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Abstract

The limit distribution of the quasi-maximum likelihood estimator (QMLE) for parameters in the
ARMA-GARCH model remains an open problem when the process has infinite 4th moment. We
propose a self-weighted QMLE and show that it is consistent and asymptotically normal under only
a fractional moment condition. Based on this estimator, the asymptotic normality of the local QMLE
is established for the ARMA model with GARCH (finite variance) and IGARCH errors. Using the
self-weighted and the local QMLESs, we construct Wald statistics for testing linear restrictions on the
parameters, and their limiting distributions are given. In addition, we show that the tail index of the
IGARCH process is always 2, which is independently of interest.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

(G)ARCH-type models have been extensively used in economics and finance since Engle
(1982) and Bollerslev (1986). Weiss (1986) first presented the asymptotic theory for the
ARMA-ARCH model assuming finite fourth moment (see also Tsay, 1987). The ARCH
(1) model is defined as & = n,+/h; and h; = oy + ocz—:%_l, where o9>0, «>0 and »,~ 1.1.d.
N(O, 1). It is well known that {e,} is strictly stationary when « € (0,3.5620 - - -), and ¢, has a
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finite second moment when o € (0, 1), a finite fourth moment when o € (0,0.57---) and a
finite eighth moment when o € (0,0.3 - - ). It is clear that the moment conditions of &, link
directly to the restriction on the parameters and that Eef <oo is a very strong condition.
The problem on the asymptotic theory for (G)ARCH-type models under weak moment
conditions has attracted a lot of attention in econometrics and statistics.

For the GARCH(1,1) model, including the case when Ee? = 0o, Lee and Hansen (1994)
and Lumsdaine (1996) showed that the quasi-maximum likelihood estimator (QMLE) of
the parameters is consistent and asymptotically normal. For the GARCH(r, s) model as
given below in Section 2, Berkes et al. (2003) proved strong consistency and asymptotic
normality of the QMLE. The same results were proved by Hall and Yao (2003) and
Francq and Zakoian (2004). But Hall and Yao (2003) assumed that Ee? < oo and discussed
the case when En? = co. As far as we know, the weakest condition is presented by Francq
and Zakoian (2004). Consistency of the QMLE was also discussed by Jeantheau (1998)
and Ling and McAleer (2003a). We also refer to recent works by Peng and Yao (2003) and
Berkes and Horvath (2004) in this area. Basically, the asymptotic theory of the GARCH
model is known.

However, we know less about the asymptotic theory of the ARMA-GARCH model.
When E8;1 < 00, the consistency and asymptotic normality of its local QMLE were given by
Ling and Li (1997), while the strong consistency and asymptotic normality of its global
QMLE were proved by Francq and Zakoian (2004). It is challenging to establish the
limiting distribution of the QMLE when Es‘t‘ = oo. Liet al. (2002) identified this as an open
problem. This difficulty was also recognized by Francq and Zakoian (2004). To
understand this, we begin with the AR(1) model: y, = ¢y,_; + ¢ with ¢ in (2.2) and let
¢, be the LSE of ¢. Then, vi($, — ¢) = (132, /n) (' 1v_164//). The central
limit theorem requires E(ytflgt)2 = E(ylz_l@)< oo and hence the condition Esjl < o0 should
be minimal for asymptotic normality of ¢,. This is similar to the AR model with 1.i.d.
errors. The minimal condition for asymptotic normality of the LSE is Ey? <oco. When
Ey? = oo, the asymptotic distributions of existing estimators, such as LSE, LAD and M-
estimators, do not have a closed form (see Davis et al., 1992). Ling, 2005 introduced a self-
weighted LAD estimator. The purpose of the weighting in Ling (2005) is to downweight
the covariance matrix such that asymptotic normality can be recovered. For the ARCH
model, a similar weighted LAD and L’-estimator are used by Horvath and Liese (2004)
and Chan and Peng (2005).

This paper first proposes a self-weighted QMLE for the ARMA-GARCH model. The basic
idea is to use a weight to control the quasi-information matrix as in (3.4) below. We show that
the self-weighted QMLE is consistent and asymptotically normal under only a fractional
moment condition, i.e., Elg,|' <oo for some 1>0. For the QMLE, 4,(0) itself is one sort of
weight in the quasi-log-likelihood function (3.3). Ling (2004) shows that the QMLE is
asymptotically normal even if Ee? = oo for a double AR model and, hence, it is reasonable to
expect that asymptotic normality of the QMLE holds when Ee! = co. We next establish
asymptotic normality of the local QMLE for ARMA-GARCH (finite variance) and
-IGARCH models. Based on the two estimators, Wald statistics are constructed for testing
linear restrictions on the parameters. When E¢? = oo, our result is entirely different from that
in Mikosch et al. (1995) for the infinite-variance ARMA with 1.i.d errors.

This paper is organized as follows. Section 2 presents the model and assumptions.
Section 3 studies the self-weighted QMLE. Section 4 studies the local QMLE. Concluding
remarks are offered in Section 5. All proofs are given in the Appendix.
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2. Model and assumptions

Assume that {y, : t = 0,%1,42,...} are generated by the ARMA-GARCH model:

P q
e=u+ Z b+ Z Vig—i + &, 2.1)
i=1 i=1

r N
eo=nh and hy=o0+ Y e+ Pl 2.2)

i=1 i=1
where 09>0, 0,20 (i =1,...,7), ;=0 (j = 1,...,s), and 7, is a sequence of i.i.d. random
variables with zero mean and variance 1. Denote y=(u, ¢,...,0,, ¥ ,..., t,bq)/,

8 = (00,01, - -5 0% Prs---»Bs), and 0 =(y,8"). The parameter subspaces, @, C R
and @; C R;™!, are compact, where R = (—00,00) and Ry = [0,00). Let @ = 0, x O;
and m=p+q+r+s+2 and 0 be the true value of 0. Denote oa(z) = _ 0z,
B)=1=>"1 pip(z) =1 =" ¢z and Y(z)=1+>L ,y,z. We introduce the
following conditions:

Assumption 2.1. 0 is an interior point in @ and for each 0 € O, ¢(z)#0 and Y(z) #0 when
IzZI<1, and ¢(2) and y(z) have no common root with ¢,7#0 or ¢, #0.

Assumption 2.2. «(z) and f(z) have no common root, o(1)#0, o, + f,#0, and >_._ ;<1
for each 0 € ©.

Assumption 2.3. 17 has a nondegenerate distribution with En? = 1.

|21

Assumption 2.4. E|¢/|“' <oo for some 1>0.

Assumption 2.1 implies the stationarity, invertibility and identifiability of model (2.1),
under which it follows that

V@ =D () and (D) =) a0 (2.3)
i=0 i=0
where supg ay (i) = O(p') and supg a,(i) = O(p’) with p € (0,1). Assumption 2.2 is the

identifiability condition for model (2.2) and, by Lemma 2.1 in Ling (1999), the condition
>0 B: <1 is equivalent to

0<p(G)<1 WhereG:(Iﬁl i) (2.4)
s—1

I is the k x k identity matrix and p(B) is the spectral radius of matrix B. Under this
condition, we have

B 2)=) ap()z and a(2)p7'(2) =) as(i)Z', (2.5)
i=0 i=1

where supg, ag(i) = O(p’), supg, as(i) = O(p') and p = p(G). Assumption 2.3 is necessary
to ensure that /, is not almost surely (a.s.) a constant. When 1 = 1, the necessary and
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sufficient condition for Assumption 2.4 is

D i+ Y Bui<l, (2.6)
i=1 i=1

under which the GARCH model (2.2) has a finite variance. Furthermore, we give the
necessary and sufficient condition for Assumption 2.4 when 1 € (0, 1] in the following
theorem.

Theorem 2.1. Let 1 € (0,1] andﬁ = min{oco,-,ﬁoj i=0,1,...,r,j=1,...,5}. Suppose {&} is
generated by model (2.2). (1) If

1

<lI, (2.7)

ip—1

[ 4

k=0

there exists an integer iy such that E

then {&;} is strictly stationary and ergodic with E|8,~|21<00; (i) If >0 and (&} is strictly
stationary with Ele,|*' <oo, then (2.7) holds; (iii) if f>0,

S+ By =1, (2.8)
i=1 =1

and n, has a positive density on R such that E|n,|* <oo for all t <ty and E|n,|"™ = oo for some
1o € (0, 00], then lim,_, o x> P(|e;| > X) exists and is positive, where

0601'1? s Oor ’7? Boi ’7? T ﬁosﬂ?
y I, O O
r= %1 . %oy Bo . Bos |
@) I, @)

and ||B|| = \/tr(BB’) for a vector or matrix B.
We can show that (2.6) and (2.7) are equivalent when 1 = 1. Under (2.8), model (2.2) is
the IGARCH model with an infinite variance. Theorem 2.1 (iii) implies that the tail index

of the IGARCH(r, s) process is always 2. When r = s = 1, this tail index was also obtained
by Basrak et al. (2002).

3. Self-weighted QMLE for ARMA-GARCH

Given the observations {y,,...,y;} and the initial values {yy,y_;,y_5,...} which are
generated by models (2.1)—~(2.2), we can write the parametric model as

p q
e =y — 1= by — > Vi), (3.1)
i=1 i=1

n(0) = &()/V/h(0) and  h(0) =00+ Y aue; () + > Pih_i(0). (3.2)
i=1 i=1
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Here, 1,(00) = n,, &(yq) = & and h(0y) = h,. The log-quasi-likelihood function based on
{e(y):t=1,...,n}1s

&2()
2h,(0)°

g@:%i}@ mdh@:—;%M@— (3.3)
=1

The QMLE of 0 is defined as the maximizer of L, (6) on @. The quasi-score function and the
quasi-information matrix are given in the Appendix. Eq. (A.18) in the Appendix shows that

0%1,(0)
0y 0y’

where £,, =1 + S0P y_il, and p € (0,1) and C are some constants not depending on 7.
This is why we generally need Ee!<oo for asymptotic normality of the QMLE. It is
possible to obtain an estimator such that it is asymptotically normal if we can downweight
fﬁt_l. Thus, we introduce the weighted log-quasi-likelihood function:

]

Lo(0) =13 i 0), (3.5)
t=1

where /,(0) is defined as in (3.3) and w;, satisfies the following assumption:

Assumption 3.1. w, = w(y,_;,»,_5,...) and w is a measurable, positive and bounded
function on R with E(wt§2Z_1)<oo and Zy ={0,1,2,...} for any p € (0, 1).

In practice, we do not have the initial values y; when i<0 and hence they have to be
replaced by some constants. Denote &:(y), 4,(0) and w, as &(y), ﬁt(Q) and Ww,, respectively,
when y; 1s a constant not depending on parameters when i<0. The weighted log-quasi-
likelihood function (3.5) is modified as follows:

2(7)
hi(0)

- 1 <& ~ - 1 -
L, (0) = . Z Wi (0) and [,(0) = — zlog h(0) — (3.6)
t=1

The following assumption makes the initial value y; ignorable when 7<0:
Assumption 3.2. E|w, — W, /4 = O(t7?), where 1y = min{1, 1}.

Since the weight w; 1s determined by {y,} itself, the maximizer of im((?) on O is called the
self-weighted QMLE, denoted as @S,,. Let —, and — &, respectively, denote convergence in
probability and in distribution as n — oco. Our result for @Sn 1s as follows.

Theorem 3.1. Suppose that Assumptions 2.1-2.4 and 3.1-3.2 hold. Then,

@) O 0o,

(i) n(0g — 00— #N(©0,2;'22;") if En*<oo and J>0,
where Xo = E[w,U(00)U;(00)], Qo = E[w}U(00)JU(00)], J = (,33 ’fj), iy =En /2, k=
(Enf — 1)/2 and U(0) = [, "*0e,(7) /00, (v/2h,) ™' 0h,(0) /00].

It is readily shown that J>0 if and only if P(5y? —cn, — 1 =0)<1 for any c € R. A
simple condition for this is that n, has a positive density on some interval. Since 0, is an
interior point, it excludes the ARCH as a special case of model (2.2). However, our
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framework allows us to deal with an ARCH model when it has been correctly identified. From
its proof, Theorem 3.1 holds for the ARMA-ARCH model by removing the components
corresponding to f8;’s, and it holds similarly for the AR-ARCH and ARCH models.

The matrices 2y and € can be consistently estimated by their sample averages, i.e.,

Z‘On :;Z WtUstUS[ and QOn :Ez W%Usz anSp (37)
=1 =1

where Ust =U t(ém) and jm is defined as J with k3 and k replaced by
3

1 | &) 1 Z #0g) 1

7%3511 = —Azwt — and ’Acsn = S~ Wy 2 ~ 5
\/§W1 =1 \/ht(@sn) 2W1 =1 ht(gsn) 2

respectively, and Ww; = Y __W,. Based on these, we can undertake statistical inference for
the ARMA-GARCH model, such as the goodness-of-fit test in Li and Mak (1994). Here,
we only consider the Wald test statistic, denoted by W,, for the p, linear hypothesis of the
form: Hy : I'0 = 019, in the usual notation. Using a similar method as for (A.17) and
(A.19), we can show that ZYOn = X + op(l) and f)()n = Qy + op(1). Thus, by Theorem 3.1,
we have a corollary as follows.

Corollary 3.1. If Assumptions 2.1-2.4 and 3.1-3.2 hold, J >0 and En? < oo, then it follows
that

A Soa—la sl _ A
W = n(I0y — 010) (I'Z), Qu 21, I (L0 — 010)— 7, -
under Hy, where 2011 and QOn are defined as in (3.7).

We should mention that W, cannot be used for testing if the coefficients in the GARCH
part are zero since 0y 1s an interior point in @ under Hy. To use the result in this section, we
need to select a weight w,. Obviously, there are a lot of weights that satisfy Assumptions
3.1-3.2. When 1 = % (i.e., Ele;| <00), as in Ling (2005), one natural weight is

4
21
Wy = (max{l»c_lZﬁlyz—k|l{|yt—k|>c}}> , (3.8)

k=1

for some C > 0. This weight satisfies Assumptions 3.1-3.2 and has a connection to Huber’s
robust estimator for the regression model. It downweights the quasi-information matrices
with large points (in absolute value) such that the magnitudes of its elements are not larger
than C*, but takes full advantage of all matrices without these points. When ¢ = s =0
(AR-ARCH model), for any 1>0, the weight can be selected as

P —4
Wi = (max{l,c—‘ > s ey =€ e ) (3.9)

k=1

When 1 € (0,3) and ¢>0 or s>0, the weight w, may not be well defined and needs to be
modified as follows:

—4
RN
wt=<max{1,c ‘Zmlyl_klluyz_kl%}}) : (3.10)
k=1
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In this case, we need to determine 1 such that Assumption 2.4 holds. This is not an easy
task, but there are two ways to do this. One way is to use a simulation method to verify the
condition (2.7) for a possible 1. This is the same as the method used for verifying the
stationarity condition of model (2.2) suggested by Bougerol and Picard (1992) and Basrak
et al. (2002). But this method needs some information on the distribution of #,. The test
statistic in Koul and Ling (2006) can be used to test possible distributions. Another way is
to use the Hill estimator to estimate the tail index of {y,} and its estimator may provide
some useful guidelines for the choice of 1. The constant : can be any value less than the tail
index of {y,}.

In general, it is difficult to compare the efficiency of estimators based on different
weights. However, when E|| U.(00)* < o0, 25190251, based on the weights in (3.8)—(3.10),
converges to the asymptotic covariance matrix of the QMLE in Section 4 as C — oo.
When E||U,(0y)||> = oo (see the example on the AR-ARCH model in Francq and Zakoian,
2004), for the weight in (3.9) or (3.10), we have

125" Qg <225 — 0 as € — oo,

for some 4> 0. That is, the asymptotic variance of the self-weighted QMLE can be as small
as we want only if C is large enough. For the self-weighted LAD estimator for the infinite-
variance AR model with 1.1.d. errors in Ling (2005), simulation results show that it works
well when C is the 90% or 95%-quantile of data {y,,...,»,}.

4. Local QMLE for ARMA-GARCH/IGARCH

When studying the quasi-information matrix in detail, we find that EH.;(0) <oo only 1f
Ee? <oo, where H,(0) = hl_z(H)[ah,(Q) /0yl[0h,(0)/0y'] (see the proof in the Appendix).
Another second-moment condition is required by the factor &2(y)/h,(0) in (A.3). Note that
e2(79)/h:i(00) = n? is independent of #, ;. If we restrict the estimator on the subspace
O, ={0: 10— 0y|| <M/ /n} for any fixed M >0, elz(y)/h,(Q) is expected to be sufficiently
close to nf. Thus, Egl2 < oo may be sufficient for asymptotic normality of the local QMLE.
In addition, since the tail index of the IGARCH process is 2, /,(0) may be able to reduce a
little bit of the required moment of ¢, in H,,(0) such that the asymptotic normality of the
local QMLE holds for the ARMA-IGARCH model. Thus, this section focuses on the local
QMLE. X

By using 0y, in Theorem 3.1 as an initial estimator of 0y, we obtain the local MLE
through the following one-step iteration:

. A —1 ~ A
é _é — - azlt(gsn) . alt(@s”)
T & 0000 o0

4.1)

For this local QMLE, we have the following result:

Theorem 4.1. Suppose that Assumptions 2.1-2.3 and 3.1-3.2 hold and that (2.6) or the
condition of Theorem 2.1 (iii) is satisfied. If En} <oo, J >0 and 0, is obtained through (4.1),
then

(0, — 09)— N0, 27'Qx 1),
where X = E[U(0p)U’(00)] and Q = E[U(00)JU'(00)].
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For the ARMA-IGARCH model, the condition f,; #0 is critical in the proof (see
Lemmas A.5-A.6) and hence Theorem 4.1 cannot be applied to the ARMA-IARCH
model. However, when Es? <00, we can take 7 = 0 in Lemma A.5 such that all the proofs
follow. Thus, Theorem 4.1 in this case holds for ARMA-ARCH, GARCH and ARCH
models only if we remove the reductant parameters and the corresponding components in
the covariance matrix.

In general, it is not easy to compare the efficiency of the QMLE and the self-weighted
QMLE in Theorem 3.1. However, when J = diag{l, 1}, i.e., n, has the same moments as
those of N(0, 1) up to fourth-order, we can show that the QMLE is more efficient than the
self-weighted QMLE. In fact, in this case,

2=Q= E(XltX/lz + XZIX/Zz)a
3o =Ew X X}, +wX2X,) and Qy=EW X X, +w?XX5),

where X1, = h;/%06,(7)/00 and X, = (2h)"'0h,(0)/30. Let b and ¢ be two any
m-dimensional constant vectors. Then,

' Zobb' Zoc = {E[(¢ X 1,w)(X,b) + (¢ Xaw )(X5,0)])

2
< {J E(c'X 1w, E(X b + 1/ E(c/thw,)zE(X;,b)Z}

<[E(¢'X1,w,)* + E(¢' Xow ) [E(X},b)° + E(X,b)]
= Qych'2b = I/ Qy(b'Xb)c.

Thus, Qyb'Zbh — Zobb'Zy=0 (a positive semi-definite matrix) and hence b'2oQ; ' Zob =
(@ 2 2obb' £0Qy ' *) < tr(b'£b) = b'Zb. Thus, we have X;'Qu2;' =2,

_ For the pure (G)ARCH model (2.2), the asymptotic covariance matrices of the QMLE
0, and the self-weighted QMLE 6, are

sQr ! = kBTN (X2 XY,),
251 Q0Zy " = KET (w0 X X5, ) B(W] X0, X5)E™ (w, X 2. X5),

respectively. Using the same method as for the previous case, we can show that
5512025 > 2712~ Thus, the QMLE is always more efficient than the self-weighted
QMLE. For the pure ARCH model, the asymptotic covariance of the weighted L’-
estimator in Horvath and Liese (2004) is 7'Q, 27", where X1 = E(w, Z,_1Z,_,) and Q| =
KEWh'Z, 1 Z,_ ) with Z, = (1,¢2,...,¢> ). Note that X5, = Z,/h, in this special case. In
general, the QMLE is more efficient than the weighted L2-estimator. In fact, for any m x 1
nonzero constant vectors b and c,

2
X \bb'Yc = {E [(w,h,c’Z[_l)(hib/Zz_lﬂ }
t

1 2

<E(wlh,c’Z,_1)2E<h—b/Z,_1) = Qb 2b/x.
t

Thus, X\bb'S,<Qb'Zb/k and hence b'2,Q7'21b=tr(Q'"*2bb'2,Q7"*)<b' 5b/x.

Thus, 27'Q; 27 >x2~!. Based on the weight (3.9), 2;'QoZ;! — x2X7! as C — oo, while

Zl_lQlZl_l — 00if E||Z,||> <oo but E||Z,||* = 0o as C — oo. Using |Z;—1]|/h;< a constant

a.s., we can show that the self-weighted QMLE based on the weight (3.9) with a large C is
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more efficient than the weighted-L?> estimator based on the weight 1/(1+
| Z,_1||*)suggested by Horvath and Liese (2004).
The covariance matrices, 2 and €, can be estimated by

A 1 n A A A 1 L A oA A/
5, = ZZ 0,0, and Q,= ;Z U.J,U, (4.2)
=1 =1

where U ,=U Z(@n) and j,, is defined as J with k3 and x replaced by «3, and &,
3
. 1 & 20

Kip = ——
3 ﬁ”; NITOS

IAJsing Lemmas A.S—AA.6, Lemmas 6 as for Lemma 7, we can show that J, = J + op(1),
2y =2+o0p(l) and Q, =Q+ op(1). Thus, by Theorem 4.1, we have the following
corollary for testing the null hypothesis H, which is defined as in Corollary 3.1:

no ~4,/)
and &, = LgH@) 1

= b, 2

Corollary 4.1. Under the assumption of Theorem 4.1, it follows that
~ A—l A A—1 -1 4
Wn = n(FQn — 010)/ (FZH ‘Q”Zn F/) (an — 910)—)3%1271,
under Hy, where £, and Q, are defined as in (4.2).

5. Concluding remarks

Given a data set, different estimators may give different results in practice. To see if the
QMLE should be used, it will be helpful to estimate the tail index of the data. If it is greater
than 4, then the global QMLE can be used. If it is in [2, 4], a two-step estimator should be
considered, i.e., first obtaining a self-weighted QMLE and then using it to obtain the
QMLE via a one-step iteration. When #7,~N(0, 1), the QMLE is the MLE and hence it is
efficient. Theorem 3 with Theorem 3.1 provide an approach to obtain an efficient estimator
for the ARMA-GARCH (finite variance)/IGARCH models. Such an approach is novel
and has never appeared in the literature before. To make sure if #,~N(0, 1), we can
perform a test by using the statistic in Koul and Ling (2006). If there is strong evidence that
1, 1s not normal, we can further perform the adaptive estimator along the lines as in Drost
et al. (1997) and Ling and McAleer (2003b), subject to some regular conditions on the
density of #,.

When the tail index is in (0, 2), we should consider only the self-weighted QMLE. But
the results will depend on the choice of weights or the constant C in (3.8)—(3.10). As the
Co-Editor has noted, we should acknowledge that using other weights may produce
different finite sample results and a different asymptotic variance. We do not have a theory
to support the choice of the weight or C yet. Which result is more reliable should depend
on the features of the data and their source. It remains a difficult problem to set a sense for
comparing different estimators and to select the C or other weights such that the estimator
is optimal under this sense.

In summary, this paper has proposed a self-weighted QMLE for parameters in the
ARMA-GARCH model and showed that it is consistent and asymptotically normal under
only a fractional moment condition of GARCH errors. Asymptotic normality of the
local QMLE has been established for ARMA model with GARCH and IGARCH errors.
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Wald statistics have been investigated for testing linear restrictions on the parameters in
the model. In all results, we assume that Ex? < oo. This assumption can be relaxed by using
the LAD and the self-weighted method in this paper. The self-weighted principle can be
applied to other estimators, such as the M- and the quantile-estimators, to other ARCH-
type models, such as threshold AR-ARCH models, and to multivariate time series models.
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Appendix A. Proofs

Proof of Theorem 2.1. By (2.7) and Jensen’s inequality, we can show that
Eln||H’° ' 4] <0. Using the same method as in Bougerol and Picard (1992), we can show
that the following representation holds:

0o j—1
1+ Zu;H HA,_iC,_j] a.s.,
=1 i=0

and hence {¢,} is strictly stationary and ergodic, {, = (7,0,...,0,1,.. ())(, )x1 with the
first component 5? and the (r + 1)th component 1, and u; = (0,...,0,1,.. O)(, <1 With
the ith component 1.

Let B, ={(, + Z’O IH 0Ai=i(,—; and A, = H’O Y4, .. We rewrite A, as

g = n,\/lz and /; = ago

00 k—1
’ § / | | A
h[ = 0po u’,+1B[ + u,~+1 Al—ioil Bl—kio ) (Al)

where u,, {, =1 is used. By (A.1), it follows that

Ehy<O(1)+O(1) Y _(Ell4,]I") <oo.
k=1
Thus, E|¢;|* <oo and hence (i) holds.

Note that model (2.2) has only one strictly stationary solution with the representation
(A.1) (see Bougerol and Picard, 1992). Denote Ay = ogo(1 + Z 1U;+1H At i,—j). Then
(hjy —hj-1,)' — 0 as. when J — oo. {h}} is an increasing sequence in terms of J
and Esup / h},, <Eh,<oo. Thus, by the dominated convergence theorem, we have
E(u,HHl o Ai—ili—) = E(hy — hyj_1,4)' /oy — 0 as J — oo. Since ﬁ>0 there exist J
and J, such that all the elements of d;; = (urJrll—[J1 T4, ;) and dy; = H _IA, i{,_jare a.s.
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positive, and 0 <Ed|,, <oo and 0 <Ed,, <oo, where dj; is the ith element of d;, as j = 1, 2.
Note that

Ji+ip+Jr—1 ! Ji+ip—1 !
E(u, ][] A-il) =E|d,| [] 4-i)dosi| =0,

i=0 i=Jy

as ip — oo. Let a;;, be the (i,)-element of HIJIJJFKO_IAZ ;. From the preceding equation, we

know that E(d;a;;d>j s, +i,)" — 0 as ip — oo. Since dij, a;;, and d»; 5,14, are independent,
we know that Eaj — 0 as iy — oo. Thus, there exists iy such that E||HZJ‘J;I’0 T4, il
—E||H’° "A4,:I'<1, i.e., (ii) holds.

(ii)) Since (2.6) is the necessary and sufficient condition for Ee?<oo, (2.8) implies
Ee? = 0o. By (ii) of this theorem, E||Hl° 1Ak|| >1 for any ip>1. Thus

lnEuIIAknzo,
k=1

for all n>1. Note that ;[ [,_, Axu; is the (i,)th element of [[,_, Ax. We have

1/2
r+s r+s n 2 /
— / .
=E E u; H AkuJ
i=1 1 k=1

| = j=

r+s r4+s n r+s r+s
<E 22( ;;HAWJ) = ZZ(uA"uJ)<(r+s)
i J = i J=

where 4 = EA,. By the previous two inequalities, it follows that

1
lim — In E||4,...4,| =0.

n—oon

By Theorems 2.4 and 3.1 (B) in Basrak et al. (2002), the conclusion (iii) holds. This
completes the proof. [

We next give some basic formulas as follows:

afg(?) - _ w—](l)’

U

= B, 1sise
ds, ] |
0= VB0, 1sise

_ v 2

h0) = S0+ B BUBE)

WD g ygo),

oho)

o= 2 By
7

where Z(0) = [1,&2 (), ...,& (), h_1(0),. h, s(0)] and B is the back-shift operator.
Similarly, we can write down the formula for 0%e,(y) /67)116))12 and 0%h,(0) /00;,00;,, where
ii,ih=1,...,p+q+1andj,,j, =1,...,m. We further give the quasi-score functlon and

z(V)}
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the quasi-information matrix as follows.

oL(0) MOy 1 [ 0/1,(0)
00 —  h(0) o6 +2h[(0) (h,(@)_l) o0 (A-2)
O*1,(0) I Qe(y) dey) 1 0h(0)0h(0) &7 (y)

Ooy — h(0) & 03y  21X0) Oy & h(0)

+ll8?(7’)_1] 1 Oh(0)0h(0) N 1 0%h(0)
2 | h(0) RAO) Oy Oy h(0) &y 0y

26O hO)  5,) O )
ThO) & 0y ki) &0y (A.3)

O*1,(0) 1 0hy(0)0h,(0) &7(y)
0508~ 21X 0) 35 00" h(0)
1 [&2(y) 1 0h(0)0h(0) 1 3*h(6)
+§[h,(0)_1] [_hf(e) R0 aaaé/]' (A-4)

Similarly, we can write down 9°/,(0) /(©y05"). We now give three basic Lemmas. They are
commonly used in the proof.

Lemma A.1. Let &, be defined as in (3.4). If Assumptions 2.1-2.2 hold, then there exist
constants C and p € (0, 1) such that the following holds uniformly in ©:

2

1) &_1(y), Ceu(7) and Cer) are bounded a.s. by C¢,,_,,
0y 0y 9y’
(i) h«(0) is bounded a.s. by Céi,_l.

Proof. It directly comes from (2.3) and (2.5). This completes the proof. [

Lemma A.2. Let &, be defined as in (3.4). Under Assumptions 2.1-2.2, there exists a
neighborhood © of 0y and a constant p € (0, 1) such that

. 1 0h(0) ,
< 1

(1) @Op h,(@) 65 H\Cépt—l’
N 1 0%h,(0) ,
D Sl | g 1

) ng h(0) 3600’ SCpmrs

for any 1; € (0, 1), where C is a constant independent of 1, and t.

Proof. Let G be defined as in (2.4). It is not difficult to show that

h(0) = Cy + i i ociu/G/usf_i_j(y), (A.5)

i=1 j=1
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where Cop =a/(1 = >_._,p,) and v’ = (1,0,...,0),,,. Similarly, we can show that

0h(0) _ <~/
= u' G'uhy,_i_i(0)
aﬁk j; t—k—j
=C; + Z Z Zociu/G/uu/Gfl ue%ﬁkﬂ;jﬂ-l ), (A.6)
i=1 j=1j1=1

where C; is some constant. Note that x(1 + x)~' <x" as x>0 for any 1; € (0, 1). We have,
for any 1; € (0,1),

1 ki, 02
ou' G* flust_k_i_j_].l(y)

C(k,i,j,j;) = max

o |Cyp+ oc,-u/GkﬂJrJluef_k_i_j_jl (7)

< max{ou G uel 5 (7)) Col'

< Cop ey g—imjy (DI, (A.7)

where C is a constant. Since 6 is an interior point in @, there exists a neighborhood © of
0o such that f = min{f, : 0 € @y} >0. Furthermore, because each element of G is
nonnegative, it is easy to see that, for any constant vector ¢ with all elements being
nonnegative, cuu/'c<c'Ge/B, and hence ' Gu'Gu<u'GGG'u/B=uG " u/p.
Again, since all the elements of G are nonnegative, it follows that

u/Gk+j+]1u — u/GGk+]+]1_lu — (ﬁl, . ’ﬁs)Gk+j+]1—lu
> ﬁu/Gk+j+j1—1u
> 2T s B Gud G (A.8)

Thus, by (A.5) and (A.8), we have

o' Gu G ue? , . ) (V)]

o (0)
< max it G'uid G ey, () 1 C(k,i,j,j1). (A9)
&S [oN CQ + OCiu/Gk+j+j1 HS? keinj ]](0) ﬁk a] ]1 .

By (A.6), (A.7) and (A.9), for any 1; € (0, 1), it follows that

1 oh(0)] _
z(9) OPy

eN

< ( +Zplez O ) k=1,...s (A-10)

where p € (0,1) and C>0 are some constants. Similarly, we can show that

C<l+ip’

=1

L oh(0)|_

h(0) 0 gt—kfj(?’)

), k=1,...,r. (A.11)
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Let p be the maximizer of the p in (A.11) and Lemma A.1(i). By Lemma A.1 (1),
w . w .
S Ve < CY P iyl
j=1 J=1

p]' |€pt—k.—j|l1
AT Sy I L

[M]¢

<Cl1+ Z/ﬂlfp,_k_jl> [
j=1

~
Il

<c(1+Y pflép,_k_j|> > o ptty
j=1 j=1
o o h
<C|1+ Zp]Zpﬂyl_k_,_A) <C& 4y, (A.12)
j=1 =0

for some p € (0, 1), where the constant C may be different in different inequalities. Thus,

using (A.10)—(A.12), we can claim that (i) holds. Similarly, we can show that (ii) holds.
This completes the proof. [

Lemma A.3. Let ¢, be defined as in (3.4). Under Assumptions 2.1-2.2, there exist constants
C and p € (0,1) such that

) 1 0Oh(0)
1) su <C¢&, 1,
. 1 9*h(0)
1) su <Cé&é, 4,
1 %10
1) su <C¢,,_;.

Proof. By (2.5), we have the following expansions:

h(0) = 2~ (1) + D as(i)er_(7),
i=1

Oh,(0) & . . 0g,—i(y)
oy =2 lz:l: as(i) |ﬁt—z(?) 3y ] .

Thus, h,(0)>as(i)e>_.(y). By Lemma A.1(i), it follows that
t—1

1 dh(0) _ 2 sup iaa(i)su(v)aan(y)
Vi(0) Oy o || Vh(O) O

<2sup i /_a(;(i) Oe;—i(y)
i=1

o 0y

sup
e

< gpt—l,

1.e., (1) holds. Similarly, we can show that (ii)—(iii) hold. This completes the proof. [
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Lemma A.4. Under Assumptions 2.1-2.2, for any 1, € (0, 1), it follows that
(1) Sup 11:(0) = L(0)| SO(pHR}™™,

. al,0)  dl(0)
() sup|l—35=~ 3¢

<O(pHRH,

i) sup o’L(0)  '1,(0)
o ||[0000 0000

<O(HR™,

where R, =143 of and &, is defined as in (3.4) for some p € (0, 1).

pt—i

Proof. It is straightforward to show that there exists a p € (0, 1) such that
sup le:(7) = &)l = O(")0.

sup [577) = ()| = Oy po-
—1
sup l(0) = B(OI<O1) )_ p'sup I ) — 501 + Oy

<O(p")é40 Z Ep—i + O(p)E0 <O(P)R,,

1

1

I I
Pl — | <
o |10 i)

o) i)
<O(1)sup |Au(6) - (0" = O(p")R!,

o(1) su

for any 1; € (0,1) and k>1. Note that sup|.§2(y)|<0(l)f There is a constant C>0
such that

11,(0) — 1,(0)| < log[1 + Clh(0) — h(0)]]

—Isz(v) — 5O+ 52(?)

~ |

t

he

By the preceding inequalities, we can show that (i) holds. Furthermore, we have

Oe(y)  O&(| _ ~,
sg}) > o H—O(P)fpo,
oh(0) dh,(0 6,1
sup ai ) _ ai) <0(1)§ o' sup i) — )
a t—i t
5 (”H+O<p )éf,o

<O(p")é40 Z(ém i+ Epimic) + O(p)E0 <O(P)R,,
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Ohy(0) _ Ohi(0)
00 00

—1
u <o) pf sgp\sii(w —&_()] +0("E,
i=1 y

—1
<O(P)ep0 Y Epmi + O(p)E2 <O(PR,.
i=1
Using these inequalities, we can show that (i1)—(ii1) hold. This completes the proof. [

Proof of Theorem 3.1(i). First, the space © is compact and 0, is an interior point in 6.
Second, Lg,(0) is continuous in 0 € @ and is a measurable function of {y;, i=11—1,...}
for all 0 € ©.

Third, by Lemma A.1, it follows that

Oe
sup le/(P)| < le(p)] + sup [l — 7ol sup é V)H
2] 2] 2] Y
<m0V hi(0o) + O(1)E -1 <O, I(1 + Ei—1), (A.13)
1< sup hu(6) <o, (A.14)
e 9%

for some p € (0, 1), where o, = infe{ay : 0 € @}. By Assumption 3.1 and (A.13)—(A.14),
Esupg [w;e2(y)/h(0)]<oco. Since w is a bounded function, by Jensen’s inequality,
Assumption 2.4 and (A.14), Esupg |w,logh,(0)|<O(1)Esupg |log h;/z (0| <0O(1)
[log Esupg (h,(@)/go)’/2 + |logoy|]<oo. Thus, we can claim that Esupg |w,/,(0)] <oo. By
the ergodic theorem, L,(0) — E[w,/;(0)] a.s. for each 0 € @. Furthermore, by Theorem 3.1
in Ling and McAleer (2003a), it follows that

Sup | Ln(0) — E[w:l(0)]|— 0. (A.15)
It is straightforward to show that supgl|/,(0)] + |l~,(0)|]<0(1)§l2n. By Lemma A .4 (i),
sup [wi/(0) = Wil (O) <wy sup 11i(0) = [(O)] + Iwi = wi| sup Li(O)

<O(p' R + O(1)lw, — W&,
E(jw, — | €2)"/8 < (Elw, — " *EES )2 = O,

By the preceding inequality, and Assumptions 2.4 and 3.2, we can show that
1< .
2 Sup pwili(0) =l (0)] = op(1). (A.16)
=1

By (A.15)—(A.16), it follows that

sup | L3n(0) — E[w (0)]] = op(1). (A.17)
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Fourth, by (2.3), it follows that

() — &po) = Y _[ay(D) — a, (Dl

i=1

00 Q6.
=@ =70 Z ay(Dy,_;i = —70) el(y”)
i=1

oy

where y* is between 0 and 0. Thus,

wiledpo) + (y — 70) 0e(0%) /00T
h(0)

E[w,[,(0)] = — Ew,logh,(0) — E

thz(go)
B0 }

= {—Ew, log h,(0) —

w; 0g(0%) 0e,(07)

](V —70) = L1(0) + La(0).

L,(0) obtains its maximum at zero if and only if y = y,, and

hi(6o)  hi(6o)
h(0)  hi(0)

Note that, for any M >0, g(M) =logM — M < — 1 with equality only if M = 1. Let
M, = h(00)/h(0). When M, =1 a.s., we have E[w,g(M,)] = —Ew,. If P(M, = 1)#1, then
P(g(M;)<g(1))#0, so that E[w,g(M,)]<E[w,g(1)] = —Ew,. Thus, L(0) reaches at its
maximum —1 — E[w,log /;(6y)], and this occurs if and only if A,(60) = h,(6y). Since
maxg E[w,/,(0)]<maxe Li(0) + maxg L,(0), maxg E[w,/[,(0)] = —1 — E[w, log h,(0y)] if and
only if maxg L,(0) = 0 and maxg L; (0) = —1 — E[w,log /,(0y)], which occurs if and only
if y =y, and h,(0) = h,(0p) a.s. (see e.g., Francq and Zakoian, 2004). Since /,(0)|,—, =
h(6y) a.s. if and only if 6 = dg, we can claim that L;(0) reaches its maximum —1 —
E log h,(0y) if and only if 6 = 0y. Thus, E[w,/,(0)] is uniquely maximized at 0.

Thus, we have established all the conditions for consistency in Theorem 4.1.1 in
Amemiya (1985) and hence (i) holds. This completes the proof. [

Li(0) = Ew, {log ] — Ew, logh,(0)).

Proof of Theorem 3.1(ii). First, 9sn—>p 0y as n — oo. Second, 6%(0)/60 00" exists and is
continuous in @. Third, by (A.3), (A.13) and Lemmas A.1 and A.3,

o’ &) Oh (9) 2
Pllrar || <00 { H H\/h © 0
5 1 ah,(e) 02h,(0)
+ (81('})) + 1) ( r——-ht(e) a'}) + H /————ht(g) ayay/ )
&) 1 0n(0)
e )'H H VUK R )'H }
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<O &, + & 1+ I + 125, (14 0,1 + 1]
X(Ey + Epe) + Epa(L+ INDE + & )]
<OME,,_i(1+ny), (A.18)

where O(1) holds uniformly in ¢. By (A.4), (A.13) and Lemma A.2, there exists a
neighborhood © of 0y such that

<O(1)su {

+E) + 1)

1
1:(0) %

0%1,(0)
2000

2
()

sup
Oy
1 oh 1 ?h(0)
h(0) 96 hy(6) 9608
<O (L + 10, +1E,_ L+ In D) + Nt + &0 D)

where O(1) holds uniformly in z. Now, by Assumption 3.1, it is readily seen that
E supg ||w, 0%l (9)/6y 0y'll <oo and Esupyg, || | w,0%1,(0)/0638'|| < 0o. Similarly, we can show
that Esup@0||wt6 1,(0)/0y 8d'|| <oo. Thus, we can claim that

0%1,(0)
3000 || =

E sup

By the ergodic theorem and Theorem 3.1 in Ling and McAleer (2003a), we can show that
0% L,,(0)/0000 converges to E[w, 0%1,(0)0000'] uniformly in @ in probability. Similar to
(A. 16) using Lemma A.4(iii), we can show that sup@0||62Lsn(0n) /0000’ —
0% L(0,)/0000'|| = op(1). Since E[w,0*1,(0)0000'] is continuous in terms of 0, for any
sequence 0, such that 0, — 0, in probability, we can show that

P Ln(0,) _ 1

050 = —EZo—Irop(l). (A.19)
Fourth, for the previous neighborhood ®,, by (A.4), (A.13) and Lemmas A.1-A.3,
al (H)H { t(V)H ‘ 1 0h(0)]], » }
<O(1)su () +1

<OﬂﬂﬂﬁﬂmD@Fy+@m4+€M4M1+WM%@4+1&
<OME),_(1+m7),
where O(1) holds uniformly in z. Thus,

» 01,(09) 01,(0o)
00 o0’

Qy = 4Elw

Similar to the proof of Lemma 4.2 in Ling and McAleer (2003a), we can show that X, and
Qo are positive definite (see also Francq and Zakoian, 2004). By the central limiting
theorem, we have 0L,(0y)/00— #N(0, Qy/4). Similar to (A.16), using Lemma A.4(ii), we
can show that /n||0Ly,(00)/00 — L, (00)/30| = op(1) and hence Gisn(Ho)/69—>j
N(0,9/4). Thus, we have established all the conditions in Theorem 4.1.3 in Amemiya
(1985) and hence /n(0y, — 0)— ¢N(0, Z5'Q2y=;"). This completes the proof. [
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The following lemma is a key result for the ARMA-IGARCH model.

Lemma A.5. Let &, be defined as in (3.4) and oy =1+ Y 12 0'er—il. If Assumptions
2.1-2.2 hold, then for any p, ¢ € (0, 1), there exist constants ¢,,7 € (0, 1) and C not depending
on t such that

(l) 5pt < CéOQ,t a.s.,
.. Cogi—1
(11) \/m < éOolt 1

Proof. By Assumption 2.1, y, has the following expansion:

ye=0M> e,
i=0

where p € (0, 1). By this, it is straightforward to show that (i) holds. Let G( be defined as G
in (2.4) with §; = B, Since all f;>0, it is not difficult to see that ' Gju=> f),, where u is
defined as in (A.5). Let i € (0, 1) such that f8}, > o. Note that 2<1 Then, by (A.5), it
follows that

Sl o) 1+§:< )hl t_l-ll‘ﬁ(—ﬁélggf )7
hi(0o) j i Co, + Porer;
<o(1) 1+§: (ﬁ ) ‘ ""'1_27/3’618%)7/2]
01
<O(1) 1+Z (ﬁf ) |st_l-|1‘] Eog o
| i=0 \P01

for some ¢, € (0, 1), where the last step holds using the same method as for (A.12). Thus,

(i1) holds. This completes the proof. [

Lemma A.6. If the assumptions of Theorem 4.1 hold and /n||0, — Oy|| < M, then it follows
that

a.s..

1) &) = edyo) + 0p(1)y/hi(0o),
(i)  h(0,) = hi(0o) + 0p(1)h(6y),

where o,(1) holds uniformly int=1,...,n
Proof. First, it is straightforward to show that
ei(0) = €(79) + O™ ).
Furthermore, by Lemma A.5(i), we have a constant ¢ € (0, 1) such that

e(7n) = &) + O™ )Eopr 1 (A.20)
By Theorem 2.1 (iii), for any 7,0 € (0, 1), we have E(é0 [’) <o00. Thus,
lfgta? 509; /= op(1), (A.21)

for any 7,0 € (0, 1). Thus, by (A.20) and Lemma A.5 (ii), we can see that (i) holds.
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Define G, and Gy as G in (2.4) with 0 = 0,, and 0y, respectively. By (A.5),

hi(0) — hi(00) = | Co, — Co, + > > (etmit Gl — ctoitd Gouey_;_ ()

i=1 j=1

£y Z st Gt |62 1) = & 70)|

i=1 j=
= Bi, + B, (A.22)

where u is defined as in (A.5). There is a constant ¢>0 such that
Go(1 — ¢//n) <G, < Go(1 + ¢//n), where “B<C” for matrices B = (b;) and C = (cy)
means that b; <c; for all i and j. Thus, ['G Wu—u G’u)| < max{|(1 — ¢//ny — 1], |(1+
c/ny — 1} Gyu<O(i//n)(1 + ¢//nYu' Gju. Furthermore, since Cp, — Cg, = O(n~'/?)

and oy; and o,,; are bounded, it follows that

Bm<0(\/iﬁ> ( )ZZuGJus, i—i(70)

i=1 j=
;

o0
+ Z %o

i=1 j=1

o) oL £ (1wt

Using (A.5) and (A.7), as n is large enough, we have

j (1 + L>j ot Gyl _ j<1 + L>j woitd Gyt

' Glu — v Gu)

8%_,'_]‘(7)0)

Vvn hi(6o) V) Co, + oo Gue?_, »
. cy e 1 j 1
<J (1 + ﬁ) (ot Gyue;_;_)" <O(P)er—i—y ",

for some p € (0,1) and any 1; € (0,1). Thus, as for (A.12), we can show that

Bln<0<f) +h(90)0( )ZZ e

i=l j=
()

1+ h(6) Z ééi,;_i_j] = hy(0p)op(1), (A.23)
by (A.21), where 1; € (0,3). By (A.5), h(0o)/0t; =t/ Gue? - By (A.20),

By, = O(1) Z Zu Gluler—i—jlCogr—iv + = Z Z“ Gy ,_,]

1—1] 11]

<O(1) ZZ (1 + > u G/u|8l l—]|50gl i—j +- ZzpléOot z—]]

zl] 11]
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(00 ZZ (1 +—> (quu) /26001‘ i—j + - Zzpléoot i ]]

i=1 j= 11]

( ) S Z ergoiy + o( ) (Zl i Mfo@l_,-_,) )

i=1 j= =1 j=

<O(1)

for some p, ¢ € (0,1). Reordering »7_ ;3% >, 0/ 0"e,—i_j_x|, we can show that there
exists ¢ € (0, 1) such that

V hz(QO)
Jn

by (A.21) and Lemma A.5 (i1), where op(1) holds uniformly in f=1,...,n. By
(A.22)—(A.24), (i1) holds. This completes the proof. [J

B>, = O(1)

1
Sopr—1 + 53@1_1] = 0p(D)1(0o), (A.24)

Lemma A.7. If the assumptions of Theorem 3 hold and \/n||0,, — 0y|| < M, then it follows that

O1(0n) _ 15~h(00) |
_Z 0000" Z 0006 + op(l) for any fixed constant M.

Proof. We first show that

%l ,(en)_l 521(90)
Z@y@y orra + op(1). (A.25)

azlz(Q)/ay 0y’ in (A.3) includes five terms. We only provide the proof of the following
equation, while other terms in (A.3) can be proved either easily or similarly.

1 i 0h(0,,) 0h,(0,) €2(y,,) _ 1i 0h.(00) 0h,(0) &2 ()
n= oy O KO,) nZ o0 k()

+ op(1). (A.26)

By Lemma A.6(i1), we have
h(0,) — h:(0o)

B ‘\/hl(gn)ht(eo)(\/hz(en) + \/m
— op(1) _ o)
VIO + 0p(DIy/T+ 0op(D) + 11 /2(6o)’

where o,(1) holds uniformly in r =1,...,n. By Lemma A.6,

1 1
‘\/hz(en)  Vh(0)

V@) THo(D T
where o,(1) holds uniformly in # = 1,...,n. By the preceding two inequalities,

e(v)  &@(o) | _ le(yn) — &(yo)l
V() \/hi(6o) v/ 1i(0n)

<oy (1) 4 LoD _

vV 1(90)

+ led(po)l

1 1
V0, /(o)

= op(1) + [1,lop(1),
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where o,(1) holds uniformly in r =1,...,n. Thus,
e1(r) _ 800 5| a00) || &) ey e(7) &)
h(n)  1(00)] ™|/ (00)| |/ 700)  /7(00)| |/ hl00)  /el00)

= o,(1) + n%o,(1). (A.27)
By Lemmas A.3, A.5(i1) and A.6(i1), there exists a neighborhood @&, of 0, such that

Oh,(0) 0, (0) 1
a0y h(0)

L _ oM,
1u(0n) ~ hi(O0)[1 + 0p(1)] ~

where Op(1) holds uniformly in 7 =1,...,n. By (A.27)~(A.28), it follows that

I &= 0h(0,)0h(0,) 1 [e2(y,)  &2(p)
e O

0y Oy h(0,) |h(0n)  h(By)
Op(l)

(l)foot 1> (A.28)
(N}

Z(éOQt 1+ Copr 1’7;) = op(1),

since EéOQt  <oo. Thus, by Lemma A.6(ii) and (A.28), it is not hard to see that

o O K0y O & h(0,)h(0)

Ohy(0,) 0h(0,) 17 1
Z{ oy 0y 1u(6n) [ht(en) hz(%)”

=1

0p(1) <~ | 0h:(0,) 0h(0,) 7
== Z[ oy oy h?(gn)] op(1)— ZéOQl 1’7z—0p(1)a

Ohy(0,)0hi(0,) n;  Ohi(0,)0h(0,)  n;
5 — |

=1

since y 1500t 7 /n = 0p(1), where op(1) holds uniformly in z=1,...,n. By the two
preceding 1nequahtles

n o o KO, GV av hf(ﬂn)

_ 1 Z 0h,(0,) 0h,(0,,) n;
n 0y 0y h(0,)h(00)

+ op(1)

=1

+ op(1).
=1

By Lemmas A.3 and A.5, Esup{llh; *(0)ah(0)/3y1*n?/h(00)} <O(DEE T <oo.
(eN}

Furthermore, by the preceding equation, the dominated convergence theorem and
Markov’s theorem, we can show that (A.26) holds.
We next show that

3°1(0,) 1~ (90)
Z 3008 Z ao0s +onlD): (A.29)
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There are two terms in 0%/,(0) /0506, see (A.4). We only provide the proof of the following
equation, while another term can be similarly proved.

Zah {(0,)0h,(0,) E2(7,) liaht(eo) Omu(00) £ (vo) | ou(1). (A.30)

0" 10, n 36 35 (0y)

=1

By Lemma A.2, it follows that

0hy(0,,) 0hy(0n) 1
06 38 K0,

<O()E)_,. (A.31)

By (A.27) and (A.31), we have

O (0) 0h(0n) &7 (7,) _ Oi(0) Bni(6r)  £7(70)
a6 38 K0, 00 05 K 0,)h(00)

+ op(DEN_ (1 +n)).

By Lemma A.2, E(supg, |/, (0)6h,(9)/ aéllzn )<oo. Furthermore, by the preceding two
equations, the dominated convergence theorem and Markov’s theorem, we can show that
(A.30) holds. Similarly, we can show that n='>>"_,0%/,(6,)/06 0y = n*lz:;la%(eo) /360y’
+o0p(1). This completes the proof. [

Proof of Theorem 4.1. We first show that

EHazlt(eo)

0%1,(0 1
=050 Z o) _ _ ~XZ +o,(1). (A.32)

0000’ 2

By Lemma A.5(i1)) and Lemma A.3, we have

2

£ |[7:(00) 3100 &7 (7o) <
oy 0y k(6

Haht(eo) 1
0y (o)

Similarly, we can show that the other terms in E[0°/,(0) /06000'] are finite. Thus, the first
part of (A.32) holds. The second part of (A.32) holds by the ergodic theorem.
By Taylor’s expansion with each component, we have

" 31, (Osn) o, (90) O*1,(0%)
0 —Z Zam/ (O — 00). (A-33)

=1 t=1

where 07 lies between 6, and 0,,. By Lemma A.4(iii), Lemma A.7, and (A.32), we can show
that

" 3*(0,) 1 %l 107 1
=52 1 - _
2000 +op(l) and Z 2000’

By Lemma A.4(11) we can show that

ol,(0 1 ol,(0
\/—Z a(90) \/‘Z (0) +op(1).
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As in Ling and McAleer (2003a) and Francq and Zakoian (2004), we can show that X>0
and 2> 0. Furthermore, since \/n(0;, — 0y) = Op(1), by (A.33), we have

A 1 1 &~ 01,(60) 1 A
Qn - Gsn - [_52 + Op(l)] ZIZZI o0 + [_52 + Op(l)] (Hsn - 00)

1
*"p(ﬁ)
251 2L 01,(0,) ( 1 )
"Tn &0 TP \Un

Finally, by the central limiting theorem, we can show that the conclusion holds. This
completes the proof. [
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