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S

This paper investigates a partially nonstationary multivariate autoregressive model,
which allows its innovations to be generated by a multivariate , autoregressive con-
ditional heteroscedastic, process. Three estimators, including the least squares estimator,
a full-rank maximum likelihood estimator and a reduced-rank maximum likelihood esti-
mator, are considered and their asymptotic distributions are derived. When the multivari-
ate  process reduces to the innovation with a constant covariance matrix, these
asymptotic distributions are the same as those given by Ahn & Reinsel (1990). However,
in the presence of multivariate  innovations, the asymptotic distributions of the full-
rank maximum likelihood estimator and the reduced-rank maximum likelihood estimator
involve two correlated multivariate Brownian motions, which are different from those
given by Ahn & Reinsel (1990). Simulation results show that the full-rank and reduced-
rank maximum likelihood estimator are more efficient than the least squares estimator.
An empirical example shows that the two features of multivariate conditional heteroscedas-
ticity and partial nonstationarity may be present simultaneously in a multivariate time
series.

Some key words: Brownian motion; Cointegration; Full-rank and reduced-rank maximum likelihood
estimators; Least squares estimator; Multivariate  process; Partially nonstationary; Unit root.

1. I

We consider an m-dimensional autoregressive, , process {Y
t
} which is generated by

Y
t
= ∑
p

i=1
W
i
Y
t−i
+e
t

(1·1a)
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with

e
t
= ∑
q

i=1
a
it
e
t−i
+e
t
, (1·1b)

where W
i
’s are constant matrices; det{W(z)}=|I−W1z− . . .−W

p
zp |=0 has d<m unit

roots and the remaining roots are outside the unit circle; rank(C)=r with r=m−d>0,
where C=−W (1); d

t
= (a
1t

, . . . , a
qt
) is a sequence of independent and identically distrib-

uted m×qm matrices with mean zero and nonnegative-definite covariance matrix
E{vec (d

t
) vec∞ (d

t
)}=V; and the e

t
are independent identically distributed random vectors

with mean zero and positive-definite covariance matrix E(e
t
e∞
t
)=G. Under certain regu-

larity conditions, the conditional covariance matrix of e
t
can be shown to be changing

over time; see (2·7) and (2·8) in § 2. Thus, model (1·1) is a partially nonstationary multivari-
ate  model with autoregressive conditional heteroscedastic () type errors. In view
of mathematical complications, we concentrate on the case of diagonal  apart from
the results in § 2. In this case, the conditional variance of each component in e

t
has the

same form as Engle’s (1982)  model; see (2·7)–(2·8) and (4·1) below.
The assumption on W(z) in model (1·1) implies the important feature that, although

some component series of Y
t
may exhibit nonstationary behaviour, some linear combi-

nations of these component series would be stationary. This phenomenon is the so-called
cointegration property with cointegration rank r. When e

t
has a constant conditional

covariance matrix, cointegrated time series were proposed first by Engle & Granger (1987)
and have been widely investigated. Some estimation methods and asymptotic theories
can be found for example in Johansen (1988, 1992, 1995) and Stock & Watson (1993).
Rahbek & Mosconi (1999) considered the inference problem with stationary explanatory
variables. There is substantial empirical evidence that cointegrated components can exist
in various multivariate economic time series. Fountis & Dickey (1988) investigated the
 model with a unit root, that is d=1, and derived a corresponding unit-root test. Ahn
& Reinsel (1990) examined the  model with d unit roots and derived the asymptotic
properties of the full-rank least squares estimator and the reduced-rank maximum likeli-
hood estimator. Yap & Reinsel (1995) studied partially nonstationary multivariate ,
autoregressive moving average, models.

The class of  models was proposed first by Engle (1982). Various -type
models have been proposed, including generalised  or  (Bollerslev, 1986), and
double-threshold  (Li & Li, 1996) models. Many -type models have been
extended to the multivariate case; see the survey by Bollerslev et al. (1994). Tsay (1987)
proposed the conditional heteroscedastic  model. It provides a natural alternative
for Engle’s  model and was extended to multivariate cases by Ling & Deng (1993)
and Wong & Li (1997).

Since the inclusion of time-varying conditional variance matrices can improve statistical
inference, such as interval estimation and forecasting, it is important to explore cointe-
gration time series with conditional heteroscedasticity. Although our method is a direct
extension of Ahn & Reinsel (1990), the estimation procedure for model (1·1) is much more
complicated and the asymptotic distributions for the full-rank and reduced-rank maximum
likelihood estimators are new. Unlike as in Ahn & Reinsel (1990), these asymptotic distri-
butions involve two correlated multivariate Brownian motions. This type of asymptotic
distribution has appeared in Lucas (1997), Hodgson (1998), Seo (1998) and Rahbek &
Mosconi (1999). Our technique heavily depends on Theorem 2.1 in Ling & Li (1998) and
could be applied to cointegrating time series with other -type innovations.
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In § 2, we discuss some basic properties of model (1·1). In § 3, we derive the asymptotic
distribution of the least squares estimator. In §§ 4 and 5, we investigate the full-rank and
reduced-rank maximum likelihood estimators, and derive their asymptotic distributions.
The finite sample properties of the estimators are examined through simulations in § 6.
Finally, in § 7 an empirical example is presented.

2. B    

First we reparameterise the  part of the model (1·1) as follows:

W
t
=CY

t−1
+W*
1
W
t−1

. . .+W*
p−1

W
t−p+1

+e
t
, (2·1)

where W
t
=Y
t
−Y
t−1

and W*
i
=−Wp

k=i+1
W
k
. Following Ahn & Reinsel (1990), let m×m

matrices P and Q=P−1 be such that Q(Wp
i=1
W
i
)P=diag(I

d
, C
r
), the Jordan canonical

form of Wp
i=1
W
i
. Defining Z

t
=QY

t
, we obtain

Z
t
=diag (I

d
, C
r
)Z
t−1
+u
t
, (2·2)

where u
t
=Q(W*

1
W
t−1

. . .+W*
p−1

W
t−p+1

+e
t
). Furthermore, if we let

g(z)= (1−z)−d det{W(z)}, H(z)= (1−z)−d+1 adj{W(z)},

we can rewrite u
t
as

u
t
=qIm+Q ∑

p−1

j=1
W*
j

g(B)−1H(B)PBjr at=Y(B)a
t
, (2·3)

where a
t
=Qe

t
and

Y(B)=I
m
+Q ∑

p−1

j=1
W*
j

g(B)−1H(B)PBj= ∑
2

k=0
Y
k
Bk, (2·4)

in which Y0=I
m
, Y
k
=O(rk ) and rµ(0, 1), as in Ahn & Reinsel (1990).

Partition Q∞=[Q1 , Q2] and P=[P1 , P2] such that Q1 and P1 are m×d matrices, and
Q2 and P2 are m×r matrices. Furthermore, partition u

t
=[u∞

1t
, u∞
2t

]∞ such that u
1t

is d×1
and u

2t
is r×1. Define Z

1t
=Q∞
1
Y
t
and Z

2t
=Q∞
2
Y
t
, so that

Z
1t
=Z
1t−1
+u
1t

, Z
2t
=C
r
Z
2t−1
+u
2t

. (2·5)

Here {Z
1t

} is a nonstationary d×1 time series with d unit roots. However, under
Assumptions 1 and 2 below, {Z

2t
} is a stationary r×1 time series. The matrix Q∞

2
is the

so-called cointegrated vector with rank r, as in Engle & Granger (1987). The error-
correction form of model (2·1) can be found in Ahn & Reinsel (1990).

We now make the following assumptions about the innovations in model (1·1).

Assumption 1. The {e
t
} and (d

t
} are mutually independent.

Assumption 2. All eigenvalues of E(B
t
EB
t
) are inside the unit circle, where E denotes

the Kronecker product and

B
t
=Aa1t · · · a

q−1,t
a
qt

I
m

· · · 0 0

e
0 · · · I

m
0 B ,

in which I
m

is the m×m identity matrix.
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Under Assumptions 1 and 2, Ling & Deng (1993) showed that e
t
is strictly stationary

and ergodic, and has the expansion

eAt=gt+ ∑
2

k=1
Aak−1
i=0

B
t−iB gt−k , (2·6)

where eAt= (e∞
t
, . . . , e∞

t−q+1
)∞ and g

t
= (e∞
t
, 0, . . . , 0)∞. Denote

s{e
s
, a
1s

, . . . , a
qs

: s=t, t−1, . . .}

by F
t
. By (2·6), e

t
is F
t
-measurable and

V
t
=E(e

t
e∞
t
|F
t−1

)= (eA ∞t−1E I
m
)V(eAt−1E I

m
)+G. (2·7)

Thus, the conditional covariance matrix E(e
t
e∞
t
|F
t−1

) depends on the past information
F
t−1

and hence {e
t
} generated by (1·2) is a multivariate -type process. In particular,

when the a
it

are independent for i=1, . . . , q,

V
t
= ∑
q

i=1
(eA ∞t−iE I

m
)E{vec (a

it
) vec∞ (a

it
)}(eAt−iE I

m
)+G. (2·8)

Furthermore, if m=1 then V
t
=Wq
i=1
s
i
e2
t−i
+G with s

i
=Ea2

it
, which has the same form

as Engle’s (1982)  model.
By a direct extension of Theorem 3.1 in Ling (1999), the 2m-order moment condition

of e
t
is r{E(BE2m

t
)}<1, where BE2m

t
denotes B

t
E . . .EB

t
, with 2m factors, and r(A) is

the largest of the absolute magnitudes of the eigenvalues of A. Under this condition, the
2m-order moments of Z

2t
and u

1t
are finite since u

t
has expansion (2·3). These results will

be useful for the development of the asymptotic theory in this paper.

3. P  

From this section onward we assume that e
t
and vec (d

t
) in model (1·1) are normal

random vectors and that the conditional covariance matrix V
t
of e
t
is diagonal.

We first use least squares estimation for the parameters in the  part of model (1·1).
Let

X
t−1
=[Y ∞

t−1
, W ∞
t−1

, . . . , W ∞
t−p+1

]∞, F=[C, W*
1
, . . . , W*

p−1
].

From (2·1), the least squares estimator of F is FC= (Wn
t=1

W
t
X∞
t−1

) (Wn
t=1

X
t−1

X∞
t−1

)−1.
Write

Q*=diag (Q, I
m(p−1)

), P*=diag (P, I
m(p−1)

), X*
t
=Q*X

t
=[Z∞

1t
, U∞
t
]∞,

with U
t−1
=[Z∞

2t−1
, W ∞
t−1

, . . . , W ∞
t−p+1

]∞. Then

Q(FC−F)P*=A ∑n
t=1

a
t
X*∞
t−1B A ∑n

t=1
X*
t−1

X*∞
t−1B−1. (3·1)

Furthermore, denote diag (D, √nI
m(p−1)

) by D*, where D=diag (nI
d
, √nI

r
). Using Lemmas

A1 and A2 in the Appendix and a similar argument to that of Ahn & Reinsel (1990), we
can obtain the following theorem.

T 1. Suppose that (1·1) has d unit roots and the remaining roots are outside the
unit circle, that Assumptions 1 and 2 hold and that r{E(BE4

t
)}<1. T hen

(FC−F)P*D*�P[M, N], (3·2)



1139Multivariate autoregressive models

in distribution, where

M=V1/2
a qP 1

0
B
d
(u) dB

m
(u)∞r∞ qP 1

0
B
d
(u)B
d
(u)∞ dur−1 V−1/2a1 Y−111 ,

V
a
=cov (a

t
)=QV0Q∞, V

0
=E(e

t
e∞
t
) and V

a
1

=cov (a
1t

)=[I
d
, 0]V

a
[I
d
, 0]∞; B

m
(u) denotes an

m-dimensional standard Brownian motion, B
d
(u)=V−1/2

a
1

[I
d
, 0]V1/2

a
B
m
(u) is a d-dimensional

standard Brownian motion, andY
11
=[I
d
, 0](W2

k=1
Y
k
)[I
d
, 0]∞; and vec (N) is a normal vector

with mean 0 and covariance matrix

{E(U
t−1

U∞
t−1
E I
m
)}−1E(U

t−1
U∞
t−1
E V
t
){E(U

t−1
U∞
t−1
E I
m
)}−1.

The limiting distribution for the nonstationary component corresponding to Z
1t

is
the same as that given by Ahn & Reinsel (1990), but, for the stationary component,
the limiting distribution has a different covariance matrix as a result of the conditional
heteroscedasticity of the e

t
in (1·1). When r=0, all component processes of Y

t
in model

(1·1) are I(1), that is, each component has a unit root, the limiting distribution M in (3·2)
will reduce to that of the multivariate unit-root case.

Using the residual e@
t
=W
t
−X
t
FC as the artificial observation of e

t
, we can estimate V

and G in (2·7) by least squares or maximum likelihood. Since the convergent rate of FC is
D*, it is immediate to show that these estimators are asymptotically equivalent in prob-
ability to those based on the true observation of e

t
; see Ling & Deng (1993) and a

University of Hong Kong technical report on unit root testing under  errors by
S. Ling, W. K. Li and M. McAleer, available on request. From Theorem 4.1 in Nicholls
& Quinn (1982), we know that the least squares estimator of (V, G) is asymptotically
normal if Ee8

t,j
<2. Ling & Deng (1993) showed that the maximum likelihood estimator

of (V, G) is asymptotically normal if Ee4
t,j
<2.

4. F-   

Let

V
t
=diag (h

1t
, . . . , h

mt
), (4·1)

with h
kt
=g
k
+Wq
i=1
s
ki
e2
kt−i

, where g
k
=var (e

kt
), s
ki
=var (a

kkit
), e
kt

is the kth element of e
t

and a
kkit

is the (k, k)th element of a
it
. Let a= (a∞

1
, . . . , a∞

m
)∞, with a

k
= (g
k
, s
k1

, . . . , s
kq

)∞ for
k=1, . . . , m.

The maximum likelihood estimators of F and a are FC and a@ , which minimise the
conditional loglikelihood function

l= ∑
n

t=1
l
t
, (4·2a)

with

l
t
=−

1

2
∑
m

k=1
log h
kt
−

1

2
∑
m

k=1

e2
kt

h
kt

. (4·2b)

By direct differentiation, we obtain

∂l
t
∂F
= ∑
q

i=1
(X
t−i−1

E I
m
)g
it
+ (X

t−1
E I
m
)V −1
t
e
t
, (4·3)
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where

g
it
=Cs1ie1t−ih

1t
A1− e21th

1t
B , . . . , smiemt−ih

mt
A1− e2mth

mt
BD∞.

Let D9 *=DE I
m
=diag (nI

dm
, √nI

rm+(p−1)m2
), Q9 *=diag (QE I

m
, I
(p−1)m2

) and

V
it
=2 diag As21ie21t−ie21th3

1t
, . . . ,

s2
mi
e2
mt−i
e2
mt

h3
mt
B .

As in Ling & Li (1998), we can show that

D9 *−1Q9 *
∂2l
∂F ∂F∞

Q9 *∞D9 *−1=− ∑
n

t=1
D9 *−1Q9 *M

t
Q9 ∞*D9 *−1+o

p
(1),

where

M
t
= ∑
q

i=1
(X
t−i−1

X∞
t−i−1

E V
it
)+X

t−1
X∞
t−1
E V −1
t

.

Since n−1/2D9 *−1Q9 *(∂2l/∂F ∂a∞
k
)=o
p
(1) (Ling & Li, 1998), both F and a

k
can be estimated

separately without loss of efficiency. The maximum likelihood estimator of a through (4·2)
is asymptotically equivalent to the maximum likelihood estimator mentioned in § 3. Thus,
in the following a is assumed to be known or estimated while we only discuss the estimator
of F.

The maximum likelihood estimator of F is obtained by the iterative approximate
Newton–Raphson relation

FC (i+1)=FC (i)+A ∑n
t=1

M
tB−1
F=FC(i)
A ∑n
t=1

∂l
t
∂FB
F=FC(i)

, (4·4)

where FC (i) is the estimator at the ith iteration. It is straightforward to show that

∑
n

t=1
D9 *−1Q9 *(M

t
|
F=FB
−M

t
)Q9 ∞*D9 *−1=o

p
(1), (4·5)

∑
n

t=1
D9 *−1Q9 * A∂lt∂FK

F=FB
−
∂l
t
∂FB=−A ∑n

t=1
D9 *−1Q9 *M

tB vec (FB−F)+o
p
(1), (4·6)

uniformly in the ballH
n
={FB : dD9 *Q9 *∞−1 vec (FB−F)d∏M} for any fixed positive constant

M, where d .d denotes the Euclidean norm. Similar details and the proof of consistency
can be found in the aforementioned University of Hong Kong technical report by Ling
et al. Thus, the estimator of F obtained by (4·4) satisfies D9 *Q9 *∞−1 vec (FC−F)=O

p
(1) if

the initial estimator also satisfies this condition. The least squares estimator, denoted by
F9 , of F in § 3 can be used as such an initial estimator. With this initial estimator and
(4·4)–(4·6), we can obtain the asymptotic representation

D9 *Q9 *∞−1 vec (FC−F)=A ∑n
t=1

D9 *−1Q9 *M
t
Q9 *∞D9 *−1B−1 A ∑n

t=1
D9 *−1Q9 *

∂l
t
∂FB+o

p
(1).

(4·7)

Note that we can partition Q9 *(X
t−i
E I
m
) into two parts:

Q9 *(X
t−i
E I
m
)=AZ1t−iE I

m
U
t−i
E I
m
B .
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We have

D9 *−1Q9 *
∂l
∂F
= ∑
n

t=1
AN1tN
2t
B ,

N
1t
= ∑
q

i=1
(Z
1t−i−1

E I
m
)g
it
+ (Z

1t−1
E I
m
)V −1
t
e
t
,

N
2t
= ∑
q

i=1
(U
t−i−1

E I
m
)g
it
+ (U

t−1
E I
m
)V −1
t
e
t
.

As n−3/2Wn
t=1

U
t−i

Z
1t−j−1

=o
p
(1), for i, j=1, . . . , q (Ling & Li, 1998), the cross-product

terms in Wn
t=1

D9 *−1Q9 *M
t
Q9 *D9 *−1 involving U

t−i
and Z

1t−j
converge to zero in probability.

Thus, we have

∑
n

t=1
D9 *−1Q9 *M

t
Q9 *∞D9 *−1

=diag Cn−2 ∑n
t=1
q ∑q
i=1

(Z
1t−i−1

Z∞
1t−i−1

E V
it
)+Z

1t−1
Z∞
1t−1
E V −1
t r ,

n−1 ∑
n

t=1
q ∑q
i=1

(U
t−i−1

U∞
t−i−1

E V
it
)+U

t−1
U∞
t−1
E V −1
t rD+o

p
(1).

The following is a basic and important lemma for Theorems 2 and 3. Its proof can be
found in the Appendix.

L 1. Assume the same conditions as in T heorem 1. T hen

(a) n−2 ∑
n

t=1
q ∑q
i=1

(Z
1t−i−1

Z∞
1t−i−1

E V
it
)+Z

1t−1
Z∞
1t−1
E V −1
t r

�Y
11
V1/2
a
1 q P 10 B

d
(u)B
d
(u)∞ dur V1/2a1 Y∞11EV1 ,

in distribution;

(b) n−1 ∑
n

t=1
N
1t
�vec CqP 1

0
B
d
(u) dWB

m
(u)∞r∞ V1/2a1 Y∞11D ,

in distribution;

(c) n−1 ∑
n

t=1
q ∑q
i=1

(U
t−i−1

U∞
t−i−1

E V
it
)+U

t−1
U∞
t−1
E V −1
t r�Vu ,

in probability;

(d) n−D ∑
n

t=1
N
2t
�N(0, V

u
),

in distribution.

Here B
d
=V−1/2
a
1

[I
d
, 0]V1/2

a
B
m
(u) and B

m
(u)=V −D

0
W
m
(u) are standard Brownian motions and
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(W ∞
m
(u), WB ∞

m
(u))∞ is a 2m-dimensional Brownian motion with covariance matrix given by

uV
b
=u AV0 I

m
I
m
V
1
B , V

0
=EV

t
,

V
1
=diag AE 1

h
1t
+2 ∑

q

i=1
s2
1i

E
e2
1t−i
h2
1t

, . . . , E
1

h
mt
+2 ∑

q

i=1
s2
mi

E
e2
mt−i
h2
mt
B ,

V
u
=2 ∑

q

i=1
E qUt−i−1U∞t−i−1E diag As21ie21t−ih2

1t
, . . . ,

s2
mi
e2
mt−i

h2
mt
Br+E(U

t−1
U∞
t−1
E V −1
t

).

To obtain the asymptotic distribution of F, we rewrite model (2·1) as

W
t
=CP

1
Z
1t−1
+CP

2
Z
2t−1
+W*
1
W
t−1

. . .+W*
p−1

W
t−p+1

+e
t
. (4·8)

Let b0=vec (CP1 ) and b1=vec (CP
2
, W*
1
, . . . , W*

p−1
). Furthermore, let

b@
0
=vec (CCP

1
), b@

1
=vec (CCP

2
, WC *
1
, . . . , WC *

p−1
).

Then Q9 *∞−1 vec (FC−F)={(b@0−b0 )∞, (b
@
1−b1 )∞}∞. The following theorem comes directly

from Lemma 1.

T 2. L et b@0 and b@1 denote the full-rank maximum likelihood estimator obtained
from (4·4) using an initial estimator F9 such that D9 *Q9 *−1 vec (F9−F)=O

p
(1). T hen, under

the same assumptions as in T heorem 1,

(a) n(CC−C)P
1
�V−1
1 qP 1

0
B
d
(u) dWB

m
(u)∞r∞×qP 1

0
B
d
(u)B
d
(u)∞ dur−1 V−Da1 Y−111 ,

in distribution;
(b) √n(b@

1
−b
1
)�N(0, V−1

u
), in distribution.

T he notation is defined as in L emma 1 and CC is the estimator of C corresponding to b@0 .

Note that the limiting distribution of CC is different from that given by the least squares
estimator in Theorem 1. Here it involves two correlated m-dimensional Brownian motions.
Let

BB
m
(t)=−(V

1
−V −1
0

)DV −1
0

W
m
(t)+ (V

1
−V −1
0

)DWB
m
(t).

Then B
m
(t) and BB

m
(t) are two independent m-dimensional standard Brownian motions

and WB
m
(t)=V −D

0
B
m
(t)+ (V

1
−V −1
0

)−DBB
m
(t). Furthermore, we obtain

n(CC−C)P
1
�V−1
1 CV −D0 qP 1

0
B
d
(u) dB

m
(u)∞r∞+ (V

1
−V −1
0

)D qP 1
0

B
d
(u) dBB

m
(t)∞r∞D

×qP 1
0

B
d
(u)B
d
(u)∞ dur−1 V−Da1 Y−111 ,

in distribution. When V
t
is a constant matrix, V

1
=V −1
0

and hence the limiting distribution
of CC reduces to that given in Theorem 1 since V 1/2

0
B
m
(u) has the same distribution as

PV1/2
a

B
m
(u) in (3·2). As in the least squares case, when r=0, P

1
=I
m

and furthermore,
when m=1, the asymptotic distribution is the same as that given by Ling & Li (1998)
and Seo (1999). Ling & Li (1998) have shown that the maximum likelihood estimator of
the unit root is more efficient than the least squares estimator when the innovations have
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a time-varying conditional covariance matrix, in the sense defined in Ling & McAleer
(2002). Similarly, when V

t
is a time-varying conditional covariance matrix, it can be shown

that the maximum likelihood estimator of CC is more efficient than its least squares esti-
mator counterpart in the same sense. The maximum likelihood estimator of b1 is also
more efficient than its least squares estimator. Some comparisons can be found in Engle
(1982) and Wong & Li (1997).

5. R- 

The reduced-rank structure matrix C can be decomposed as C=AB, where A and B
are full-rank matrices of dimensions m×r and r×m, respectively. Such a decomposition
is not unique. In particular, Johansen (1995) in his Theorem 4.2 showed that there exist
A and B such that BY

t
is stationary and A∞

)
Y
t
is a unit root process, where A

)
is an m×d

matrix such that A∞
)
A=0 and span (A, A

)
)=I
m
. This decomposition is quite natural in

explaining the cointegration relations, and the parameters in A and B can be estimated
by using canonical correlation analysis. For model (1·1), this technique seems not to be
very convenient since the conditional covariance matrix is changing from time to time.

Using the notation in § 2, we decompose C=AB with A=−P
2
(I
r
−C
r
)Q∞
21

,
B=[I

r
, B
0
] and B

0
=Q∞−1
21

Q∞
22

, where Q∞
2
= (Q∞

21
, Q∞
22

) and Q∞
21

is r×r; see Reinsel & Ahn
(1992). Such a decomposition is unique and B0 is an r×d matrix of unknown parameters.
For this decomposition, it is assumed that the components of series Y

t
are arranged so

that J∞Y
t
is purely nonstationary, where J∞=[0, I

d
]. This assumption was used in Ahn &

Reinsel (1990) and Yap & Reinsel (1995). As a referee has pointed out, it may not be easy
to detect the order of the variables with data; see Maddala & Kim (1998, pp. 156–9).
Based on this decomposition, model (2·1) can be rewritten further as

W
t
=ABY

t−1
+W*
1
W
t−1

. . .+W*
p−1

W
t−p+1

+e
t
. (5·1)

Let c0=vec (B0 ) and c1=vec(A, W*
1
, . . . , W*

p−1
). Then c= (c∞

0
, c∞
1
)∞ is the vector of unknown

parameters with dimension b=rd+mr+ ( p−1)m2. Furthermore, let c@
0
=vec (BC

0
),

c@
1
=vec (AC , WC *

1
, . . . , WC *

p−1
) and c@= (c@∞

0
, c@∞
1
)∞. Define

UB *
t−1
=[(J∞Y

t−1
EA∞), UB ∞

t−1
E I
m
]∞, (5·2)

where UB
t−1
=[(BY

t−1
)∞, W ∞
t−1

, . . . , W ∞
t−p+1

]∞. The loglikelihood function is defined as in
(4·3), with the parameter F replaced by c. By directly differentiating (4·3), we obtain

∂l
t
∂c
= ∑
q

i=1
UB *
t−i−1

g
it
+UB *
t−1

V −1
t
e
t
. (5·3)

Let D9 **=diag (nI
rd

, √nI
b−rd

). As in Ling & Li (1998), we can show that
n−DD9 **−1(∂2l/∂c ∂a∞)=o

p
(1). Thus, c and a can be estimated separately without loss of

efficiency. As in § 4, we discuss only the estimator of c. Again, as in Ling & Li (1998), we
can show that

D9 **−1
∂2l
∂c ∂c∞

D9 **−1=− ∑
n

t=1
D9 **−1MB tD9 **−1+o

p
(1),

where MB
t
=Wq
i=1

UB *
t−i−1

V
it
UB *∞
t−i−1

+UB *
t−1

V −1
t

UB *∞
t−1

. The maximum likelihood estimator of
c can be obtained by iterating the Newton–Raphson relation

c@(i+1)=c@(i)+A ∑n
t=1

MB
tB−1
c=c@(i)
A ∑n
t=1

∂l
t
∂cB
c=c@(i)

, (5·4)
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where c@(i) is the estimate at the ith iteration. As argued for (4·7), the estimator of c obtained
by (5·4) satisfies D9 **(c@−c)=O

p
(1) if the initial estimator also satisfies this condition.

Let CB=[CB 1 , CB 2] be the full-rank least squares estimator or maximum likelihood
estimator of C, where CB 1 is m×r. Then, using a similar method to that of Ahn & Reinsel
(1990), we can show that AB=CB 1 is a consistent estimator of A of order O

p
(n−D ) and

BB 0= (AB ∞VC−1
n

AB )−1AB ∞VC−1
n

CB
2

is a consistent estimator of B0 of order O
p
(n−1 ), where

VC
n
=n−1Wn

t=1
e@
t
e@ ∞
t
. With these initial estimators and using a similar argument as for (4·7),

we can obtain the asymptotic representation

D9 **(c@−c)=A ∑n
t=1

D9 **−1MB tD9 **−1B−1 A ∑n
t=1

D9 **−1
∂l
t
∂cB+o

p
(1). (5·5)

Let J∞P=[P21 , P22], where P21 is d×d and P22 is d×r. Then, J∞Y
t
=[0, I

d
]PZ
t
=

P21Z1t+P22Z2t . Here, J∞Y
t
and Z

1t
are purely nonstationary, Z

2t
is stationary, and P21 is

nonsingular. Thus, terms involving Z
2t

in the first rd components of D9 **−1(∂l/∂c) will
converge to zero, and hence

D9 **−1
∂l
∂c
= ∑
n

t=1
An−1NB 1tn−DNB

2t
B+o

p
(1),

NB
1t
= ∑
q

i=1
(P
21

Z
1t−i−1

EA)g
it
+ (P
21

Z
1t−1
EA)V −1

t
e
t
,

NB
2t
= ∑
q

i=1
(UB
t−i−1

E I
m
)g
it
+ (UB

t−1
E I
m
)V −1
t
e
t
.

As n−3/2Wn
t=1

UB
t−i

Z
1t−j−1

=o
p
(1), for i, j=1, . . . , q (Ling & Li, 1998), the cross-product

terms in Wn
t=1

D9 **−1MB tD9 **−1 involving UB
t−i

and Z
1t−j

converge to zero in probability.
Thus, using Lemma 1, we have the following theorem.

T 3. L et BC 0 and c@1 be the reduced-ranked estimators obtained from (5·4) using
initial values BB 0 and cA1 such that n−1 (BB 0−B0 )=O

p
(1) and√n(cA1−c1 )=O

p
(1). T hen, under

the same assumptions as in T heorem 1,

(a) n(BC
0
−B
0
)� (A∞V

1
A)−1A∞ qP 1

0
B
d
(u) dWB

m
(u)∞r∞

×qP 1
0

B
d
(u)B
d
(u)∞ dur−1 V−1/2a1 Y−111 P−1

21
,

in distribution,
(b) √n(c@

1
−c
1
)�N(0, VB−1

u
), in distribution,

where VB
u
=E(Wq

i=1
UB
t−i−1

UB ∞
t−i−1

E V
it
+UB
t−i

UB ∞
t−i
E V −1
t

), and the other notation is as
defined in L emma 1.

As in the full-rank case, we can show that, when V
t
is a constant matrix, the limiting

distribution of BC 0 is the same as that given in Ahn & Reinsel (1990). Furthermore, general-
isation of our results to the case with a constant nonzero drift parameter m and Q∞

1
m=0

in (1·1) is direct.
In § 4 and in this section, we have constrained the conditional covariance matrix to

be diagonal. From our derivations, the essential argument is to derive the limiting
distributions of the information matrix and the score function. The former involves an
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m-dimension Brownian motion and the latter involves the stochastic integral of two
m-dimension Brownian motions as shown in Lemma 1(a) and (b). The difficult part
is the former, which heavily depends on Theorem 2.1 in Ling & Li (1998) since
Wq
i=1

V
it
+V −1
t
−V
1

in (A·6) is not a martingale difference. To use this theorem, we need
Lemma A3, which depends on expansion (2·6) of eAt . For other types of  model, the
problem of under what conditions one can obtain the limiting distributions as in Lemma 1
seems difficult.

6. S 

Data are generated from the following bivariate  models.

Model 1:

AY1tY
2t
B=A0·75 0·25

0·25 0·75B AY1t−1Y
2t−1
B+Ae1te

2t
B , (6·1)

Ae1te
2t
B=Ad11,t 0

0 d
22,t
B Ae1t−1e
2t−1
B+Ae1te

2t
B . (6·2)

In (6·2), we assume that E(e
1t
e
2t

)=0 and E(e
1t

e
2t

)=0. Furthermore, d
11,t

, d
22,t

, e
1t

and
e
2t

are zero-mean, independent random variables with variances 0·36, 0·49, 0·01 and 0·09
respectively.

Thus, the equivalent representation for the innovation equation is

Ah1th
2t
B=Ab01b

02
B+Ab11 0

0 b
22
B Ae21t−1e2
2t−1
B , (6·3)

where b01=0·01, b11=0·36, b02=0·09 and b22=0·49. It is easy to see that the reduced-
rank parameters for the coefficient matrix in (6·1) are −0·25, 0·25 and −1.

Model 2:

AX1tX
2t
B=A0·9 0·1

0·1 0·9B AX1t−1X
2t−1
B+Ae1te

2t
B , (6·4)

Ae1te
2t
B=Ag11,t 0

0 g
22,t
B Ae1t−1e
2t−1
B+Ae1te

2t
B . (6·5)

The assumptions are the same as for Model 1. The variances of g
11,t

, g
22,t

, e
1t

and e
2t

are
0·49, 0·25, 0·16 and 0·04, respectively. Thus the corresponding coefficients in (6·3) are b01=
0·16, b11=0·49, b02=0·04 and b22=0·25. The reduced-rank parameters for (6·4) are−0·1,
0·1 and −1.

For each model, three sample sizes, n=200, 400 and 800, are considered although the
results for n=400 are omitted, for brevity. These sample sizes can be regarded as small
to moderate in financial applications. For Model 1, the eigenvalues of the matrix in (6·1)
are 0·5 and 1. Similarly the eigenvalues for (6·4) are 0·8 and 1, so that both models
represent systems of bivariate time series with partial nonstationarity. We calculate the
least-squares, full-rank and reduced-rank estimates for each possible combination of model
and sample size. The number of replications for each combination is 1000. The empirical
means, sample standard errors and asymptotic standard errors of the estimates are also
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computed. The sample standard error of the estimates is just the standard error of the
estimates in the 1000 replications. The asymptotic standard error is defined as the average
of the theoretical standard errors, which in each simulation are obtained from the second
derivatives of the loglikelihood. From maximum likelihood theory, the negative of the
inverse of the matrix of second derivatives can be used to estimate the covariance matrix
of the model parameters.

Table 1 lists the results for Model 1 and Model 2 respectively. The least-squares estimates
provide initial values for the full-rank and reduced-rank estimation.

In both the full-rank and reduced-rank estimation, the parameters are estimated separ-

Table 1. Simulation results. Empirical means, sample standard errors and asymptotic
standard errors for Models 1 and 2

Model   

n parameters Mean  Mean   Mean  

Model 1
200 0·75 0·7480 0·0184 0·7491 0·0163 0·0153

0·25 (−0·25) 0·2493 0·0973 0·2453 0·0595 0·0576 −0·2509 0·0150 0·0153
0·25 (0·25) 0·2503 0·0167 0·2494 0·0149 0·0144 0·2560 0·0538 0·0556
0·75 (−1) 0·7337 0·0943 0·7449 0·0558 0·0551 −1·0009 0·0231 0·0188
0·01 0·0108 0·0018 0·0099 0·0014 0·0014 0·0099 0·0015 0·0015
0·36 0·2826 0·1270 0·3489 0·1238 0·1262 0·3500 0·1362 0·1268
0·09 0·1236 0·0260 0·0924 0·0151 0·0152 0·0934 0·0151 0·0154
0·49 0·3373 0·1357 0·4633 0·1349 0·1349 0·4558 0·1347 0·1392

800 0·75 0·7496 0·0081 0·7498 0·0069 0·0069
0·25 (−0·25) 0·2516 0·0591 0·2503 0·0279 0·0271 −0·2505 0·0069 0·0069
0·25 (0·25) 0·2500 0·0080 0·2500 0·0068 0·0068 0·2507 0·0263 0·0267
0·75 (−1) 0·7441 0·0589 0·7475 0·0278 0·0268 −0·9997 0·0052 0·0044
0·01 0·0105 0·0012 0·0100 0·0007 0·0007 0·0100 0·0007 0·0007
0·36 0·3181 0·0849 0·3546 0·0620 0·0630 0·3576 0·0654 0·0631
0·09 0·1199 0·0191 0·0904 0·0074 0·0074 0·0905 0·0072 0·0074
0·49 0·3999 0·0981 0·4860 0·0692 0·0696 0·4875 0·0687 0·0698

Model 2
200 0·9 0·8822 0·0549 0·8893 0·0374 0·0358

0·1 (−0·1) 0·1019 0·0180 0·1013 0·0167 0·0161 −0·1084 0·0381 0·0362
0·1 (0·1) 0·1009 0·0589 0·0994 0·0428 0·0396 0·1031 0·0166 0·0162
0·9 (−1) 0·8944 0·0210 0·8955 0·0194 0·0181 −1·0049 0·0874 0·0715
0·16 0·1931 0·0397 0·1597 0·0265 0·0253 0·1625 0·0243 0·0255
0·49 0·3451 0·1355 0·4747 0·1346 0·1311 0·4597 0·1328 0·1389
0·04 0·0415 0·0063 0·0401 0·0059 0·0057 0·0400 0·0059 0·0058
0·25 0·2051 0·1173 0·2365 0·1147 0·1132 0·2409 0·1154 0·1149

800 0·9 0·8955 0·0272 0·8981 0·0172 0·0173
0·1 (−0·1) 0·1006 0·0087 0·1005 0·0081 0·0077 −0·1008 0·0175 0·0172
0·1 (0·1) 0·1004 0·0277 0·0994 0·0177 0·0177 0·1003 0·0077 0·0076
0·9 (−1) 0·8987 0·0090 0·8989 0·0083 0·0079 −1·0000 0·0200 0·0169
0·16 0·1834 0·0256 0·1596 0·0123 0·0124 0·1607 0·0123 0·0125
0·49 0·4023 0·0980 0·4864 0·0691 0·0697 0·4873 0·0672 0·0698
0·04 0·0407 0·0038 0·0400 0·0029 0·0029 0·0400 0·0029 0·0028
0·25 0·2346 0·0734 0·2484 0·0552 0·0568 0·2487 0·0591 0·0569

Values in parentheses are parameters for reduced rank estimation.
, least-squares; , full-rank maximum likelihood; , reduced-rank maximum likelihood; , sample
standard error; , asymptotic standard error.
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ately, as stated in previous sections. This greatly reduces the computation as the dimen-
sions of the matrices computed are highly reduced. In our case, we work with 4 by 4 and
2 by 2 matrices, instead of 8 by 8 matrices, and this advantage will be even greater if we
are to work with higher-dimensional multivariate time series.

From Table 1, the following properties are noted. First, the full-rank and reduced-rank
estimators are clearly better than the least-squares estimator in terms of both bias and
efficiency. For instance, take Model 2 and n=200. Simple calculation gives the norms of
the bias vectors of the least-squares and full-rank estimates to be 0·156 and 0·0235 respect-
ively. The least-squares bias vector has a norm that is 6·6 times that of the full-rank case.
The result is similar in other cases. Moreover, the sample standard error of the full-rank
estimator is uniformly smaller than that of the least-squares estimator. In some cases the
difference can exceed 30%. Note also that the asymptotic standard error for least-squares
estimation is not listed. The method for calculating the theoretical standard error for the
least-squares estimators is standard; see for example Lutkepohl (1993, Ch. 3). In our
computation, however, it is found that the covariance matrices of the estimators of the
parameters in the innovation equation are often negative definite, thus giving rise to
complex values for the asymptotic standard error. This phenomenon can naturally be
attributed to the imprecision of the least-squares estimates. Secondly, note that there is
not much difference between the full-rank and reduced-rank estimates, in terms of both
bias and efficiency. The same observation was made by Ahn & Reinsel (1990). However,
as argued by Ahn & Reinsel (1990) the reduced rank formulation may provide better
forecasting performance because of the imposition of the unit root on the series.

7. A 

To illustrate the presence of both cointegration and conditional heteroscedasticity, we
consider the daily closing price of the Malaysian and Thai stock indices during the period
1989–91. This is a three-year span with a total of 695 obervations for each series. We try
to model the centred data of the log prices. The data were also multiplied by 100 in Fig. 1;
the two series are more separated in the first half of the plot, with the lower graph being
the Thai series. They are much closer to each other and show many crossings in the
second half. This agrees well with the usual error-correcting interpretation of cointegration;
the two series can appear to be independent of each other for some time but tend to reach
an equilibrium state in the long run. Using the Johansen Test from the package  in
 (Hansen & Juselius, 1995), we find that there is one cointegrating vector; see Table 2.

To understand the conditional heteroscedasticity dynamics of the two series, we perform
some preliminary analysis for the individual series. This time their first differences of logs
are considered to ensure stationarity; the first differences are also scaled by a factor of
100. They can then be fitted by the univariate  (1) model. In other words, if W

1t
and W

2t
are the scaled first differences of logs of the Malaysian and Thai stock indices

respectively, then we have

W
1t
= 0·2794
(0·0370)

W
1t−1
+e
1t

, h
1t
=E(e2

1t
|F
t−1

)= 1·1362
(0·3266)

+ 0·3178
(0·1177)

e2
1t−1

,

W
2t
= 0·1521
(0·0378)

W
2t−1
+e
2t

, h
2t
=E(e2

2t
|F
t−1

)= 2·2044
(0·3306)

+ 0·5097
(0·1259)

e2
2t−1

;

the values in parentheses are the estimated standard errors. It is quite well known that
the linear part, the observation equation, of stock prices usually contains a lag-1 term at
most. We thus try a bivariate first-order  model for the centred and scaled log data.
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Fig. 1. Time series plot of transformed stock data,
Malaysian stock (solid line) and Thai stock (broken

line).

Table 2. Malaysian and T hai stock indices: I(1)
analysis using the Johansen T est

Upper 90%
critical value

Eigenv. L -max Trace H0 : r m−r L -max Trace

0·0163 11·41 16·78 0 2 10·60 13·31
0·0077 5·37 5·37 1 1 2·71 2·71

Eigenv., eigenvalues corresponding to the maximised likelihood
function; H0 , hypothesis about the cointegrating rank r; L -max,
the likelihood ratio test statistic for testing r cointegrating vectors
versus the alternative of r+1 cointegrating vector; Trace, the
likelihood ratio test statistic for testing the hypothesis of at most
r cointegrating vectors.

If Y
1t

and Y
2t

are the transformed data for the Malaysian and Thai stock indices, then our
model is

AY1tY
2t
B=Aw11 w12w

21
w
22
B AY1t−1Y

2t−1
B+Ag1tg

2t
B , (7·1)

Ag1tg
2t
B=Ad11t 0

0 d
22t
B Ag1t−1g
2t−1
B+Ae1te

2t
B . (7·2)

Based on our early discussion, (7·2) is equivalent to

Ah1th
2t
B=AE(g2

1t
|F
t−1

)

E(g2
2t
|F
t−1

)B=Ab01b
02
B+Ab11 0

0 b
22
B Ag21t−1g2
2t−1
B . (7·3)

Let

W=Aw11 w12w
21
w
22
B .

The estimation results are summarised in Table 3. Note that, for the full-rank estimation
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assuming no conditional heteroscedasticity the loglikelihood value is −1291·57. It is
interesting to make the following observations.

Table 3. Estimates of parameters, with estimated standard errors
in parentheses, for the Malaysian and T hai stock indices

Parameter Least-squares Full-rank Reduced-rank

w11 0·9780 (0·0071) 0·9771 (0·0062) —
w21 −0·0050 (0·0041) −0·0219 (0·0106) —
w12 0·0085 (0·0123) 0·0095 (0·0036) —
w22 0·9940 (0·0072) 1·0067 (0·0062) —
b01 0·9379 (0·2383) 0·8788 (0·0668) 0·8793 (0·0667)
b11 0·3112 (0·0652) 0·4030 (0·0846) 0·4022 (0·0860)
b02 2·5459 (0·4733) 2·1361 (0·1637) 2·1354 (0·1643)
b22 0·3841 (0·0410) 0·5455 (0·0900) 0·5477 (0·0894)
a1 — — −0·0220 (0·0062)
a2 — — −0·0252 (0·0094)
b — — −0·3866 (0·0605)

Loglikelihood — −1167·146 −1167·502

Remark 1. The full-rank and reduced-rank results are very similar. Note also the reason-
able agreement between the univariate and bivariate results in the  parameters. For
the Malaysian series, the  parameter estimates from univariate and bivariate esti-
mation, in the reduced-rank case, are 0·3178 and 0·4022. Similarly, for the Thai series, the
estimates for  are 0·5097 and 0·5477. These results can serve as a crossvalidation for
both methods.

Remark 2. The likelihood ratio test for  versus no  is highly significant.
Standard errors for WC in the least-squares case are also higher, suggesting wider confidence
intervals. In particular, both w@21 and w@12 are more than twice the standard error in magni-
tude under full-rank estimation while under least-squares estimation these are just about
equal to their respective standard errors. Note that WC is asymptotically the maximum
likelihood estimate of W with no .
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A

Proof of L emma 1

As mentioned in §§ 3 and 4, we only prove the result with V
t
defined by (4·1); thus, V

t
is diagonal

in Lemmas 1, A1, A2 and A3.

L A1. Suppose that the process e
t
is defined as in model (1·1) and that Assumptions 1 and 2

are satisfied. T hen

1

√n
∑
[nt]

t=1
A ete*
t
B�AWm (t)WB

m
(t)B
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in distribution in D2m, where e*
t
=Wq
i=1
g
it
+V −1
t
e
t
, (W ∞
m
(t), WB ∞

m
(t))∞ are defined as in L emma 1, and

Dn=D×D . . .×D, n factors, with D denoting the space of functions on [0, 1] defined and equipped
with the Skorokhod topology.

Proof. Let l1 and l2 be constant m×1 vectors and l= (l∞
1
, l∞
2
)∞, with ll∞N0. Let

j
t
=l∞
1
e
t
+l∞
2
e*
t

and S
n
=Wn
t=1
j
t
. It is obvious that j

t
is a martingale difference sequence with

respect to F
t
. By Assumptions 1 and 2, s*2=n−1ES2

n
=l∞
1
E(V
t
)l
1
+2l∞

1
l
2
+l∞
2
V
1
l
2
<2. When V

t
is not a constant matrix, it is easy to show that V

b
is positive definite, and hence s*2>0.

Furthermore,

E(j2
t
|F
t−1

)=l∞
1
V
t
l
1
+2l∞

1
l
2
+l∞
2
∑
q

i=1
V *
1t−i
l
2
,

where V *
1t−i
=diag (2s2

1i
e2
1t−i

/h2
1t
+1/h

1t
, . . . , 2s2

mi
e2
mt−i

/h2
mt
+1/h

mt
). Note that {E(j2

t
|F
t−1

)} is a
strictly stationary and ergodic time series. By the ergodic theorem and Assumption 2, we have
that (ES2

n
)−1Wn

t=1
(j2
t
|F
t−1

)=1+o
p
(1). Since {j

t
} is also a strictly stationary and ergodic time

series with finite variance for any small e>0,

1

n
∑
n

t=1
E{j2
t
I(j
t
�√ns*e)}=E{j2

t
I(j
t
�√ns*e)}= P

x>√ns*e
x2 dP(x)=o(1), (A·1)

where P(x) is the distribution function of j
t
. By the usual invariance principle for martingales,

n−1/2W[nt]
t=1
j
t
�s*B(t) in distribution in D, where B(t) is a univariate standard Brownian motion.

When V
t
is a constant matrix, s*=0. In a similar manner to the proof of Theorem 3.2 in Ling

& Li (1998), we can still show that n−1/2W[nt]
t=1
j
t
�s*B(t) in distribution in D. By Proposition 4.1

of Wooldridge & White (1988), we complete the proof. %

Note that, for Theorem 1, we need the limiting distribution of n−1/2W[nt]
t=1
e
t
in Lemma A1 which

holds without the diagonal assumption on V
t
.

L A2. Under the same assumptions as in T heorem 1,

1

√n
∑
[nt]

k=1
u
1k
�Y
11
V1/2
a
1

B
d
(t)

in distribution in D, where u
1t

is defined as in (2·5), B
d
= ([I

d
, 0]V

a
[I
d
, 0]∞)−1/2[I

d
, 0]V1/2

a
B
m
,

B
m
=V−1/2
a

QW
m

and Y
11
=[I
d
, 0] (W2

k=1
Y
k
)[I
d
, 0]∞.

The proof of Lemma A2 can be found in a University of Hong Kong technical report by the
authors. In order to prove Lemma 1, the following lemma plays an important role.

L A3. L et s
kt
=2Wq

i=1
s2
ki
e2
kt−i
e2
kt
/h3
kt
+h−1
kt

. T hen, under the assumptions as in T heorem 1,
n−1/2W[nt]

t=1
{s
kt
−E(s

kt
)}�s

k
w
k
(t) in distribution, where k=1, . . . , m, s

k
is a nonnegative constant,

and w
k

is a standard Brownian motion.

Proof. Let

G
t−m
=s{a

1s
, . . . , a

qs
, e
s
|s=t−m, . . . , t}, e*

t−m
=g
t−m
+ ∑
m

j=1
Aaj−1
i=0

B
t−m−iB gt−m−j

and R
t,m
=e
t
−e*
t−m

. We first show that

E(dR
t,m
d4 )=O(rm ). (A·2)

Let r
t,j
=g∞
t−j

(X j
i=0

B
t−i

)∞X j
i=0

B
t−i
g
t−j

. Then, by (2·6) and a direct calculation,
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E(r2
t,j

)=E Cvec∞ (g
t−j
g∞
t−j

) vec qAaj
i=0

B
t−iB∞ aj

i=0
B
t−irD2

=c∞
1
E Aaj
i=0

B
t−i
Ea
j

i=0
B
t−i
Ea
j

i=0
B
t−i
Ea
j

i=0
B
t−iB∞ vec{vec (I

m
) vec∞ (I

m
)}

=c∞
1
{E(BE4

t
)}j+1c

2
=O(rj ), (A·3)

where c1 and c2 are constant vectors and O(.) holds uniformly in t. Furthermore, we can show
that

E(dR
t,m
d4 )=E(dR∞

t,m
R
t,m
d2 )

= ∑
2

j=m+1
E(r2
t,j

)+ ∑
2

r=1
∑
2

j=m+1
E(r
t,j−1

r
t,j−1+r

+r
t,j−1+r

r
t,j−1

)=O(rm ), (A·4)

so that (A·2) holds.
Since s

kt
is a function of e

t−i
and e∞

t−i
e
t−j

(i, j=1, . . . , q) by a direct calculation, we can show
that E{s

kt
−E(s

kt
|G
t−m

)}2=O(rm ). It is not difficult to verify that conditions C1–C4 of Theorem 3.2
in Ling & Li (1998) hold. Thus, W[nt]

t=1
[s
kt
−E(s

kt
)]�s

k
w
k
(t), where w

k
(t) is a standard Brownian

motion. This completes the proof. %

Proof of L emma 1. Note that

Z
1t−i−1

= ∑
t−i−1

k=1
u
1k
=Z
1t
− ∑

t

k=t−i
u
1k
=Z
1t
+r
it
,

where r
it
=−Wt

k=t−i
u
1k

. It is not difficult to show that

n−2 ∑
n

t=1
∑
q

i=1
(Z
1t−1

r∞
it
+r
it
Z
1t−1
+r
it
r∞
it
)E
e2
kt−i
e2
kt

h3
kt
=o
p
(1).

Furthermore, since Wq
i=1

V
it
+V −1
t
=diag (s

1t
, . . . , s

mt
), we have that

n−2 ∑
n

t=1
A ∑q
i=1

Z
1t−i−1

Z∞
1t−i−1

EV
it
+Z
1t−1

Z∞
1t−1
EV −1
t B

=n−2 ∑
n

t=1
qZ1t−1Z∞1t−1EA ∑q

i=1
V
it
+V −1
t Br+o

p
(1). (A·5)

By Theorem 3.1 in Ling & Li (1998), (2.5), Lemma A2 and Lemma A3, (A·5) is given by

n−2 ∑
n

t=1
(Z
1t−1

Z∞
1t−1
EV
1
)+n−2 ∑

n

t=1
qZ1t−1Z∞1t−1EA ∑q

i=1
V
it
+V −1
t
−V
1Br+o

p
(1)

�Y
11
V1/2
a
1 q P 10 B

d
(u)B
d
(u)∞ dur V1/2a1 Y∞11EV1 , (A·6)

in distribution. By (A·5)–(A·6) part (a) holds. Similarly, we can show that

1

n
∑
n

t=1
N
1t
=

1

n
∑
n

t=1
(Z
1t−1
E I
m
)e*
t
+o
p
(1). (A·7)

By Theorem 2.2 in Kurtz & Protter (1991), Lemma A1 and (A·7), part (b) holds. Part (c) holds
by the ergodic theorem and part (d) can be proved by the standard martingale central limit theorem.
This completes the proof. %
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