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This article first proposes a score-based test for a double autoregressive model against a threshold double
autoregressive (AR) model. It is an asymptotically distribution-free test and is easy to implement in practice.
The article further studies the quasi-maximum likelihood estimation of a threshold double autoregressive
model. It is shown that the estimated threshold is n-consistent and converges weakly to a functional of
a two-sided compound Poisson process and the remaining parameters are asymptotically normal. Our
results include the asymptotic theory of the estimator for threshold AR models with ARCH errors and
threshold ARCH models as special cases, each of which is also new in literature. Two portmanteau-typeQ1
statistics are also derived for checking the adequacy of fitted model when either the error is nonnormal or
the threshold is unknown. Simulation studies are conducted to assess the performance of the score-based
test and the estimator in finite samples. The results are illustrated with an application to the weekly closing
prices of Hang Seng Index. This article also includes the weak convergence of a score-marked empirical
process on the space D(R) under an α-mixing assumption, which is independent of interest.
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1. INTRODUCTION

Generally speaking, the conditional mean function and theQ2
conditional variance function (i.e., the volatility or diffusion) of
a time series are most important in practice. A lot of time series
models have been suggested in the literature, see Tong (1990).25

The threshold autoregressive (TAR) model proposed by Tong
(1978) has been widely investigated for the conditional mean
function and it has been applied in a wide range of fields such as
economics, econometrics, finance, etc. A comprehensive survey
on TAR models is available in Tong (1990, 2011) and Hansen30

(2011). The ARCH-type models proposed by Engle (1982) and
Bollerslev (1986) are commonly used in modeling the condi-
tional variance functions in economic and financial time series.
An overall review on GARCH models was given in Francq
and Zakoı̈an (2010). The TAR model simply with the plug-in35

GARCH model, called TAR/GARCH model, has been used for
a full specification of time series, see Li and Lam (1995), Li and
Li (1996), and Tsay (2010). In this model, the driving random
component in the GARCH part is not observable, but rather to
the innovations of the TAR model. One cannot directly mea-40

sure on the market volatilities via its observations. Its structure
is generally unclear, except for a special case in Ling (1999),
such that there is not any theoretical support to the statistical
inference of this model up to date. These disadvantages can be
avoid in an alternative class of ARCH-type models proposed in45

the literature, such as of ARMA-ARCH models in Weiss (1986)
and CHARMA models in Tsay (1987).

Following Weiss (1986), in this article we consider a class of
self-exciting TAR models with conditional heteroscedasticity,

called threshold double autoregressive (TDAR) models. Specif- 50

ically, a time series {yt } is said to be a TDAR model of order
(p1, p2; q1, q2) (hereafter abbreviated as TDAR(p1, p2; q1, q2))
if it satisfies the following equation:

yt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ10 +∑p1
j=1 φ1j yt−j + εt

√
α10 +∑q1

j=1 α1j y2
t−j ,

if yt−d ≤ r,

φ20 +∑p2
j=1 φ2j yt−j + εt

√
α20 +∑q2

j=1 α2j y2
t−j ,

if yt−d > r,

(1.1)

where φij ’s and αij ’s are the coefficients, r is the threshold 55

parameter, d is a positive integer called the delay parameter,
and pi and qi are known nonnegative integers. Compared with
the TAR/GARCH model, a significant difference of model (1.1)
is that the conditional variance is specified in function of the
observations. Its expression gives a visible dynamic behavior of 60

the conditional variance and provides a direct way to compute
the one-step future volatility. Its structure, such as the strict
stationarity and V-uniform ergodicity, was studied by Cline and
Pu (2004) under a general setting.

Model (1.1) implies the DAR model as a special case. The 65

related work can be found in Ling (2004, 2007), Chan and
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Peng (2005), Ling and Li (2008), Zhu and Ling (2013), and
Chen, Li, and Ling (2014). When αij ’s are zeros, i = 1, 2,
j = 1, . . . , qi , model (1.1) reduces to a TAR model. Asymp-
totic theory on least-square estimates (LSE) of TAR mod-70

els were developed by Chan (1993) and Li and Ling (2012)
when the autoregressive function is discontinuous and by Chan
and Tsay (1998) when the autoregressive function is continu-
ous. Under the assumption that the threshold effect is vanish-
ingly small, Hansen (1997, 2000) obtained the distribution- and75

parameter-free limit of the estimated threshold. Seo and Lin-
ton (2007) proposed a smoothed least-square estimation for the
TAR/regression model and showed that the estimated threshold
is asymptotically normal but its convergence rate is less than
n and depends on the bandwidth. When φij ’s are zeros, model80

(1.1) is a threshold ARCH (TARCH) model, see Rabemanan-
jara and Zakoı̈an (1993) and Zakoı̈an (1994). If the threshold
were known, it is more or less standard to estimate the pa-
rameters in model (1.1). The difficulty is when the threshold
is unknown. In this case, no asymptotic theory has been es-85

tablished in literature up to now, even for the simple TARCH
model.

In this article, we first study Ling and Tong’s (2011), abbrevi-
ated to LT(2011), score-based statistic for testing the null DAR
model against the alternative TDAR model. Under the null hy-90

pothesis, it is shown that the test statistic converges weakly to the
maxima of a squared standard Brownian motion. We then study
the quasi-maximum likelihood estimator (QMLE) of model
(1.1). It is shown that the estimated threshold is n-consistent and
converges weakly to a functional of a two-sided compound Pois-95

son process and the remaining parameters are
√

n-consistent and
asymptotically normal. Our results include the asymptotic the-
ory of the estimator for TAR models with Weiss’(1986) ARCH
errors and for TARCH models as special cases, each of which is
also new in literature. Two portmanteau test statistics are derived100

for checking the adequacy of fitted models. Simulation studies
are conducted to assess the power of our test and the perfor-
mance of the QMLE in finite samples. The results are illustrated
with an application to the weekly closing prices of Hang Seng
Index.105

The remainder of this article is organized as follows. Section 2
gives a score-based test and derives its limiting distribution. Sec-
tion 3 presents the QMLE and states its asymptotic properties.
Section 4 gives portmanteau test statistics. Simulation studies
are reported in Section 5 and an empirical example is analyzed in110

Section 6. All proofs of main theorems are given in Appendices.
It includes the weak convergence of a score-marked empirical
process under an α-mixing assumption, which is independent
of interest.

Throughout the article, some symbols are conventional. C is115

an absolutely positive constant, which may be different in dif-
ferent places. I (·) is the indicator function. R

p is the Euclidean
space of dimension p and ‖ · ‖ denotes the Euclidian norm.
‖ · ‖∞ is the supremum norm, that is, ‖f ‖∞ = supx∈R

|f (x)|.
Im is an m × m identity matrix. Denote D(A) as the space of120

real-valued functions on the set A, which are right continuous
and have left-hand limits. The space D(A) is equipped with
the Skorohod topology (see Billingsley 1999). =⇒ denotes the
weak convergence.

2. A SCORE-BASED TEST FOR DAR AGAINST 125

TDAR MODELS

It is an important step to test for a threshold effect in time
series modeling. The likelihood ratio (LR) test was studied by
Chan (1990) and Chan and Tong (1990) for AR against TAR
models, and by Wong and Li (1997, 2000) for AR-ARCH against 130

TAR-ARCH models, see also Zhang et al. (2011). In this section,
we will study a score-based test for DAR against TDAR models.

Under the null hypothesis H0, we assume that time series {yt }
follows a DAR model:

yt = φ′Yt−1 + εt

√
α′Xt−1, (2.1)

where {εt } is a sequence of independent and identically 135

distributed (iid) random variables with zero mean and unit
variance, φ = (φ0, φ1, . . . , φp)′, α = (α0, α1, . . . , αq)′, Yt−1 =
(1, yt−1, . . . , yt−p)′, and Xt−1 = (1, y2

t−1, . . . , y
2
t−q )′. The alter-

native H1 is the threshold counterpart of (2.4) like model (1.1).
Let θ = (φ′,α′)′ be the parameter and � be the parameter space, 140

which is compact with α ≤ αi ≤ ᾱ (i = 0, . . . , q), where α and
ᾱ are some positive constants. The true value θ 0 = (φ′

0,α
′
0)′ is an

interior point of �. Given data {y1−p, . . . ,∼ yn}, under H0, the
conditional quasi-log-likelihood function (ignoring a constant)
can be written as 145

Ln(θ ) = −1

2

n∑
t=1

lt (θ) with lt (θ ) = log(α′Xt−1)

+ (yt − φ′Yt−1)2

α′Xt−1
.

Denote θ̂n as the QMLE of θ0, that is, the maximizer of Ln(θ) on
�. For simplicity, in this section, we assume that εt is symmetric.
If {yt } is stationary and ergodic with Ey4

t < ∞, the density of εt

is positive on R, and κ4 ≡ Eε4
t < ∞, Ling (2007) showed that

√
n(̂θn − θ0) = �−1

∞
1√
n

n∑
t=1

Dt (θ0) + op(1),

where 150

Dt (θ) =
(Y′

t−1(yt − φ′Yt−1)

α′Xt−1
,

− X′
t−1

2α′Xt−1

[
1 − (yt − φ′Yt−1)2

α′Xt−1

])′
,

�x = diag

{
E

(
Yt−1Y′

t−1I (yt−d ≤ x)

α′
0Xt−1

)
,

E

(
Xt−1X′

t−1I (yt−d ≤ x)

2(α′
0Xt−1)2

)}
,

x ∈ R ≡ R ∪ {±∞},
for some positive integer d.

To introduce our test statistic, we first define the score marked
empirical process

Tn(x, θ̂n) = 1√
n

n∑
t=1

Û−1Dt (̂θn)I (yt−d ≤ x), (2.2)
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where Û = diag{Ip+1,
√

0.5(̂κ4 − 1) ∼ Iq+1}, κ̂4 = 1
n

∑n
t=1 ε̂ 4

t ,
and 1 ≤ d ≤ max{p, q, 1}. Tn(x, θ̂n) is precisely the score func-155

tion in the LR test under H1. When εt ∼ N (0, 1), it was dis-
cussed by LT(2011). Our current setting in (2.2) can be applied
for the cases when εt �∼ N (0, 1). LT(2011) established the weak
convergence of Tn(x, θ̂n) on the space D[a, b] for any fixed
b < ∞. Theorem 1 gives its weak convergence on the space160

D(R). This improvement is not trivial and is because of a new
weak convergence under an α-mixing assumption in Appendix
A.

Theorem 1. Under the null H0, if {yt } from model (2.4) is
stationary and geometrically ergodic with Ey4

t < ∞, the density165

of εt is positive on R, and κ4 ≡ Eε4
t < ∞, then

Tn(x, θ̂n) =⇒ Gp+q+2(x) in D(R),

where {Gp+q+2(x) : x ∈ R} is a (p + q + 2)-dimensional Gaus-
sian process with mean zero and covariance kernel Kxy =
�x∧y − �x�

−1
∞ �y ; almost all paths of Gp+q+2(x) are continu-

ous in x.170

Ideally, we should use the LR test for the threshold effect.
However, as mentioned in LT(2011), the LR test is a quadratic
form of Tn(x, θ̂n) and its limiting distribution involves some
nuisance parameters. Except Chan and Tong (1990) for the AR
model with iid normal errors, we need to use the simulation175

approach to obtain its critical case by case; see, for example,
Wong and Li (1997, 2000). A possible way is to use a trans-
formation of Tn(x, θ̂n). A general Gaussian process cannot be
transformed into a Brownian motion by a simple scaling and lin-
ear transformation as a referee pointed out. However, LT(2011)180

observed that �−1
x Tn(x, θ̂n) =⇒ G∗(x) under H0, where G∗(x)

is a vector Gaussian process in R with mean zero and covari-
ance kernel K∗

xy = �−1
x∨y − �−1

∞ , and it has independent incre-
ments. Because of this feature, LT(2011) showed that, for any
nonzero constant vector β, by a time-change technique, the pro-185

cess B(τ ) ≡ β ′G∗(x)/
√

σa is a standard Brownian motion on
τ = σx/σa ∈ [0, 1], where σx = β ′(�−1

x − �−1
∞ )β.

Following LT(2011), we now define our score-based test
statistic as follows:

Sa
n = max

x≥a

[
β ′�̂−1

nx Tn(x, θ̂n)
]2

β ′(�̂−1
na − �̂−1

n,∞)β
, (2.3)

where a is a fixed constant, β is a nonzero p × 1 constant vector,190

and

�̂nx = diag

{
1

n

n∑
t=1

Yt−1Y′
t−1I (yt−d ≤ x)

α̂′
nXt−1

,

1

2n

n∑
t=1

Xt−1X′
t−1I (yt−d ≤ x)

(̂α′
nXt−1)2

}
.

The range of maxima in Sa
n is [a,∞], while the one in LT(2011)

is [a, b] for any fixed b < ∞. Our test avoids to select the
constant b as in LT(2011). By Theorem 1 and the continuous
mapping theorem, we have the following result:195

Theorem 2. If the assumptions in Theorem 1 hold, then, for
any p × 1 nonzero constant vector β, any fixed a ∈ R and any

x ∈ R, it follows that

lim
n→∞ P

(
Sa

n ≤ x
) = P

(
max

τ∈[0,1]
B2(τ ) ≤ x

)
,

where B(τ ) is a standard Brownian motion on C[0, 1].

Choosing the constant Cα such that P (maxτ∈[0,1] B
2(τ ) ≥ 200

Cα) = α can provide an approximate critical value of Sa
n for re-

jecting the null H0 at the significance level α. Here, C0.1 = 3.83,
C0.05 = 5.00, and C0.01 = 7.63 from the formula in Shorack and
Wellner (1986, p. 34)

P

(
max

τ∈[0,1]
B2(τ ) ≥ x

)
= 1 − 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
− (2k + 1)2π2

8x

)
.

There is no universal criterion for the choice of β. A simple 205

choice for β is (1, . . . , 1)′, that is, we put equal weight on
each component of �̂−1

nx Tn(x, θ̂n). The optimal choice of β still
remains open. a is usually taken as the lower quantile of data
so that �̂−1

na exits. The simulation studies in Section 5 show
that Sa

n has a good power empirically when a is around the 210

5(p + q + 2)% quantile of data.
Our test provides an easy and simple way to implement in

practice. But it may result in loss of power under some directions
as a referee pointed out. It is a compromise to the difficulty in the
LR test. LT(2011) showed that Sa

n has a nontrivial local power 215

under a general local alternative. For the following specific local
threshold alternative H1n:

yt = φ′
0Yt−1 + h′

1Yt−1I (yt−d ≤ x)√
n

+εt

√
α′

0Xt−1 + h′
2Xt−1I (yt−d ≤ x)√

n
, (2.4)

with εt ∼ N (0, 1), similar to Theorem 3.3 of LT(2011), we can
show that, under H1n,

lim
n→∞ P

(
Sa

n ≤ x
) = P

(
max

τ∈[0,1]
[mτ + B(τ )]2 ≤ x

)
,

where mτ = β ′(�−1
r − �−1

∞ )�ru, where u = (h′
1, h′

2)′, r = 220

F−1
y (τ ), and Fy(x) is the distribution of yt under H0. Thus, our

test has a nontrivial local power unless mτ = 0, which unlikely
happens. In particular, for the TAR(1) model, it is equivalent to
the LR test in Chan (1990). It is expected to be useful for testing
the presence of threshold effect, see our simulation in Section 225

5.

3. THE QMLE AND ASYMPTOTICS OF TDAR MODEL

Assume that {y1, . . . , yn} is a sample from model
(1.1). Given the initial values {y1−p, . . . , y0}, where p =
max{p1, p2, q1, q2}, the conditional log-likelihood function 230

(omitting a constant) is defined as

Ln(θ ) =
n∑

t=1

�t (θ ) with �t (θ) = −1

2
log ht (θ) − 1

2

u2
t (θ)

ht (θ)
,

where θ = (λ′, r)′ ≡ (φ′
1,α

′
1, φ

′
2,α

′
2, r)′ is the parameter with

φi = (φi0, φi1, . . . , φipi
)′ and αi = (αi0, αi1, . . . , αiqi

)′, and

ut (θ) = yt − μt (θ ), μt (θ ) = (φ′
1Y1,t−1)I (yt−d ≤ r)

+(φ′
2Y2,t−1)I (yt−d > r),
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ht (θ) = (α′
1X1,t−1)I (yt−d ≤ r) + (α′

2X2,t−1)I (yt−d > r),

(3.1)

with Yi,t−1 = (1, yt−1, . . . , yt−pi
)′, and Xi,t−1 = (1, y2

t−1, . . . ,

y2
t−qi

)′ for i = 1, 2.235

In practice, d is unknown and can be estimated consistently
by an analogous procedure in Chan (1993), Li and Ling (2012),
and Li, Ling, and Li (2013). For simplicity, we assume that d is
known and 1 ≤ d ≤ max(p, 1). Let � be the parameter space.
The maximizer θ̂n = (̂λ

′
n, r̂n)′ of Ln(θ) on � is called a QMLE240

of the true value θ0 = (λ′
0, r0)′ ∈ �. That is, θ̂n is defined by

θ̂n = arg maxθ∈� Ln(θ ). Due to the discontinuity of Ln(θ) in r,
one can take two steps to find θ̂n:

• For each fixed r, maximize Ln(θ ) and get its maximizer
λ̂n(r).245

• Since the profile log-likelihood L∗
n(r) ≡ Ln(̂λn(r), r) is a

piecewise constant function and only takes finite possi-
ble values, one can get the maximizer r̂n of L∗

n(r) by
the enumeration approach and then obtain the estimator
θ̂n = (̂λn(̂rn)′, r̂n)′.250

Generally, there exist infinitely many r such that Ln(·) attains
its global maximum. One can choose the smallest r as an esti-
mator of r0, for example. According to this procedure, θ̂n is the
QMLE of θ0, that is, Ln (̂θn) = maxθ∈� Ln(θ ).

In applications, the order (p1, p2; q1, q2) is unknown and255

needs to be determined. It can be selected by the Akaike infor-
mation criterion (AIC) or Bayesian information criterion (BIC)
as follows:

AIC({pi ; qi}) = −2Ln (̂θn) + 2(p1 + p2 + q1 + q2 + 5);

BIC({pi ; qi}) = −2Ln (̂θn) + (p1 + p2 + q1 + q2 + 5) log n.

Without loss of generality, in what follows, we assume that the
order (p1, p2; q1, q2) is known. To state asymptotic properties260

of θ̂n, we first give two assumptions on the error {εt } and the
parameter space � as follows.

Assumption 1. {εt } is iid with zero mean and unit variance,
and has a positive and continuous density f (x) on R.

Assumption 2. The parameter space � = {θ ∈265

R
p1+p2+q1+q2+5 : φ1 �= φ2 or α1 �= α2, αij > 0, i = 1, 2, j =

0, 1, . . . , qi} is compact.

The following theorem states the strong consistency of θ̂n.

Theorem 3. Suppose that Assumptions 1–2 hold and {yt } is
strictly stationary and ergodic with Ey2

t < ∞. Then, θ̂n → θ0270

almost surely (a.s.), as n → ∞.

We should mention that there is no requirement for the mo-
ment of yt in Theorem 3 if p1 = p2 = q1 = q2. Since the
compactness of �, there exists a positive constant α such
that αij ≥ α > 0. Thus, α(1 +∑p

i=1 y2
t−i) can control the log-275

likelihood and the score functions such that they are bounded,
see Remark 3.2 in Ling (2007). Similar phenomenon can be also
found in Ling (2004) and Ling and Li (2008).

Let Zt = (yt , . . . , yt−p+1)′. Then {Zt } is a Markov chain.
Denote its l-step transition probability by P l(z, A), where z ∈280

R
p and A is a Borel set. To obtain the convergence rate of r̂n and

the asymptotic normality of λ̂n ≡ λ̂n (̂rn), we need three more
assumptions as follows.

Assumption 3. {Zt } admits a unique invariant measure (·)
such that there exist K > 0 and ρ ∈ [0, 1), for any z ∈ R

p and 285

any m ≥ 1, ‖Pm(z, ·) − (·)‖v ≤ K(1 + ‖z‖2)ρm, where ‖ · ‖v

denotes the total variation norm.

This assumption is on the V-uniform ergodicity of model (1.1)
with V (z) = K(1 + ‖z‖2), under which {yt } is strictly stationary
if the initial value Z0 follows the invariant measure . Without 290

loss of generality, in what follows we assume that Z0 ∼ .
Assumption 3 is stronger than that {yt } is geometrically ergodic.
From Corollary 2.2 in Cline and Pu (2004), Assumption 3 holds
if Assumption 1 holds with supx∈R

{(1 + |x|)f (x)} < ∞ and{ p∑
j=1

max(|φ1j |, |φ2j |)
}2

+
p∑

j=1

max(α1j , α2j ) < 1,

where φij = 0 for j > pi and αij = 0 for j > qi , i = 1, 2. 295

Assumption 4. κ4 ≡ E(ε4
t ) < ∞ and Ey4

t < ∞.

Assumption 5. There exist nonrandom vectors w =
(1, w1, . . . , wp)′ with wd = r0 and W = (1,W1, . . . , Wp)′ with
Wd = r2

0 such that{
(φ10 − φ20)′w

}2 + {(α10 − α20)′W
}2

> 0,

where the vectors φi0’s and αi0’s have been extended by adding 300

zero entries such that they are (p + 1)-dimensional vectors for
simplifying notations, that is, φij,0 = 0 for j > pi and αij,0 = 0
for j > qi , i = 1, 2. (In what follows, we use this convention.)

Assumption 5 is similar to the Condition 4 in Chan (1993)
and implies that either the conditional mean function μt (θ) or 305

volatility function ht (θ) in model (1.1) is discontinuous over
the hyperplane yt−d = r0. It is a necessary condition for the
n-convergence rate of r̂n. If α10 = α20, then Assumption 5 is
equivalent to (φ10 − φ20)′w �= 0, which is exactly the Condition
4 in Chan (1993) that μt (θ) is discontinuous. The discontinuity 310

of μt (θ) plays a key role in obtaining the convergence rate of
the estimated threshold in TAR models; see Chan (1993) and
Chan and Tsay (1998). In Assumption 5, wd and Wd may not be
components of w and W if d > p. In this case, Assumption 5 is
identical to ‖φ10 − φ20‖ + ‖α10 − α20‖ > 0, which is necessary 315

and sufficient for the identification of the threshold. Both μt (θ)
and ht (θ ) are continuous over the hyperplane yt−d = r0 if and
only if

φ10 + φ1d r0 = φ20 + φ2d r0, φ1j = φ2j ,

α10 + α1d r2
0 = α20 + α2d r2

0 , α1j = α2j ,∼ j �= d.

In this case, we call model (1.1) continuous TDAR model. For
continuous TDAR models, the theory of estimation is challeng- 320

ing and we will study this case in a separate article.

Theorem 4. If Assumptions 1–5 hold and θ0 is an interior
point of �, then

(i) n(̂rn − r0) = Op(1);

(ii)
√

n sup
|r−r0|≤B/n

∥∥̂λn(r) − λ̂n(r0)
∥∥ = op(1)
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for any fixed constant 0 < B < ∞,

where λ̂n(r) is the QMLE of the coefficients when r is known.
Further, it follows that325

√
n(̂λn − λ0) = √

n(̂λn(r0) − λ0) + op(1) =⇒ N (0,∼ �−1

��−1) as n → ∞,

where � = diag(A1, 0.5B1, A2, 0.5B2), � = diag(�1, �2)
with

�i =
⎛⎝ Ai

κ3
2 Di

κ3
2 Dτ

i
κ4−1

4 Bi

⎞⎠ , i = 1, 2,

where κ3 = E(ε3
1),

Ai = E

{
Yi,t−1Y′

i,t−1

α′
i0Xi,t−1

gi(r0)

}
,

Bi = E

{
Xi,t−1X′

i,t−1

(α′
i0Xi,t−1)2

gi(r0)

}
, and

Di = E

{
Yi,t−1X′

i,t−1

(α′
i0Xi,t−1)3/2

gi(r0)

}
with g1(r0) = I (yt−d ≤ r0) and g2(r0) = I (yt−d > r0).

If ε1 ∼ N (0, 1), then θ̂n is the maximum likelihood estimator330

of θ0 and �−1��−1 = �−1. If ε1 is symmetric, then κ3 = 0
and �−1��−1 = diag

{
A−1

1 , (κ4 − 1)B−1
1 , A−1

2 , (κ4 − 1)B−1
2

}
.

To describe the limiting distribution of n(̂rn − r0), we con-
sider the limiting behavior of a sequence of normalized profile
log-likelihood processes defined by335

L̃n(z) = −2
{
Ln

(̂
λn(r0 + z/n), r0

+z/n
)− Ln

(̂
λn(r0), r0

)}
, z ∈ R. (3.2)

Using Theorem 4 and Taylor’s expansion, it is straightforward
to show that L̃n(z) can be approximated in D(R) by

℘n(z) = I (z < 0)
n∑

t=1

ζ1t I
(
r0 + z/n < yt−d ≤ r0

)
+I (z ≥ 0)

n∑
t=1

ζ2t I
(
r0 < yt−d ≤ r0 + z/n

)
,

where

ζ1t = log
α′

20Xt−1

α′
10Xt−1

+
{

(φ10 − φ20)′Yt−1 + εt

√
α′

10Xt−1

}2

α′
20Xt−1

− ε2
t ,

ζ2t = log
α′

10Xt−1

α′
20Xt−1

+
{

(φ10 − φ20)′Yt−1 − εt

√
α′

20Xt−1

}2

α′
10Xt−1

− ε2
t .

(3.3)

We further define a two-sided compound Poisson process340

℘(z) as

℘(z) = I (z < 0)℘1(|z|) + I (z ≥ 0)℘2(z), ∼ z ∈ R, (3.4)

where {℘1(z), z ≥ 0} and {℘2(z), z ≥ 0} are two independent
compound Poisson processes, both with jump rate π (r0), which

is the value of the density π (x) of y1 at x = r0, ℘1(0) = ℘2(0) =
0 a.s. and the distributions of jump being given by the condi- 345

tional distribution of ζ1
.= ζ1t given yt−d = r−

0 and the con-
ditional distribution of ζ2

.= ζ2t given yt−d = r+
0 , respectively.

We work with the left-continuous version for ℘1(z) and the
right-continuous version for ℘2(z). The former conditional dis-
tribution is the limiting conditional distribution of ζ1t given 350

r0 − δ < yt−d ≤ r0 as δ ↓ 0 and the latter that of ζ2t given
r0 < yt−d ≤ r0 + δ as δ ↓ 0. Clearly, ℘(z) goes to infinity a.s. as
z → ±∞ since Eζ1 > 0 and Eζ2 > 0 by Assumption 5 and an
elementary inequality log(1/x) + x − 1 > 0 for x > 0 unless
x = 1. Thus, there exists a unique random interval [M−,M+) 355

at which the process ℘(z) attains its global minimum. The fol-
lowing theorem states that n(̂rn − r0) converges weakly to a
functional of the compound Poisson process defined in (3.4).

Theorem 5. If Assumptions 1–5 hold, then n(̂rn − r0) =⇒
M−. Furthermore, n(̂rn − r0) is asymptotically independent of 360√

n
(̂
λn − λ0

)
, which is always N (0,∼ �−1��−1) asymptoti-

cally.

When αij = 0, i = 1, 2, j = 1, . . . , qi , model (1.1) reduces
to a TAR model. Further, when α10 = α20, Theorem 5 reduces
to the asymptotic theory of the LSE of θ0 in Chan (1993) for 365

the TAR model. When α10 �= α20 and μt (θ) is discontinuous,
since our estimator is the QMLE, λ̂n is more efficient than the
LSE of λ0 in Chan (1993). Furthermore, r̂n has the same conver-
gence rate as the LSE of r0 in Chan (1993), but the jump sizes
in the related compound Poisson processes are different. When 370

α10 �= α20 and μt (θ ) is continuous, Chan and Tsay (1998) stud-
ied the LSE and showed that r̂n is

√
n-consistent and r̂n and λ̂n

are asymptotically correlated. However, Theorem 5 in this case
showed that, based on our QMLE, r̂n is n-consistent and asymp-
totically independent of λ̂n. This fact is quite surprising because 375

the LSE and the QMLE result in sharply different convergence
rate of the estimated threshold.

When α1 = α2, Theorem 5 gives the asymptotic theory for the
TAR model with ARCH errors. The corresponding parameter is
θ = (λ′, r)′ with λ = (φ′

1, φ
′
2,α

′)′, and 380

�−1��−1 =⎛⎜⎜⎜⎜⎜⎜⎝
A−1

1 0 κ3A−1
1 D1(B1 + B2)−1

0 A−1
2 κ3A−1

2 D2(B1 + B2)−1

κ3(B1 + B2)−1D′
1A−1

1 κ3(B1 + B2)−1D′
2A−1

2 (κ4 − 1)(B1 + B2)−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where Ai , Bi , and Di are defined in Theorem 4 with replacing
αi0’s by α0. When all φij = 0, Theorem 5 gives the asymp-
totic theory for the TARCH model. The corresponding pa-
rameter is θ = (λ′, r)′ with λ = (α′

1,α
′
2)′, and �−1��−1 =

(κ4 − 1)diag(B−1
1 , B−1

2 ). Even for the last special cases, our 385

results are new in literature since the threshold parameter is
assumed to be known in Rabemananjara and Zakoı̈an (1993),
Zakoı̈an (1994), Li and Li (1996).

4. MODEL DIAGNOSTIC CHECKING

This section studies the asymptotic distributions of residual 390

and squared residual autocorrelation functions (ACF) of model
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Figure 1. Powers of the test statistic Sa
n at significance level 0.05 based on 1000 simulations. The left panel is the power of the test of H0

against the alternative (I). The right one is for the test of H0 against the alternative (II).

Table 1. Simulation results for model (5.1) with θ 0 = (1,−0.6, 1, 0.5, −1, −0.2, 0.5, 0.3, 0)′

n φ10 φ11 α10 α11 φ20 φ21 α20 α21 r

N (0, 1)

EM 1.0477 −0.5741 0.8650 0.4786 −1.0173 −0.1935 0.4180 0.2923 −0.0528
100 ESD 0.3542 0.2547 0.4112 0.2148 0.2555 0.1632 0.2288 0.1082 0.1242

ASD 0.3203 0.2363 0.3965 0.2116 0.2361 0.1550 0.2182 0.1029 0.1012
EM 1.0253 −0.5851 0.9398 0.4865 −1.0050 −0.1983 0.4596 0.2939 −0.0250

200 ESD 0.2337 0.1664 0.2931 0.1547 0.1692 0.1086 0.1579 0.0749 0.0548
ASD 0.2239 0.1670 0.2768 0.1501 0.1639 0.1088 0.1511 0.0725 0.0506
EM 1.0227 −0.5909 0.9734 0.4988 −1.0135 −0.1970 0.4861 0.2971 −0.0127

400 ESD 0.1605 0.1182 0.1977 0.1069 0.1132 0.0771 0.1088 0.0506 0.0256
ASD 0.1575 0.1171 0.1951 0.1051 0.1152 0.0764 0.1064 0.0510 0.0253
EM 1.0042 −0.6006 0.9973 0.4926 −1.0026 −0.1996 0.4946 0.2971 −0.0061

800 ESD 0.1080 0.0811 0.1391 0.0750 0.0830 0.0540 0.0778 0.0377 0.0140
ASD 0.1110 0.0825 0.1376 0.0741 0.0813 0.0539 0.0751 0.0360 0.0127

st5

EM 1.0114 −0.5931 0.8219 0.4231 −1.0323 −0.2003 0.3254 0.2828 −0.0591
100 ESD 0.3659 0.2602 0.5377 0.2766 0.2791 0.1666 0.3446 0.1553 0.1753

ASD 0.3382 0.2506 0.6257 0.3338 0.2503 0.1620 0.3516 0.1589 0.1323
EM 0.9959 −0.5960 0.9006 0.4594 −1.0064 −0.1999 0.4243 0.2804 −0.0295

200 ESD 0.2421 0.1773 0.4446 0.2270 0.1790 0.1154 0.2686 0.1245 0.0866
ASD 0.2370 0.1751 0.4366 0.2317 0.1754 0.1132 0.2434 0.1106 0.0662
EM 0.9960 −0.6058 0.9034 0.4839 −1.0078 −0.1958 0.4477 0.2903 −0.0136

400 ESD 0.1673 0.1233 0.3450 0.1821 0.1236 0.0816 0.2042 0.0954 0.0456
ASD 0.1664 0.1230 0.3261 0.1738 0.1238 0.0800 0.1826 0.0833 0.0331
EM 0.9993 −0.6041 0.9535 0.4798 −1.0002 −0.2027 0.4736 0.2905 −0.0077

800 ESD 0.1137 0.0843 0.2469 0.1259 0.0871 0.0563 0.1424 0.0690 0.0172
ASD 0.1171 0.0865 0.2490 0.1329 0.0870 0.0562 0.1390 0.0636 0.0165

Dexp

EM 1.0486 −0.5790 0.8500 0.4320 −1.0358 −0.1845 0.3582 0.2618 −0.0719
100 ESD 0.3933 0.2770 0.5795 0.2883 0.2795 0.1700 0.3675 0.1440 0.2169

ASD 0.3568 0.2598 0.6281 0.3254 0.2643 0.1658 0.3531 0.1524 0.1527
EM 1.0134 −0.5929 0.9154 0.4657 −1.0238 −0.1893 0.4193 0.2888 −0.0331

200 ESD 0.2586 0.1855 0.4561 0.2337 0.1870 0.1120 0.3035 0.1177 0.1033
ASD 0.2495 0.1806 0.4531 0.2340 0.1854 0.1158 0.2554 0.1101 0.0763
EM 1.0055 −0.5981 0.9454 0.4881 −1.0089 −0.1962 0.4522 0.2991 −0.0182

400 ESD 0.1762 0.1242 0.3466 0.1752 0.1275 0.0829 0.2072 0.0858 0.0424
ASD 0.1750 0.1267 0.3324 0.1719 0.1303 0.0815 0.1876 0.0812 0.0382
EM 1.0008 −0.5995 0.9819 0.4917 −1.0089 −0.1986 0.4724 0.2968 −0.0087

800 ESD 0.1249 0.0883 0.2442 0.1278 0.0924 0.0578 0.1389 0.0590 0.0198
ASD 0.1231 0.0891 0.2352 0.1218 0.0918 0.0575 0.1328 0.0577 0.0191
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Table 2. Empirical quantiles of M−

α 0.5% 1% 2.5% 5% 95% 97.5% 99% 99.5%
N (0, 1) −45.02 −38.20 −30.38 −24.25 5.77 12.50 21.54 28.81
st5 −52.47 −46.91 −37.16 −29.66 8.75 19.23 33.56 46.25
Dexp −65.14 −56.61 −44.80 −34.44 11.86 22.93 37.78 51.14

(1.1) and then uses them to construct test statistics for model
checking. When the threshold is known, the related work can be
found in Li and Mak (1994) and Li and Li (1996).

Let εt (λ, r) ≡ εt (θ) = ut (θ)/
√

ht (θ), where ut (θ) and ht (θ)395

are defined in (3.1). Clearly, the residual ε̂t = εt (̂λ(̂rn), r̂n). Sim-
ilarly, define the residual ε̃t by ε̃t ≡ εt (̂λ(r0), r0) when r0 is
known. We first define the lag k residual ACF as follows:

ρ̂k = 1

n

n∑
t=k+1

(̂εt − ε̂ )(̂εt−k − ε̂ ), k = 1, 2, . . . ,

where ε̂ = n−1∑n
t=1 ε̂t . Similarly, we can define ρ̃k for {̃εt }.

Denote ρ̂ = (ρ̂1, . . . , ρ̂m)′ and ρ̃ = (ρ̃1, . . . , ρ̃m)′, where m is a400

fixed positive integer. We have the following theorem:

Theorem 6. Suppose that Assumptions 1–5 hold. Then,√
n‖ρ̂ − ρ̃‖ = op(1). Furthermore,

√
nρ̂ =⇒ N (0, ϒ),

where ϒ = Im − T�−1(2� − �)�−1T′ + κ3
2 (T�−1S′ +

S�−1T′), T = (T1, . . . , Tm)′, and S = (S1, . . . , Sm)′ with405

Tk = E

{
ut−k√
htht−k

∂ut

∂λ

}
|θ=θ0

and

Sk = E

{
1

ht

ut−k√
ht−k

∂ht

∂λ

}
|θ=θ0

.

Here and in what follows, ut = ut (θ ) and ht = ht (θ).

Following Li and Mak (1994), we define the lag k squared
residual ACF as follows:

ρ̂∗
k = 1

n

n∑
t=k+1

(̂ε2
t − ε̂2 )(̂ε2

t−k − ε̂2 ), k = 1, 2, . . . ,

where ε̂2 = n−1∑n
t=1 ε̂2

t . Similarly, we define ρ̃∗
k for {̃ε2

t }. De-
note ρ̂∗ = (ρ̂∗

1 , . . . , ρ̂∗
m)′ and ρ̃∗ = (ρ̃∗

1 , . . . , ρ̃∗
m)′. We have the 410

following theorem:

Theorem 7. Suppose that Assumptions 1–5 hold. Then,√
n‖ρ̂∗ − ρ̃∗‖ = op(1) and

√
nρ̂∗ =⇒ N (0, V),

where V = Im − (κ4 − 1)−2D�−1{(κ4 − 1)� − �}�−1D′ −
κ3(κ4 − 1)−2(D�−1J′ + J�−1D′), D = (D1, . . . , Dm)′, and 415

J = (J1, . . . , Jm)′ with

Dk = E

{
1

ht

∂ht

∂λ

(
u2

t−k

ht−k

− 1

)}
|θ=θ0

and

Jk = E

{
1√
ht

∂ut

∂λ

(
u2

t−k

ht−k

− 1

)}
|θ=θ0

.

Using Theorem 4, the proofs of Theorems 6 and 7 are straight-
forward and hence the details are omitted. In practice, ϒ and
V are replaced by their sample averages, denoted by ϒ̂ and V̂,
respectively. By the previous two theorems, we can construct 420

the Ljung–Box test and the Li–Mak test as follows:

Qm = nρ̂ ′ ϒ̂−1ρ̂ ∼ χ2
m and Q∗

m = nρ̂∗′
V̂−1ρ̂∗ ∼ χ2

m,

as n is large. Generally, m is taken 6 and 12, see Tse (2002) for
a discussion on the choice of m.

5. SIMULATION STUDIES

We first examine the performance of Sa
n in finite sam- 425

ples. Under the null H0, {yt } follows a DAR(1) model: yt =
0.2yt−1 + εt

√
0.2 + 0.2y2

t−1, where εt is iid N (0, 1). The alter-
native models are

(I) yt = 0.2yt−1 + λyt−1I (yt−1 ≤ −1) + εt

√
0.2 + 0.2y2

t−1

with −3 ≤ λ ≤ 1; 430

Table 3. Coverage probabilities

εt α 100 200 400 800

0.01 0.979 0.986 0.989 0.984
N (0, 1) 0.05 0.932 0.940 0.944 0.946

0.10 0.880 0.893 0.900 0.887
0.01 0.970 0.980 0.984 0.987

st5 0.05 0.906 0.925 0.934 0.949
0.10 0.859 0.871 0.884 0.886
0.01 0.970 0.969 0.987 0.991

Dexp 0.05 0.919 0.922 0.942 0.945
0.10 0.845 0.878 0.886 0.892



8 Journal of Business & Economic Statistics, xxx 2015

Figure 2. The densities of n(̂rn − r0) when n = 100 (a), 200 (b), 400 (c), and 800 (d), respectively, for εt ∼ N (0, 1).

Figure 3. Time plots of the weekly closing prices and the log-returns for Hang Seng Index.
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Figure 4. The density function of r̂n.

(II) yt = 0.2yt−1 + εt

√
0.2 + 0.2y2

t−1 + λy2
t−1I (yt−1 ≤ −1)

with 0 ≤ λ ≤ 4.
We use the sample size n = 200 and 400, and 1000 replica-

tions. We take a as 5(p + q + 2)% quantile of data {y1, . . . , yn}
and β = (1, . . . , 1)′ in Sa

n . The significance level α is 0.05. The435

sizes of our test are 0.038 and 0.041 when n = 200 and 400,
respectively. They are close to its nominal values, but there is a
little conservation. Figure 1 illustrates the power of the test Sa

n

in (2.3) with varying λ. From Figure 1, we can see that our test
is powerful, especially when |λ| increases.440

To assess the performance of the QMLE in finite samples,
we use sample sizes n = 100, 200, 400, and 800, each with
replications 1000 for the following model:

yt =
⎧⎨⎩ 1 − 0.6yt−1 + εt

√
1 + 0.5y2

t−1, if yt−1 ≤ 0,

−1 − 0.2yt−1 + εt

√
0.5 + 0.3y2

t−1, if yt−1 > 0.

(5.1)

εt takes N (0, 1), standardized Student’s t5-distribution (st5)
and standardized double exponential distribution (Dexp,445

also called standardized Laplace distribution), respectively.
Table 1 summarizes the empirical means (EM), the empirical
standard deviations (ESD), and the asymptotic standard devi-
ations (ASD). Here, the asymptotic standard deviations of λ̂n

and r̂n are computed by using � and � in Theorem 4 and by450

resampling method in Li and Ling (2012), respectively. From
Table 1, we see that the consistency of the estimators is shown
by the empirical means and the closeness of the empirical stan-
dard deviations to the asymptotic standard deviations. We also
see that the values of the empirical standard deviations for r̂n455

are about halved each time when the value of n is doubled. This
partially illustrates the n-consistency of r̂n, under which the es-
timator of the threshold would approach the true value much
faster than the coefficient parameter estimators do.

We now study the coverage probabilities of r0. Using the re-460

sampling method in Li and Ling (2012), we first obtain the em-

pirical quantiles of M− by 10,000 replications. Table 2 gives the
values for different significance level α when εt takes N (0, 1),
st5, and Dexp. Based on the values in Table 2, the coverage
probabilities of r0 are reported in Table 3. We can see that the 465

coverage probability is rather accurate when the sample size
n is 400. To see the overall feature of the estimated threshold,
Figure 2 displays the densities of n(̂rn − r0) for different sample
sizes.

6. AN EMPIRICAL EXAMPLE 470

The purpose of this section is to analyze the log-return of
the weekly closing prices of Hang Seng Index over the period
January 2000–December 2007 with 418 observations in total.
Let Pt be the weekly closing price at time t. The log-return yt

is defined as yt = 100(log Pt − log Pt−1). Figure 3 shows time 475

plots of {Pt } and {yt }, respectively.
The p-value of Tsay’s test (Tsay 1986) is 0.038, which sug-

gests that {yt } contains the nonlinearity at the significant level
0.05. The p-values of the McLeod–Li test (first 36 lags) are all
less than 10−6, which indicates that {yt } has the ARCH effect. 480

Tsay’s test and McLeod–Li’s test can be implemented in the R
package TSA. Further, our score-based test shows that it may
exist the threshold effect since the value of Sa

n is 7.139 for p = 2,
q = 3, and d = 3. Thus, linear ARMA model is inappropriate
to fit {yt }. To capture the nonlinearity and asymmetry contained 485

in {yt }, we employ TDAR models. Based on the AIC, we obtain
the following model:

yt =

⎧⎪⎪⎨⎪⎪⎩
−0.238 − 0.154yt−1 + 0.264yt−2 + εtσt , if yt−1 ≤ 0,

(0.317) (0.149) (0.088) (0.423)
−0.104 + 0.096yt−1 − 0.068yt−2 + εtσt , if yt−1 > 0,

(0.250) (0.092) (0.061)

(6.1)

with

σ 2
t =

⎧⎪⎪⎨⎪⎪⎩
4.402 + 0.513y2

t−1 + 0.178y2
t−2 + 0.105y2

t−3, if yt−1 ≤ 0,

(1.102) (0.165) (0.124) (0.085)
4.000 + 0.075y2

t−2 + 0.134y2
t−3, if yt−1 > 0,

(0.658) (0.059) (0.078)

where the values in parentheses are the corresponding stan-
dard deviations calculated from Theorem 4, and the estimated 490

delay lag d is 1. The estimator of the threshold is 0 in the
sense that we use 4 decimal places. By using the resampling
method in Li and Ling (2012) with 1000 replications, we get
the asymptotic standard deviation 0.423 and a 95% confidence
interval [−1.338, 1.190] of the threshold. Figure 4 gives the 495

density of r̂n. The value of the log-likelihood is 613.41. To
check the adequacy of the fit, the Ljung–Box test statistic Qm

and the McLeod–Li test statistic Q∗
m in Section 4 are used with

m = 6, 12. The p-values of Q6, Q12, Q∗
6, and Q∗

12 are 0.72, 0.45,
0.84, and 0.53, respectively. These p-values suggest that the fit 500

is adequate at the significance level 0.05.
Model (6.1) clearly describes the asymmetric dynamic be-

havior of the log-returns in response to the past log-returns. The
last log-return yt−1 always has a positive contribution to the
current log-return yt . Specifically, when yt−1 is negative (i.e., 505

the market is dropping down), see Figure 5(a), there is a larger
rebound force that pulls the current log-return yt up since its
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Figure 5. An illustration of model (6.1).

coefficient is −0.154. If the rebound successes (i.e., yt > 0),
then the persistent effect of yt−1 against to yt+1 will fade since
its coefficient is −0.068. However, if the rebound fails (i.e.,510

yt < 0), then the persistent effect of yt−1 against to yt+1 will
cause a sharp drop since its coefficient is 0.264. This may be
because the market is weak and its investors loss their confi-
dence. When yt−1 is positive, there is an analogous illustration,
see Figure 5(b). The equation σ 2

t in (6.1) reflects two different515

volatilities when the stock market is up and down, respectively.
Given |yt−1|, the uncertainty of the market will become larger if
the market is down. This may be the leverage effect in the stock
market.

APPENDIX A: PROOF OF THEOREM 1520

A.1 Weak Convergence of a General Marked Empirical
Process

Let Ft be the σ -field. Assume Zt and ξt , t = 0, ±1, . . ., are Ft -
measurable p × 1 random vectors and univariate random variables,
respectively. We consider the general marked empirical process525

Wn(x, τ ) = 1√
n

[nτ ]∑
t=1

Zt I (ξt−d ≤ x), (x, τ ) ∈ [−∞, ∞] × [0, 1],

(A.1)

where d is a positive integer.

Theorem 8. Let Kx ≡ E{ZtZ′
t I (ξt−d ≤ x)}. Assume (i) {(Zt , ξt−d )}

is an α-mixing process with geometric rate; (ii) E(Zt |Ft−1) = 0 and

0 < E
[
‖Zt‖2(log ‖Zt‖)5

]
< ∞; (iii) Kx and Kx − Ky are positive def-

inite for any x, y ∈ R with x > y. Then, Wn(x, τ ) =⇒ G(x, τ ) in530
D([−∞,∞] × [0, 1]), where {G(x, τ ) : (x, τ ) ∈ [−∞, ∞] × [0, 1]}
is a Gaussian process with mean zero and covariance kernel
cov(G(x, τ1), G(y, τ2)) = (τ1 ∧ τ2)Kx∧y ; almost all paths of G(x, τ )
are continuous in x and τ .

Proof. First, since {Zt I (ξt−d ≤ x)} is a sequence of martingale dif- 535
ference, the convergence of the finite-dimensional distribution can be
shown by Crámer–Wold device and the martingale central limit theo-
rem; see, for example, Billingsley (1999).

Next, we use a bracketing technique to show the tight-
ness of Wn(x, τ ). Denote �(x, τ )(a) = a1I (a2 ≤ x)I (a3 ≤ τ ) for a = 540
(a1, a2, a3) ∈ R

3 and

F = {�(x, τ ) : x ∈ R, τ ∈ [0, 1]}.
Let Xnt = (Zt /

√
n, ∼ t/n,∼ ξt−d ), then

Wn(x, τ ) = 1√
n

n∑
t=1

Zt I (t/n ≤ τ )I (ξt−d ≤ x) =
n∑

t=1

�(x,τ )(Xnt ).

Adopt the convention I (a ≤ x ≤ b) = −I (b ≤ x ≤ a) if a ≥ b. Then,
for any (x1, τ1), (x2, τ2) ∈ [−∞,∼ ∞] × [0, 1], we have

E‖Wn(x1, τ1) − Wn(x2, τ2)‖2

= 1

n
E

∥∥∥∥ [nτ1]∑
t=1

Zt I (ξt−d ≤ x1) −
[nτ2]∑
t=1

Zt I (ξt−d ≤ x1) +
[nτ2]∑
t=1

Zt I (ξt−d

≤ x1) −
[nτ2]∑
t=1

Zt I (ξt−d ≤ x2)

∥∥∥∥2

≤ 2

n
E

∥∥∥∥ [nτ1]∑
t=[nτ2]

Zt I (ξt−d ≤ x1)

∥∥∥∥2

+ 2

n
E

∥∥∥∥ [nτ2]∑
t=1

Zt {I (ξt−d ≤ x1)

−I (ξt−d ≤ x2)}
∥∥∥∥2

= 2|τ1 − τ2|E{‖Zt‖2I (ξt−d ≤ x1)}
+2τ2E{‖Zt‖2|I (x2 ≤ ξt−d ≤ x1)|}
≤ 2(E‖Z1‖2){|τ1 − τ2| + |G(x1) − G(x2)|},

where G(x) = E{‖Zt‖2I (ξt−d ≤ x)}/(E‖Zt‖2). This implies that un- 545
der the pseudo-metric

d((x1, τ1), (x2, τ2)) =
√

2E‖Z1‖2{|τ1 − τ2| + |G(x1) − G(x2)|}1/2,
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the brackets number N (ε,F, L2), that is, the minimum number of ε-
brackets to cover F (see van der Vaart 1998, p. 270), is of order ε−4.
Thus, for any finite δ > 0, we have that the integral of the bracketing
entropy550 ∫ δ

0

√
log N (ε,F, L2) dε ≤ C

∫ δ

0

√
log(1/ε) dε < ∞.

Fixed q0 such that 4δ ≤ 2−q0 ≤ 8δ. Let Pq = {�(x,τ ) : (x, τ ) ∈
Bqi, 1 ≤ i ≤ Nq}, q ≥ q0, be a nested sequence of finite partitions of
F such that

∞∑
q=q0

2−q
√

log Nq <

∫ δ

0

√
log N (ε,F, L2) dε,

E�2(Bqi) := 1

n
E

n∑
t=1

sup
(x,τ1),(x,τ2)∈Bqi

{‖Zt‖2I (ξt−d ≤ x)|I (τ2

≤ t/n ≤ τ1)|}

+ 1

n
E

n∑
t=1

sup
(x1,τ ),(x2,τ )∈Bqi

{‖Zt‖2I (ξt−d ≤ x)I (t/

n ≤ τ )|I (x1 ≤ ξt−d ≤ x2)|}
≤ 2−2q . (A.2)

This can be obtained as in Lemma 19.34 of van der Vaart (1998, p.
286). For each q, we choose a fixed element (xqi, ∼ τqi) ∈ Bqi and set555

(πqx, πqτ ) = (xqi, τqi) and (Bqx, Bqτ ) = Bqi, if(x, τ ) ∈ Bqi .

Then, using the Bernstein-type inequality (2.3) in Merlevède, Peligrad,
and Rio (2009) and truncating Zt by

√
n/(log n)2 instead of

√
n in the

proof of Theorem 2.5.6 in van der Vaart and Wellner (1996), the proof
is concluded.

A.2 Proof of Theorem 1560

Under the conditions of Theorem 1, it is not hard to get

1√
n

n∑
t=1

‖Dt (̂θn)D′
t (̂θn) − Dt (θ 0)D′

t (θ 0)‖ = op(1).

Using this equality, we then have

sup
x∈R

‖�̂nx − �x‖ ≤ sup
x∈R

‖�(x)‖ + op(1),

where

�(x) = 1

n

n∑
t=1

Dt (θ0)D′
t (θ 0)I (yt−d ≤ x) − �x.

By Theorem 2 in Pollard (1984, p. 8), we can get supx∈R
‖�(x)‖ =

op(1). Thus,565

sup
x∈R

‖�̂nx − �x‖ = op(1). (A.3)

By the Taylor expansion and (A.3), it follows that

sup
x∈R

∥∥∥∥Tn(x, θ̂n) − 1√
n

n∑
t=1

U−1Dt (θ 0)I (yt−d ≤ x) + U−1

�x

√
n(̂θn − θ 0)

∥∥∥∥ = op(1),

where U = diag{Ip+1,
√

0.5(κ4 − 1)Iq+1}. Thus, Tn(x, θ̂n) has the same
asymptotical behavior as

1√
n

∑n

t=1 U−1Dt (θ0)I (yt−d ≤ x) − U−1�x

√
n(̂θn − θ 0)

= 1√
n

∑n

t=1

[
U−1Dt (θ 0)

]
I (yt−d ≤ x) − �x�

−1
∞

1√
n

∑n

t=1[U−1Dt (θ 0)]

since �x�
−1
∞ and U−1 are block diagonal and commutative. Let Zt =

U−1Dt (θ 0) and ξt−d = yt−d . Applying Theorem 8 with τ = 1, then 570
Theorem 1 holds.

APPENDIX B: PROOFS OF THEOREMS 3–5

B.1 Proof of Theorem 3

Let β(θ) = E{�t (θ ) − �t (θ0)}. For any given open neighborhood V
of θ 0 ∈ � and any θ ∈ V c ∩ �, a conditional argument yields that 575

−2β(θ) = E{K1t I (yt−d ≤ r0) + K2t I (r0 < yt−d ≤ r)

+K3t I (yt−d > r)},
where

K1t = log
α′

1Xt−1

α′
10Xt−1

+ α′
10Xt−1

α′
1Xt−1

− 1 + {(φ10 − φ1)′Yt−1}2

α′
1Xt−1

,

K2t = log
α′

1Xt−1

α′
20Xt−1

+ α′
20Xt−1

α′
1Xt−1

− 1 + {(φ20 − φ1)′Yt−1}2

α′
1Xt−1

,

K3t = log
α′

2Xt−1

α′
20Xt−1

+ α′
20Xt−1

α′
2Xt−1

− 1 + {(φ20 − φ2)′Yt−1}2

α′
2Xt−1

.

Observe that all Kit ≥ 0 a.s. by an elementary inequality log(1/x) +
x − 1 > 0 for x > 0 unless x = 1. Hence, β(θ) < 0. The remainder is
similar to that of Theorem 2.1 in Li, Ling, and Li (2013) and hence it
is omitted. 580

B.2 Proof of Theorem 4

(i) We only prove the case p = 1. When p > 1, using the technique
in Chan (1993, p. 529), the proof would go through with a minor
modification. Since θ̂n is strongly consistent, we restrict the parameter
space to a neighborhood Vδ = {θ ∈ � : ‖λ − λ0‖ < δ, |r − r0| < δ} 585
of θ 0 for some 0 < δ < 1 to be determined later. Then, it suffices to
prove that there exist constants B > 0 and γ > 0 such that, for any
ε > 0,

P

(
sup

B/n<|r−r0 |≤δ

θ∈Vδ

Ln(λ, r) − Ln(λ, r0)

nG(|r − r0|) < −γ

)
> 1 − ε, (A.1)

as n is large enough, where G(u) = P (r0 < y0 ≤ r0 + u). Writing r =
r0 + u for some u ≥ 0. By a calculation, it follows that 590

2{Ln(λ, r) − Ln(λ, r0)}
nG(u)

= −1

nG(u)

n∑
t=1

ζ2t I (r0 < yt−1 ≤ r0 + u)

+Op(
√

δ)

= −K4
Gn(u)

G(u)
+ K5

∑n

t=1 εt I (r0 < yt−1 ≤ r0 + u)

nG(u)

+K6

∑n

t=1(ε2
t − 1)I (r0 < yt−1 ≤ r0 + u)

nG(u)
+ Op(

√
δ),

where Gn(u) = 1
n

∑n

t=1 I (r0 < yt−1 ≤ r0 + u),

K4 = log
α′

10X
α′

20X
+ α′

20X
α′

10X
− 1 + {(φ20 − φ10)′Y}2

α′
10X

,

K5 = 2{(φ10 − φ20)′Y}√α′
20X

α′
10X

, and K6 = (α10 − α20)′X
α′

10X

with Y = (1, r0)′ and X = (1, r2
0 )′. Similar to Claim 2 in Chan (1993),

for any ε > 0 and η > 0, there exists a positive constant B such that as
n is large enough

P

(
sup

B/n<u≤δ

∣∣∣∣Gn(u)

G(u)
− 1

∣∣∣∣ < η

)
> 1 − ε,
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P

(
sup

B/n<u≤δ

∣∣∣∣∑n

t=1 εt I (r0 < yt−1 ≤ r0 + u)

nG(u)

∣∣∣∣ < η

)
> 1 − ε,

P

(
sup

B/n<u≤δ

∣∣∣∣∑n

t=1(ε2
t − 1)I (r0 < yt−1 ≤ r0 + u)

nG(u)

∣∣∣∣ < η

)
> 1 − ε.

Note that K4 > 0 by Assumption 5. Choosing δ small enough and595
γ = K4/4, (B.1) holds and so does (i).

The proof of (ii) is similar to that of Theorem 2.2 in Li, Ling, and
Li (2013). It is trivial and hence it is omitted.

B.3 Proof of Theorem 5

Without loss of generality, we assume that ζit , defined in (3.3), is600
bounded. Otherwise, we can truncate it using the technique in Li, Ling,
and Li (2013) and consider a new process made up of the truncated
random variables. Consider the weak convergence of the process ℘n(z)
on the interval [0, T ]. The tightness of ℘n(z) can be easily shown
by Theorem 5 in Kushner (1984, p. 32). The key step is to describe605
convergence of finite-dimensional distributions. To this end, for any
0 ≤ z1 ≤ z2 < z3 ≤ z4 ≤ T and for any constants c1 and c2, the linear
combination of the increments of ℘n(z) is

Sn ≡ c1{℘n(z2) − ℘n(z1)} + c2{℘n(z4) − ℘n(z3)} =∑n

t=1 J ε
t ,

where J ε
t = ζ2t {c1It (z1, z2) + c2It (z3, z4)}, ε = 1/n, and It (u, v) =

I (r0 + uε < yt−1 ≤ r0 + vε). We first verify Assumptions A.1–A.3 in610
Li, Ling, and Li (2013) for J ε

t . By Assumption 3, it follows that

lim
n→∞

ε−1P ε
k (J ε

n �= 0) = π (r0){(z2 − z1) + (z4 − z3)}. (A.2)

By Assumption 3 again, for any Borel set B, it follows that

Q∗(B) = lim
n→∞

P (J ε
n ∈ B|J ε

n �= 0) = wQ∗
1(B) + (1 − w)Q∗

2(B),

(A.3)

where w = (z2 − z1)/{(z2 − z1) + (z4 − z3)} and Q∗
i (B) = P (ciζ2t ∈

B), i = 1, 2. By a conditional argument, for any f ∈ Ĉ 2
0 , a space of

functions with compact support and continuous second derivative, and615
a scalar x,

Eε
k {f (x + J ε

n ) − f (x)|J ε
n �= 0} = E{f (x + J ε

n ) − f (x)|J ε
n �= 0}

→
∫

{f (x + u) − f (x)}Q∗(du), (A.4)

as n → ∞. By (A.2)–(A.4), Assumptions A.1–A.3 in Li, Ling, and
Li (2013) hold. Furthermore, by their Theorem A.1, we have that
Sn converges weakly to a compound Poisson random variable J
with jump rate π (r0){(z2 − z1) + (z4 − z3)} and the jump distribu-620
tion Q∗. The characteristic function fJ (t) of J is equal to that of
c1{℘(z2) − ℘(z1)} + c2{℘(z4) − ℘(z3)}, where ℘(z) is defined in (3.4).
Thus, L̃n(z), defined in (3.2), converges weakly to ℘(z) as n → ∞.
The remainder of the proof is similar to that of Theorem 2 in
Chan (1993).625
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