (1994), Li and Li
(1996) among others. Recently, Chan et al. (2014) considered
a special MTARCH model in which the volatility function ht is
piecewise constant, and studied the asymptotic properties of the
QMLE of the parameter when the thresholds are unknown.

Let λ ≡ (α′

1, . . . ,α
′
m)′ and its QMLE be λ̂n. By Theorem 3.2, we

have

Theorem 4.1. If the assumptions A1–A7with φ10 = · · · = φm0 = 0
hold, then

n(r̂n − r0) = Op(1) and
√
n(λ̂n − λ0)

d
→ N (0, J),

where J = (κ4 − 1)diag{J1, . . . , Jm} with

Ji =


E

Xt−1X′

t−1Iit
(α′

i0Xt−1)2

−1

.

The limiting distribution of r̂n is the same as that in Theorem3.3,
except that the jump distributions in the corresponding two-
sided compound Poisson processes are replaced by the conditional
distribution of

ξ
(i,j)
t = log

α′

j0Xt−1

α′

i0Xt−1
+

η2
t (αi0 − αj0)

′ Xt−1

α′

j0 Xt−1
, given yt−d.

4.2. Multiple threshold AR models with conditionally heteroscedastic
errors

We consider the class of multiple threshold AR model with
conditionally heteroscedastic errors defined as follows:
yt =

m
i=1


ci +

p
j=1

φij yt−j


I{ri−1 < yt−d ≤ ri} + εt ,

εt = ηt


ht , ht = ω +

p
j=1

αjy2t−j .

This model generalizes Ling’s (2007) double AR model by consid-
ering a threshold effect in themean part. Zhang et al. (2011) inves-
tigated asymptotic properties of the QMLE when the threshold is
known. However, when the threshold is unknown, the asymptotic
properties of the QMLE are not available in literature.

Let λ ≡ (φ′

1, . . . ,φ
′

m, α′)′ with α = (ω, α1, . . . , αp)
′ and its

QMLE be λ̂n. We have the theorem:

Theorem 4.2. If the assumptions A1–A7 with α10 = · · · = αm0 =

α0 hold, then

n(r̂n − r0) = Op(1) and
√
n(λ̂n − λ0)

d
→ N (0, 6−1�6−1),

with

Σ = E

diag


Yt−1Y′

t−1I1t
α′

0Xt−1
, ...,

Yt−1Y′

t−1Imt

α′

0Xt−1
,
1
2

Xt−1X′

t−1

(α′

0Xt−1)2


,
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Ω = E



κ3
2

Yt−1X′
t−1I1t

(α′
0Xt−1)3/2Ω ...

κ3
2

Yt−1X′
t−1Imt

(α′
0Xt−1)3/2

κ3
2

Xt−1Y′
t−1I1t

(α′
0Xt−1)3/2

· · ·
κ3
2

Xt−1Y′
t−1Imt

(α′
0Xt−1)3/2

κ4−1
4

Xt−1X′
t−1

(α′
0Xt−1)2


,

Ω = diag(I1t , . . . , Imt) ⊗

Yt−1Y′

t−1

α′

0Xt−1


,

where ⊗ is the Kronecker product.

The limiting distribution of r̂n is the same as that in Theorem3.3,
except that the jump distributions in the corresponding two-
sided compound Poisson processes are replaced by the conditional
distribution of

ξ
(i,j)
t =


(φi0 − φj0)

′Yt−1
2

α′

0Xt−1
+

2ηt(φi0 − φj0)
′Yt−1

α′

0Xt−1
, given yt−d.

4.3. AR models with multiple-threshold conditionally heteroscedastic
errors

In linear AR models, the asymptotic properties of estimators
or tests on the AR coefficients are generally derived under three
types of assumptions on the errors process: i.i.d., martingale
difference or uncorrelated sequence (see for instance Francq
et al. (2005)). To further specify the errors dependence structure,
various heteroscedasticity models were introduced, see Li et al.
(2002), Francq and Zakoïan (2010) for an overview. A special case
of Model (1.1), in which the thresholds are only present in the
volatility, is defined as follows:
yt =

p
j=1

φj yt−j + εt ,

εt = ηt


ht , ht =

m
i=1


ωi +

p
j=1

αij y2t−j


I{ri−1 < yt−d ≤ ri}.

Let λ ≡ (φ′, α′

1, . . . ,α
′
m)′ and its QMLE be λ̂n. We have the

theorem:

Theorem 4.3. If the assumptions A1–A7 with φ10 = · · · = φm0 =

φ0 hold, then

n(r̂n − r0) = Op(1) and
√
n(λ̂n − λ0)

d
→ N (0, 6−1�6−1),

where

Σ = E


diag


m
i=1

Yt−1Y′

t−1Iit
α′

i0Xt−1
,
1
2
Xt−1X′

t−1I1t
(α′

10Xt−1)2
, ...,

1
2
Xt−1X′

t−1Imt

(α′

m0Xt−1)2


,

Ω = E



m
i=1

Yt−1Y′
t−1 Iit

α′
i0Xt−1

κ3
2

Yt−1X′
t−1 I1t

(α′
10Xt−1)3/2

· · ·
κ3
2

Yt−1X′
t−1 Imt

(α′
m0Xt−1)3/2

κ3
2

Xt−1Y′
t−1 I1t

(α′
10Xt−1)3/2

.

.

. Ω
κ3
2

Xt−1Y′
t−1 Imt

(α′
m0Xt−1)3/2


,

Ω =
κ4 − 1

4
diag


(α′

10Xt−1)
−2I1t , ..., (α′

m0Xt−1)
−2Imt


⊗ (Xt−1X′

t−1).

The limiting distribution of r̂n is the same as that in Theorem3.3
with the form of ξ (i,j)

t defined as in Theorem 4.1, that is, the AR part
does not affect the function of ξ (i,j)

t in terms of {yt}.

5. Determination of the number of thresholds in MTDAR
models

It is always an important issue to determine the number of
thresholds in threshold models. In this section, we will develop
a score-based test as in Ling and Tong (2011) and Li et al.
(forthcoming), which is asymptotically distribution-free and is
easy to implement in practice. The relevant critical values are
availablewithout bootstrap, unlike the likelihood ratio test in Chan
(1990), Chan and Tong (1990), Wong and Li (1997, 2000)), among
others.

Under the null H0, we suppose that {yt} follows a MTDAR(m; p)
model:

yt =

m
i=1


φ′

iYt−1 + ηt


α′

iXt−1


I{ri−1 < yt−d ≤ ri}. (5.1)

Here and throughout we use the notations in Section 3. Denote by
ϑ̂n the QMLE of ϑ0. By Theorem 3.2, it follows that

√
n(λ̂n − λ0) = 6−1n−1/2

n
t=1

Dt(ϑ0) + op(1),

where 6 = diag{61, . . . , 6m}, Dt(ϑ) = (D′

1t(ϑ), . . . ,D′
mt(ϑ))′

with

Dit(ϑ) =


(yt − φ′

iYt−1)Y′

t−1

α′

iXt−1
,
[(yt − φ′

iYt−1)
2
− (α′

iXt−1)]X′

t−1

2(α′

iXt−1)2

′

× I{ri−1 < yt−d ≤ ri}.

Following Ling and Tong (2011), we first define a score-marked
empirical process as follows:

Tin(x, ϑ) = n−1/2
n

t=1

U−1Dit(ϑ)I{ri−1 < yt−d ≤ x}, x ∈ R, (5.2)

for i = 1, . . . ,m, where U = diag{Ip+1,
√

(κ4 − 1)/2Ip+1} with
Ip+1 being the identity matrix and I(ri−1 < yt−d ≤ x) = 0 if x ≤

ri−1 by convention. Let D[−∞, ∞] denote the space of functions
on [−∞, ∞]which are right continuous and have left-hand limits,
equipped with the Skorokhod topology as in Billingsley (1968). By
Theorem A.1 in Li et al. (forthcoming), Theorem 3.2 and Taylor’s
expansion, we can get the asymptotic property of {Tin(x, ϑ̂n)}.

Theorem 5.1. Under the null H0 that {yt} follows Model (5.1) with
the true value ϑ0, if the assumptions A1–A7 hold and ηt is
symmetrically distributed, then, for i = 1, . . . ,m,

sup
x∈R

Tin(x, ϑ̂n) − Tin(x, ϑ0) + U−16ix6
−1
i,∞n−1/2

n
t=1

Dit(ϑ0)


= op(1),

and Tin(x, ϑ̂n) converges weakly to Gi(x) in D[−∞, ∞], where all
Gi(x)’s are independent and Gi(x) is a 2(p+1)-dimensional Gaussian
process with mean zero and covariance kernel Ki,xy = 6i,x∧y −

6ix6
−1
i,∞6iy for x, y ∈ (ri−1,0 , ri0 ], where

6ix = E

diag


Yt−1Y′

t−1

α′

i0Xt−1
,

Xt−1X′

t−1

2(α′

i0Xt−1)2


× I{ri−1,0 ∧ x < yt−d ≤ ri0 ∧ x}


.

Almost all paths of Gi(x) are continuous in x ∈ (ri−1,0 , ri0 ].
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We first estimate 6ix by

6ix =
1
n

n
t=1

diag

Yt−1Y′

t−1

α̂
′

inXt−1
,

Xt−1X′

t−1

2(α̂′

inXt−1)2


× I{r̂i−1,n ∧ x < yt−d ≤ r̂in ∧ x},

where i = 1, . . . ,m, r̂0n = −∞ and r̂mn = ∞. It is not hard to see
that6ix is a consistent estimator of6ix uniformly in x ∈ [−∞, ∞].
Now, we define the test statistic

Sin = max
x∈[ai, r̂in]


β′6−1

ix Tin(x, ϑ̂n)
2

β′(6−1
i ai −6−1

i r̂in)β
, (5.3)

where ai ∈ (r̂i−1,n, r̂in) andβ is a nonzero 2(p+1)×1 constant vec-
tor. We need to choose ai such that6−1

iai exists in practice. Sin is to
test if the linear ARmodel is adequate in the regime (ri−1, ri]. Since
we do not have a specific alternative, it is considered to be a port-
manteau test as called in Ling and Tong (2011). However, when
the alternative is a TAR model, i.e., there is another threshold in
(ri−1, ri], this test is more powerful than that under other alterna-
tives, see the simulation study in Ling and Tong (2011). Further-
more, when p = 1, it is equivalent to the log-likelihood ratio test
in Chan (1991). Thus, it is expected that Sin can be used to deter-
mine the number of threshold in Model (5.1).

By Theorem 5.1 and the continuous mapping theorem, we have
the following result.

Theorem 5.2. If the assumptions in Theorem 5.1 hold, then, for any
2(p + 1) × 1 nonzero constant vector β, it follows that

lim
n→∞

P (Sin ≤ y) = P

max

τ∈[0,1]
B2
i (τ ) ≤ y


for any y ∈ R and Bi(τ ) is a standard Brownian motion on C[0, 1].

The limiting distribution of Sin, unlike the test of Chan (1991),
does not depend on the choice of ai since the weight function
cancels out the related component, see Ling and Tong (2011). From
the formula in Shorack and Wellner (1986, p.34)

P

max

τ∈[0,1]
B2
i (τ ) ≤ x


=

4
π

∞
k=0

(−1)k

2k + 1
exp


−

(2k + 1)2π2

8x


,

x ≥ 0,
we can choose an approximate critical value Cα such that
P(maxτ∈[0,1] B2(τ ) ≥ Cα) = α for rejecting the null H0 at different
significance levels α. Numerous simulation studies show that β =

(1, . . . , 1)′, with ai around the 15% quantile of data {yt : r̂i−1,n <
yt−d ≤ r̂in}, produces a good power.

When the alternative is aMTDAR(m+1, p) model, it is not hard
to see that there are (m − 1) tests which have less power among
{S1n, . . . , Sm,n}. Thus, it is not a good idea to use a single test, say
S1n, to test the number of thresholds in Model (5.1). Testing the
null Model (5.1) is equivalent to the joint testing that the linear AR
models are adequate in all the regimes. Thus, a natural test statistic
for this is

Sn = max
1≤i≤m

{Sin}. (5.4)

By Theorem 5.1, all the Gi(x), i = 1, . . . ,m, are independent and
so are the Bi(x), i = 1, . . . ,m. Thus, it follows that, under the
assumptions of Theorem 5.1,

lim
n→∞

P (Sn ≤ x) = P

max
1≤i≤m

max
τ∈[0,1]

B2
i (τ ) ≤ x


=


4
π

∞
k=0

(−1)k

2k + 1
exp


−

(2k + 1)2π2

8x

m

, x ≥ 0.

Table 1 provides approximate critical values of Sn for rejecting
the null H0 at the significance levels α = 1%, 5%, 10% and m =

1, . . . , 4.

Table 1
Approximate critical values of Sn at the significance level α.

m \ α 10% 5% 1%

1 3.841 5.024 7.879
2 4.979 6.216 9.136
3 5.670 6.930 9.878
4 6.169 7.442 10.408

6. Simulation studies

To assess the performance of the QMLE in finite samples, we use
the sample sizesn = 300, 600 and900, eachwith 1000 replications
of the following model

yt =


φ1 yt−1 + ηt


ω1 + α1 y2t−1, if yt−1 ≤ r1,

φ2 yt−1 + ηt


ω2 + α2 y2t−1, if r1 < yt−1 ≤ r2,

φ3 yt−1 + ηt


ω3 + α3 y2t−1, if yt−1 > r2,

(6.1)

with true value (φ1, ω1, α1; φ2, ω2, α2; φ3, ω3, α3; r1, r2) = (0.5,

1, 0.3; 1, 0.5, 3; −0.7, 1, 0.5; −1, 0) and ηt
i.i.d.
∼ N(0, 1). For

Model (6.1),we have E log |φ1+ηt
√

α1| = −0.8725 and E log |φ3+

ηt
√

α3| = −0.5623. Thus, model (6.1) is strictly stationary,
although E log |φ2 + ηt

√
α2| = 0.0719 > 0.

Table 2 reports the empirical means (EM), empirical standard
deviations (ESD) and asymptotic standard deviations (ASD) of the
QMLE in Model (6.1). Here, the ASD of λ̂n and r̂n are computed by
using 6 and � in Theorem 3.2 and by simulating the compound
Poisson processes defined in (3.1), respectively. From Table 2, we
see that both ESDs and ASDs generally become smaller and closer
to each other when the sample size n increases. We also see that
the values of the ESD for r̂n are approximately halvedwhenever the
value of n is doubled. This partially illustrates the n-consistency of
r̂n. To see the overall feature of r̂n, Fig. 2 displays the histograms
of n(r̂1n − r10) and n(r̂2n − r20), respectively, when n = 600. The
important variability of the estimated thresholds can be explained
by the fact that their limiting distributions depend on the jump
sizes Y (i,i+1)

k and Z (i+1,i)
k . According to our experiments, the smaller

the jump sizes, the wider the range of the limiting distribution of
the estimated thresholds.

For Model (6.1), by Theorem 2.1, we know that φ2 = 1 does not
entail a unit-root behavior. This fact can also be seen from Fig. 3(a).
From Ling and Li (2008), we know that ω2 is not identifiable for

the double AR model yt = φ2yt−1 + ηt


ω2 + α2y2t−1 with true

value (φ2, ω2, α2) = (1, 0.5, 3). However, if such a double AR
model is regarded as the middle regime of Model (6.1), then ω2
remains identifiable and its estimator is asymptotically normal.
This is illustrated in Fig. 3(b). We also did some simulation studies
when n = 250 but the results were not much different from those
obtained when n = 300.

To examine the performance of our score-based tests in finite
samples, we take β = (1, . . . , 1)′ and use 1000 replications. Under
the null, H0, {yt} follows a MTDAR(2;1) model, i.e.,

yt =


0.1yt−1 + ηt


0.5 + 0.6y2t−1, if yt−1 ≤ 0,

0.4yt−1 + ηt


0.3 + 0.2y2t−1, if yt−1 > 0,

where ηt
i.i.d.
∼ N(0, 1). At the significance level 0.05, the empirical

sizes of the tests based on the statistics S1n, S2n and Sn are 0.071,
0.030 and 0.073 when n = 100, and 0.070, 0.032 and 0.053 when
n = 200, respectively. This shows that the size of Sn gets closer to
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Table 2
Simulation results for Model (6.1).

n φ1 ω1 α1 φ2 ω2 α2 φ3 ω3 α3 r1 r2
0.5 1 0.3 1 0.5 3 −0.7 1 0.5 −1 0

EM 0.4915 0.9476 0.2977 1.0125 0.4534 3.1094 −0.7081 1.0302 0.4540 −0.9884 0.0158
300 ESD 0.0710 0.4307 0.1128 0.2904 0.1908 0.8413 0.1462 0.2553 0.2772 0.0631 0.0791

ASD 0.0686 0.2799 0.0744 0.2596 0.1336 0.7785 0.1471 0.1851 0.2130 0.0900 0.0923
EM 0.4942 0.9778 0.2980 1.0144 0.4675 3.0777 −0.7010 1.0320 0.4631 −0.9933 0.0092

600 ESD 0.0506 0.2801 0.0737 0.1858 0.1172 0.6135 0.1070 0.1596 0.1832 0.0301 0.0364
ASD 0.0485 0.1979 0.0526 0.1836 0.0945 0.5505 0.1040 0.1309 0.1506 0.0450 0.0461
EM 0.4978 0.9778 0.3023 1.0028 0.4798 3.0872 −0.6977 1.0162 0.4802 −0.9949 0.0044

900 ESD 0.0420 0.2444 0.0645 0.1540 0.0884 0.5094 0.0858 0.1197 0.1456 0.0215 0.0243
ASD 0.0396 0.1616 0.0430 0.1499 0.0771 0.4494 0.0849 0.1069 0.1230 0.0300 0.0308

Fig. 2. The histograms of n(r̂1n − r10) and n(r̂2n − r20) when n = 600.

Fig. 3. Empirical and asymptotic densities of
√
n(φ̂2 − φ2) and

√
n(ω̂2 − ω2) when n = 600. The asymptotic variances are computed by Theorem 3.2.

its nominal value than those of the two other tests as the sample
size increases. The alternative H1 is a MTDAR(3;1) model, i.e.,

yt =


0.1yt−1 + ηt


0.5 + 0.6y2t−1, if yt−1 ≤ 0,

(0.4 + λ)yt−1 + ηt


0.3 + (0.2 + |λ|)y2t−1, if 0 < yt−1 ≤ 2,

0.4yt−1 + ηt


0.3 + 0.2y2t−1, if yt−1 > 2.

Fig. 4 illustrates the power of the tests S1n and S2n defined in (5.3)
when λ varies from −4 to 2. Even if the range of λ is large, the
alternative model is still stationary and ergodic by Theorem 2.1.
In this alternative model, a third threshold is introduced in the
second regime. It is expected that S1n has a less power. However,
when λ > 0.5, its power is significantly increasing. This is because
the process {yt} returns to the first regime (−∞, 0] much less
frequently than to the second regime (0, ∞) in this case. Also for
this reason, S2n has no power when λ > 0.5. Fig. 5 gives the plot

of the power of Sn. It can be seen that the power of Sn increases
when |λ| increases or when the sample size n increases from 100
to 200. However, as a referee pointed out, the power exceeds 20%
only when |λ| > 0.5. This may be because the second regime in
the alternativemodel is irrelevant to its stationarity and ergodicity
and hence its effect on the behavior of the whole model is small.
According to our simulation study, the test based on Sn should be
useful for determining the number of thresholds in the MTDAR
models.

7. An empirical example

In modern macroeconomics, the US Gross National Product
(GNP) is perhaps the most examined univariate time series,
see Potter (1995) and the references therein. Many researchers
pointed out that the US GNP sequence contains nonlinearity
and asymmetric effects causing the contraction (or recession)
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Fig. 4. Powers of the test statistics S1n and S2n at the significance level 5%, based on 1000 simulations of the MTDAR(3;1) model.

Fig. 5. Power of the test statistic Sn at the significance level 5%, based on 1000
simulations of the MTDAR(3;1) model.

and expansion regimes. To characterize such nonlinearity and
asymmetric effects, Tiao and Tsay (1994) suggested that two-
regime threshold models may be appropriate for contraction and
expansion, see also Potter (1995). It is also reasonable to model
‘‘bad times’’, ‘‘good times’’ and ‘‘normal times’’ of a given time
series, see Koop and Potter (1999). Based on this idea, Li and Ling
(2012) used a three-regime TARmodel to fit the growth rate of the
quarterly US real GNP data over the period 1947–2009.

In this section, we will use the score test of Section 5 to reana-
lyze the quarterly US real GNP data over the period 1947–06/2013
with a total of 266 observations. Let x1, . . . , x266 denote the orig-
inal data. We define the growth rate series as yt = 100(log xt −

log xt−1), t = 2, . . . , 266. The data {xt} and the growth rate
series {yt} are plotted in Fig. 6.

We first used a two-regime TDAR model to fit the data {yt}.
Based on the AIC and BIC, we selected the following model:

yt =



0.177 + 0.424yt−1 − 0.306yt−2
(0.202) (0.128) (0.210)

+ηt


0.690 + 0.631y2t−3, if yt−2 ≤ 0.244,

(0.452) (0.538)

0.421 + 0.331yt−1 + 0.213yt−2 − 0.105yt−3
(0.116) (0.069) (0.087) (0.065)

+ηt


0.601 + 0.022y2t−1, if yt−2 > 0.244,

(0.144) (0.058) (0.169)

(7.1)

Fig. 6. The original data and the growth rate. The dash line below is the frontier
between the contraction regime and the expansion regime.

where the estimated value of d is 2, rn = 0.244, the AIC
and BIC’s values are 207.246 and 257.362, respectively. The 95%
confidence interval of the threshold is [−0.173, 0.534] by the sim-
ulation method in Li et al. (forthcoming), where 2000 replications
were used. The p-values of the Ljung–Box test statistic Q (M) and
theMcLeod–Li test statisticQ 2(M) (see Li and Li, 1996;McLeod and
Li, 1983) suggest that Model (7.1) is adequate for {yt}, see Fig. 7.
Moreover, the value of the score test Sn in (5.4) is 0.767, which
indicates that the two-regime TDAR model (7.1) is sufficient for
{yt}. The first regime (i.e., y ≤ 0.244) and the second one in Model
(7.1) characterize the dynamic behaviors of the contraction and the
expansion, respectively. The number of observations in the con-
traction and expansion regimes are 56 and 209, respectively. This
means that the US total economic activity was most of time in ex-
pansion since theWorldWar II. By computing the roots of AR poly-
nomials in the two regimes, we find that the expected durations of
the contraction and the expansion periods are approximately 5.32
quarters and 5.95 quarters, respectively. The average length of the
stochastic cycles is totally 11.27 quarters, which is about 3 years.
This result is similar to that in Example 2.1 in Tsay (2010, p. 42).
Finally, note that the first regime is characterized by a more im-
portant volatility than the second regime, with also a larger delay
of response (Y 2

t−3 instead of Y 2
t−1).
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Appendix

Let K > 0 and 0 < ρ < 1 denote generic constants, whose
values can change throughout the proofs.

A.1. Proof of Theorem 2.1

Proof. Wewill verify the following criterion, which is straightfor-
wardly deduced from Meyn and Tweedie (1996, Theorem19.1.3):
if {yt} is a homogeneous Markov chain on E ⊂ R which is Feller,
aperiodic,µ-irreducible, whereµ is a σ -finitemeasurewhose sup-
port has a non-empty interior, and if there exist a compact set C ,
an integer s ≥ 1 and a function V : R → R+ such that

V (y) ≥ 1, ∀y ∈ C (A.1)

and for some δ > 0

E[V (yt)|Yt−s = y] ≤ (1 − δ)V (y), ∀y ∉ C (A.2)

then {yt} is geometrically ergodic and E[V (yt)] < ∞.
It is clear that {yt} defined by (2.1), with initial value y0, is

an homogeneous Markov chain on R endowed with its Borel
σ -field B(R). Denote by λ the Lebesgue measure on (R, B(R)).
The transition probabilities of {yt} are given, for y ∈ R, B ∈ B(R),
by

P(y, B) = P(yt ∈ B|yt−1 = y) =

m
i=1


Bi(y)

f (x)dx

I{y ∈ Ri},

where Bi(y) is the set B−φiy−ci√
ωi+αiy2

. Since P(·, B) is continuous, for any

B ∈ B(R), the chain {yt} has the Feller property. Now, because
the density f is positive over R, we have P(y, B) > 0 whenever
λ(B) > 0. Thus the chain is λ-irreducible. It can also be shown
that Pk(y, B) = P(yt ∈ B|yt−k = y) > 0 for any integer k ≥ 1,
whenever λ(B) > 0, which establishes the aperiodicity of the
chain.

Let σit = (ωi + αiy2t−1)
1/2. We have

yt = (φ1yt−1 + σ1tηt)I{yt−1 < r1}

+ (φmyt−1 + σmtηt)I{yt−1 > rm−1} + z(yt−1, ηt),

where |z(yt−1, ηt)| ≤ K(1 + |ηt |). Write

σ1t I{yt−1 < r1} = −
√

α1yt−1I{yt−1 < r1} + u1(yt−1),

σmt I{yt−1 > rm−1} =
√

αmyt−1I{yt−1 > rm−1} + um(yt−1),

where u1(yt−1) and um(yt−1) are bounded random terms. It follows
that

yt = [a1(ηt)I{yt−1 < r1} + am(ηt)I{yt−1 > rm−1}] yt−1

+ {u1(yt−1) + um(yt−1)} ηt + z(yt−1, ηt), (A.3)

where a1(x) = φ1 − x
√

α1 and am(x) = φm + x
√

αm. Let

b(η, y) = a1(η)I{y < r1} + am(η)I{y > rm−1}.

Expanding (A.3) we find that if yt−2 = y,

yt = b(ηt , yt−1)b(ηt−1, y)y + v(yt−1, ηt , y), (A.4)

where

v(yt−1, ηt , y) = b(ηt , yt−1)[{u1(y) + um(y)} ηt−1 + z(y, ηt−1)]

+ {u1(yt−1) + um(yt−1)} ηt + z(yt−1, ηt).

Suppose that y > rm−1. Then

I{yt−1 < r1} = I


ηt−1 <

r1 − φmy
ωm + αmy2



= I

ηt−1 < −

φm
√

αm


+ ε1I{ηt−1 ∈ A1(y)}, (A.5)

and

I{yt−1 > rm−1} = I


ηt−1 >

rm−1 − φmy
ωm + αmy2



= I

ηt−1 > −

φm
√

αm


+ ε2I{ηt−1 ∈ A2(y)}, (A.6)

with, by convention, I{η < a/b} = 1 − I{η > a/b} = I{a > 0} if
b = 0, for some sets Ai(y), with εi = 0, ±1, i = 1, 2. Similarly, if
y < r1,

I{yt−1 < r1} = I

ηt−1 <

φ1
√

α1


+ ε3I{ηt−1 ∈ A3(y)}, (A.7)

and

I{yt−1 > rm−1} = I

ηt−1 >

φ1
√

α1


+ ε4I{ηt−1 ∈ A4(y)}. (A.8)

Let

H1(η0, η1) =


a1(η0)I


η1 <

φ1
√

α1


+ am(η0)I


η1 >

φ1
√

α1


a1(η1), (A.9)

Hm(η0, η1) =


a1(η0)I


η1 < −

φm
√

αm


+ am(η0)I


η1 > −

φm
√

αm


am(η1). (A.10)

We thus have, in view of (A.4)–(A.8), for y > rm−1

yt =


a1(ηt)I


ηt−1 < −

φm
√

αm


+ am(ηt)I


ηt−1 > −

φm
√

αm


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× am(ηt−1)y + v(yt−1, ηt , y)

+ [a1(ηt)ε1I{ηt−1 ∈ A1(y)} + am(ηt)ε2I{ηt−1 ∈ A2(y)}]

× am(ηt−1)y

:= Hm(ηt , ηt−1)y + Rm(ηt , ηt−1, y), (A.11)

and for y < r1,

yt = H1(ηt , ηt−1)y + R1(ηt , ηt−1, y) (A.12)

where R1(ηt , ηt−1, y) is defined similarly to Rm(ηt , ηt−1, y). Note
that (2.2) can be equivalently written as

γ = max {E log |H1(η0, η1)|, E log |Hm(η0, η1)|} < 0. (A.13)

Because E log |H1(η0, η1)| < 0, and E|H1(η0, η1)|
s < ∞, there

exists u ∈ (0, 1) such that

ρ ≡ max

E|H1(η0, η1)|

u, E|Hm(η0, η1)|
u < 1

(see for instance Francq and Zakoïan (2010, Lemma 2.2). Let V :

y → V (y) = 1 + |y|u. Using the elementary equality (a + b)u ≤

au + bu for a, b ∈ R, we have, for y > rm−1, by (A.11)

E[|yt |u|yt−2 = y] − |y|u

≤ {ρ − 1} |y|u + E{Rm(ηt , ηt−1, y)}u. (A.14)

Now

E{Rm(ηt , ηt−1, y)}u ≤ E{v(yt−1, ηt , y)}u

+ E

a1(ηt)

uI{ηt−1 ∈ A1(y)} + am(ηt)
uI{ηt−1 ∈ A2(y)}


× am(ηt−1)

u
|y|u.

It can be seen that |a1(ηt)| ≤ K(1 + |ηt |), |am(ηt)| ≤ K(1 + |ηt |)
and |v(yt−1, ηt , y)| ≤ K(1 + |ηt |)(1 + |ηt−1|). Moreover, for i =

1, . . . , 4,λ(Ai(y)) ≤ K/y. It follows, by the Schwarz inequality, that
for any integer p such that u/s < 1/p < 1 − u, with u sufficiently
small,

EI{ηt−1 ∈ A1(y)}{am(ηt−1)}
u
|y|u

≤ K{λ(A1(y))}1−1/p
{E[am(ηt−1)]

up
}
1/p

|y|u ≤ K .

The same inequalities hold with a1 replaced by am. Thus, by (A.14),
we have, for y > rm−1,

E[|yt |u|yt−2 = y] − |y|u ≤ {ρ − 1} |y|u + K .

The same arguments show that the same inequality holds for y <
r1.

Let 0 < δ < 1 − ρ and let

C = {y ∈ R; (ρ − 1 + δ)|y|u + K ≥ 0} ∪ [r1, rm−1].

The setC is a non-empty compact set such thatλ(C) > 0.Moreover
(A.1) and (A.2) hold with s = 2. Thus, there exists a unique
geometrically ergodic solution with E|yt |u < ∞ to Model (2.1).
This completes the proof. �

A.2. Proof of Theorem 2.2

Condition (2.4) means that ρ1 = max{EH2
0 (ηt , ηt−1), EH2

m(ηt ,
ηt−1)} < 1, with the notation introduced in (A.9)–(A.10). Starting
from (A.11) we have, for y > rm−1,

E[y2t |yt−2 = y] − y2

=

EH2

m(ηt , ηt−1) − 1

y2 + 2yEHm(ηt , ηt−1)Rm(ηt , ηt−1, y)

+ E{Rm(ηt , ηt−1, y)}2.

Since am(ηt−1)
2 is bounded over the set A1(y), we have, for y >

rm−1,

EI{ηt−1 ∈ A1(y)}am(ηt−1)
2y2 ≤ EI{ηt−1 ∈ A1(y)}y2 ≤ Ky.

Treating in the sameway the other terms involved inRm(ηt , ηt−1, y)
it follows that E{Rm(ηt , ηt−1, y)}2 ≤ Ky. Similarly we have
|EHm(ηt , ηt−1)Rm(ηt , ηt−1, y)| ≤ Ky and thus, for y > rm−1

E[y2t |yt−2 = y] − y2 ≤ {ρ1 − 1} y2 + K |y|.

The same inequality holds for y < r1. Letting 0 < δ < 1 − ρ1 and
introducing the compact set

C = {y ∈ R; (ρ1 − 1 + δ)y2 + K |y| ≥ 0} ∪ [r1, rm−1],

weconclude that (A.1) and (A.2) holdwith s = 2, andV (y) = 1+y2.
The proof is complete. �

A.3. Proof of Theorem 3.1

Before proving Theorem3.1,we first prove several intermediate
results.

Lemma A.1. Under the assumptions of Theorem 3.1, Elt(ϑ) has a
unique maximum at ϑ0.

Proof. Let β(ϑ) = −2E{lt(ϑ) − lt(ϑ0)}, Ai = I{ri−1 < yt−d ≤

ri}, Ai0 = I{ri−1,0 < yt−d ≤ ri0} and

Γi,j0 = log
 α′

iXt−1

α′

j0Xt−1


+

α′

j0Xt−1

α′

iXt−1
− 1 +

{(φj0 − φi)
′Yt−1}

2

α′

iXt−1
.

Clearly, Γi,j0 ≥ 0 by the elementary inequality log x +
1
x − 1 ≥ 0

for all x > 0 and the equality holds if and only if x = 1. Then,
β(ϑ) =

m
i=1
m

j=1 E

Γi,j0AiAj0


≥ 0.

Next, we show that β(ϑ) = 0 holds if and only if ϑ = ϑ0.
Assume β(ϑ) = 0. We first prove r1 = r10. If r1 > r10, then
Γ1,10A1A10 = Γ1,10A10 = 0 and Γ1,20A1A20 = Γ1,20I{r10 <

yt−d ≤ r1 ∧ r20} = 0. Since the density of yt is positive and con-
tinuous by A2, it follows that Γ1,10 = Γ1,20 = 0, which implies
that (φ′

10, α
′

10)
′

= (φ′

1, α
′

1)
′

= (φ′

20, α
′

20)
′. This contradicts A1.

Hence, r1 ≤ r10. If r1 < r10, using the same technique, we can
get (φ′

10, α
′

10)
′

= (φ′

2, α
′

2)
′

= (φ′

20, α
′

20)
′ if r2 ≥ r10, which re-

sults in r1 < r2 < r10. Repeating the above procedure, we can
get r1 < · · · < rm < r10, which is a contradiction with the
partition R = ∪

m
i=1 Ai. Finally, we get r1 = r10 and then in turn

(φ′

1, α
′

1)
′
= (φ′

10, α
′

10)
′ implied byΓ1,10A10 = 0. Similarly, we have

ri = ri0 for i = 2, . . . ,m− 1 and then in turn (φ′

j, α
′

j)
′
= (φ′

j0, α
′

j0)
′

for j = 2, . . . ,m. Thus, ϑ = ϑ0 and Elt(ϑ) is uniquely maximized
at ϑ0. �

Lemma A.2. Under the assumptions of Theorem 3.1, for any η > 0,

lim
l→∞

P

max
l≤n<∞

sup
∥ϑ−ϑ0∥>η

n
t=1

[lt(ϑ) − lt(ϑ0)] ≥ 0


= 0.

Proof. Let Vη̃ = {ϑ̃ : ∥ϑ̃ − ϑ∥ ≤ η̃} and Xt(η̃) = supϑ∈Θ

supVη̃
|lt(ϑ̃) − lt(ϑ)|. Since ηt has a density function, we can show

that

EXt(η̃) → 0 (A.15)

as η̃ → 0. Thus, for any ϵ > 0, there is η̃ > 0 such that
EXt(η̃) < ϵ/2. Since Xt(η̃) is asymptotically strictly stationary and
ergodic, by Lemma 1 in Chow and Teicher (1978, p. 66) and the
ergodic theorem, for any ϵ1 > 0, we have

P

max
l≤n<∞

1
n

 n
t=1

[Xt(η̃) − EXt(η̃)]

 ≥
ϵ

2


< ϵ1,
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as l is large enough. Thus, for any ϵ, ϵ1 > 0, there exists a constant
η̃ > 0 such that

P

max
l≤n<∞

1
n

n
t=1

Xt(η̃) ≥ ϵ


≤ P

max
l≤n<∞

1
n

 n
t=1

[Xt(η̃) − EXt(η̃)]

 ≥
ϵ

2


< ϵ1. (A.16)

By the ergodic theorem, for each ϑ ∈ Θ and any ϵ > 0,

lim
l→∞

P

max
l≤n<∞

1
n

n
t=1

[lt(ϑ) − Elt(ϑ)]

 ≥ ϵ


= 0. (A.17)

Since Θ is compact, we can choose a collection of balls of radius
∆ > 0 covering Θ , and the number of such balls is a finite integer
N . In the i th ball, we take a point ξi and denote this ball by V (ξi). By
(A.15)–(A.17), for any ϵ > 0, we have

P

max
l≤n<∞

1
n
sup
Θ

 n
t=1

[lt(ϑ) − Elt(ϑ)]

 ≥ ϵ


≤ P

max
1≤j≤N

sup
ϑ∈V (ξj)

max
l≤n<∞

1
n

n
t=1

[lt(ϑ) − lt(ξj)]
 ≥

ϵ

3


+ P


max
1≤j≤N

sup
ϑ∈V (ξj)

E[lt(ϑ) − lt(ξj)]
 ≥

ϵ

3


+ P


max
1≤j≤N

max
l≤n<∞

1
n

n
t=1

[lt(ξj) − Elt(ξj)]
 ≥

ϵ

3


≤ P


sup
ξi∈Θ

sup
ϑ∈V (ξj)

max
l≤n<∞

1
n

n
t=1

[lt(ϑ) − lt(ξj)]
 ≥

ϵ

3


+

N
j=1

P


sup
ϑ∈V (ξj)

E[lt(ϑ) − lt(ξj)]
 ≥

ϵ

3



+

N
j=1

P

max
l≤n<∞

1
n

n
t=1

[lt(ξj) − Elt(ξj)]
 ≥

ϵ

3


< ϵ, (A.18)

as l is large enough and ∆ is small enough.
Since E[lt(ϑ)] has a unique maximum at ϑ0, Θ is compact, and

Elt(ϑ) is continuous, there exists a constant c > 0, such that

max
∥ϑ−ϑ0∥>η

E[lt(ϑ) − lt(ϑ0)] ≤ −c (A.19)

for any η > 0. By (A.18)–(A.19), it follows that

P

max
l≤n<∞

sup
∥ϑ−ϑ0∥>η

 n
t=1

[lt(ϑ) − lt(ϑ0)] +
cn
2


> 0


= P


max
l≤n<∞

sup
∥ϑ−ϑ0∥>η

 n
t=1

[lt(ϑ) − Elt(ϑ)]

−

n
t=1

[lt(ϑ0) − Elt(ϑ0)] + n[Elt(ϑ) − Elt(ϑ0)] +
cn
2


> 0


≤ P


max
l≤n<∞

sup
Θ


2
 n

t=1

[lt(ϑ) − Elt(ϑ)]

− cn +
cn
2


> 0


≤ P


max
l≤n<∞

sup
Θ

1
n

n
t=1

[lt(ϑ) − Elt(ϑ)]

 >
c
4


→ 0,

as l → ∞. � (A.20)

Proof of Theorem 3.1. By Lemma A.2, for any ϵ > 0, we have

lim
l→∞

P( max
l≤n<∞

∥ϑ̂n − ϑ0∥ > ϵ)

= lim
l→∞

P

max
l≤n<∞

∥ϑ̂n − ϑ0∥ > ϵ,

max
l≤n<∞

n
t=1


lt(ϑ̂n) − lt(ϑ0)


≥ 0


≤ lim

l→∞

P

max
l≤n<∞

sup
∥ϑ−ϑ0∥>ϵ

n
t=1


lt(ϑ) − lt(ϑ0)


≥ 0


= 0.

Thus, the conclusion holds. �

A.4. Proof of Theorem 3.2

Since ϑ̂n is consistent by Theorem3.1, we restrict the parameter
space to an open neighborhood ofϑ0. To this end, define Vδ = {ϑ ∈

Θ : ∥λ − λ0∥ < δ, |ri − ri0| < δ, i = 1, . . . ,m − 1} for some
0 < δ < 1 to be determined later. Choose δ small enough so that
{r : |r − ri−1,0| < δ} ∩ {r : |r − ri0| < δ} = ∅ for i = 2, . . . ,m− 1.
Note that

Ln(λ, r) − Ln(λ, r0) =

m−1
i=1

L(i)
n (λ, ri),

where

L(i)
n (λ, ri)

= −
1
2

n
t=1


log
 α′

iXt−1

α′

i+1Xt−1


+

(yt − φ′

iYt−1)
2

α′

iXt−1
−

(yt − φ′

i+1Yt−1)
2

α′

i+1Xt−1


× sign(ri − ri0)I{ri ∧ ri0 < yt−d ≤ ri ∨ ri0}.

For (i), it is equivalent to prove n|r̂in − ri0| = Op(1) for each
i = 1, . . . ,m. To obtain n|r̂in − ri0| = Op(1), it suffices to prove
that there exist constants B > 0 and γ > 0 such that, for any
ε > 0,

P

 sup
B/n<|ri−ri0 |≤δ

ϑ∈Vδ

L(i)
n (λ, ri) − L(i)

n (λ, ri0)
nGi(|ri − ri0|)

< −γ

 > 1 − ε (A.21)

for i = 1, . . . ,m, as n is large enough, where Gi(u) = P(ri0 < y0 ≤

ri0 + u).
We now show (A.21) holds for the case p = 1 and i = 1. The

proof of the general case would go through by the same technique
used in Chan (1993, p. 529). Here, we only treat the case r1 > r10.
The proof for the case r1 ≤ r10 is similar. Writing r1 = r10 + u for
some u ≥ 0. By a simple calculation, it follows that

2{L(1)
n (λ, r1) − L(1)

n (λ, r10)}
nG1(u)

= −K1
G1n(u)
G1(u)

+ K2

n
t=1

ηt I(r10 < yt−1 ≤ r10 + u)

nG1(u)

+ K3

n
t=1

(η2
t − 1)I(r10 < yt−1 ≤ r10 + u)

nG1(u)
+ Op(

√
δ),

where G1n(u) = n−1n
t=1 I(r10 < yt−1 ≤ r10 + u),

K1 = log
α′

10X
α′

20X
+

α′

20X
α′

10X
− 1 +

{(φ20 − φ10)r10}2

α′

10X
,

K2 =
2{(φ10 − φ20)r10}


α′

20X
α′

10X
and K3 =

(α10 − α20)
′X

α′

10X
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with X = (1, r210)
′. Similar to Claim 2 in Chan (1993), for any ε > 0

and ϵ > 0, there exists a positive constant B such that as n is large
enough

P


sup
B/n<u≤δ

 G1n(u)G1(u)
− 1

 < ϵ


> 1 − ε,

P


sup
B/n<u≤δ

 n
t=1

ηt I(r10<yt−1≤r10+u)

nG1(u)

 < ϵ


> 1 − ε,

P


sup
B/n<u≤δ

 n
t=1

(η2t −1)I(r10<yt−1≤r10+u)

nG1(u)

 < ϵ


> 1 − ε.

Note that K1 > 0 by A7. Choosing δ small enough and γ = K1/4,
(A.21) holds and so does (i). �

(ii). Similar to the proof of Theorem 3.1, it is not hard to show
that sup∥r−r0∥<B/n ∥λ̂n(r)−λ0∥ = op(1). After a simple calculation,
we have

sup
∥r−r0∥≤B/n

1
n

∂Ln(λ0, r)
∂λ

−
1
n

∂Ln(λ0, r0)
∂λ

 = Op(n−1),

sup
∥λ−λ0∥<ϵ

sup
r∈Θr

1
n

∂2Ln(λ, r)
∂λ∂λ′

−
1
n

∂2Ln(λ0, r)
∂λ∂λ′

 = Op(ϵ),

sup
∥r−r0∥≤B/n

1
n

∂2Ln(λ0, r)
∂λ∂λ′

−
1
n

∂2Ln(λ0, r0)
∂λ∂λ′

 = Op(n−1).

(A.22)

By Taylor’s expansion of ∂Ln(λ, r)/∂λ, it follows that

0 =
1
n

∂Ln(λ̂n(r), r)
∂λ

=
1
n

∂Ln(λ0, r)
∂λ

+
1
n

∂2Ln(λ̄, r)
∂λ∂λ′


λ̂n(r) − λ0


, (A.23)

where λ̄ lies in the ball B(λ0, ∥λ̂n(r) − λ0∥). By the ergodic
theorem, we have

−
1
n

∂2Ln(ϑ0)

∂λ∂λ′
−→ 6 := diag(61, . . . , 6m), a.s.

as n → ∞. Thus, by (A.22) and (A.23),

sup
∥r−r0∥≤B/n

√n

λ̂n(r) − λ0


− 6−1 1

√
n

∂Ln(ϑ0)

∂λ

 = op(1),

which implies that
√
n sup

∥r−r0∥≤B/n

λ̂n(r) − λ̂n(r0)


≤ sup
∥r−r0∥≤B/n

√n

λ̂n(r) − λ0


− 6−1 1

√
n

∂Ln(ϑ0)

∂λ


+

√n

λ̂n(r0) − λ0


− Σ−1 1

√
n

∂Ln(ϑ0)

∂λ

 = op(1).

By the martingale central limit theorem, we can show that the
conclusion holds. �
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