Estimation for partially nonstationary multivariate autoregressive models with conditional heteroscedasticity

BY W. K. LI

Department of Statistics and Actuarial Science, The University of Hong Kong,
Pokfulam Road, Hong Kong
hrntlwk@hku.hk

SHIQING LING

Department of Mathematics, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong
maling@ust.hk

AND H. WONG

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon,
Hong Kong
mathwong@polyu.edu.hk

Summary

This paper investigates a partially nonstationary multivariate autoregressive model, which allows its innovations to be generated by a multivariate ARCH, autoregressive conditional heteroscedastic, process. Three estimators, including the least squares estimator, a full-rank maximum likelihood estimator and a reduced-rank maximum likelihood estimator, are considered and their asymptotic distributions are derived. When the multivariate ARCH process reduces to the innovation with a constant covariance matrix, these asymptotic distributions are the same as those given by Ahn & Reinsel (1990). However, in the presence of multivariate ARCH innovations, the asymptotic distributions of the full-rank maximum likelihood estimator and the reduced-rank maximum likelihood estimator involve two correlated multivariate Brownian motions, which are different from those given by Ahn & Reinsel (1990). Simulation results show that the full-rank and reduced-rank maximum likelihood estimator are more efficient than the least squares estimator. An empirical example shows that the two features of multivariate conditional heteroscedasticity and partial nonstationarity may be present simultaneously in a multivariate time series.

Some key words: Brownian motion; Cointegration; Full-rank and reduced-rank maximum likelihood estimators; Least squares estimator; Multivariate ARCH process; Partially nonstationary; Unit root.

1. Introduction

We consider an m-dimensional autoregressive, AR, process \{Y_t\} which is generated by

\[Y_t = \sum_{i=1}^{p} \Phi_i Y_{t-i} + \epsilon_t \]

(1.1a)
with

$$e_t = \sum_{i=1}^{d} z_{it} \varepsilon_{t-i} + \varepsilon_t,$$

(1.1b)

where Φ_i's are constant matrices; $\det \{ \Phi(z) \} = |I - \Phi_1 z - \ldots - \Phi_p z^p| = 0$ has $d < m$ unit roots and the remaining roots are outside the unit circle; rank$(C) = r$ with $r = m - d > 0$, where $C = -\Phi(1)$; $\delta_t = (z_{1t}, \ldots, z_{qt})$ is a sequence of independent and identically distributed $m \times qm$ matrices with mean zero and nonnegative-definite covariance matrix $E \{ \text{vec}(\delta_t) \text{vec}(\delta_t') \} = \Omega$; and the ε_t are independent identically distributed random vectors with mean zero and positive-definite covariance matrix $E(\varepsilon_t \varepsilon_t') = G$. Under certain regularity conditions, the conditional covariance matrix of e_t can be shown to be changing over time; see (2.7) and (2.8) in § 2. Thus, model (1.1) is a partially nonstationary multivariate AR model with autoregressive conditional heteroscedastic (ARCH) type errors. In view of mathematical complications, we concentrate on the case of diagonal ARCH apart from the results in § 2. In this case, the conditional variance of each component in e_t has the same form as Engle's (1982) ARCH model; see (2.7)–(2.8) and (4.1) below.

The assumption on $\Phi(z)$ in model (1.1) implies the important feature that, although some component series of Y_t may exhibit nonstationary behaviour, some linear combinations of these component series would be stationary. This phenomenon is the so-called cointegration property with cointegration rank r. When e_t has a constant conditional covariance matrix, cointegrated time series were proposed first by Engle & Granger (1987) and have been widely investigated. Some estimation methods and asymptotic theories can be found for example in Johansen (1988, 1992, 1995) and Stock & Watson (1993). Rahbek & Mosconi (1999) considered the inference problem with stationary explanatory variables. There is substantial empirical evidence that cointegrated components can exist in various multivariate economic time series. Fountis & Dickey (1988) investigated the AR model with a unit root, that is $d = 1$, and derived a corresponding unit-root test. Ahn & Reinsel (1990) examined the AR model with d unit roots and derived the asymptotic properties of the full-rank least squares estimator and the reduced-rank maximum likelihood estimator. Yap & Reinsel (1995) studied partially nonstationary multivariate ARMA, autoregressive moving average, models.

The class of ARCH models was proposed first by Engle (1982). Various ARCH-type models have been proposed, including generalised ARCH or GARCH (Bollerslev, 1986), and double-threshold ARCH (Li & Li, 1996) models. Many ARCH-type models have been extended to the multivariate case; see the survey by Bollerslev et al. (1994). Tsay (1987) proposed the conditional heteroscedastic ARMA model. It provides a natural alternative for Engle's ARCH model and was extended to multivariate cases by Ling & Deng (1993) and Wong & Li (1997).

Since the inclusion of time-varying conditional variance matrices can improve statistical inference, such as interval estimation and forecasting, it is important to explore cointegration time series with conditional heteroscedasticity. Although our method is a direct extension of Ahn & Reinsel (1990), the estimation procedure for model (1.1) is much more complicated and the asymptotic distributions for the full-rank and reduced-rank maximum likelihood estimators are new. Unlike as in Ahn & Reinsel (1990), these asymptotic distributions involve two correlated multivariate Brownian motions. This type of asymptotic distribution has appeared in Lucas (1997), Hodgson (1998), Seo (1998) and Rahbek & Mosconi (1999). Our technique heavily depends on Theorem 2.1 in Ling & Li (1998) and could be applied to cointegrating time series with other ARCH-type innovations.
Finally, in § 7 an empirical example is presented. The finite sample properties of the estimators are examined through simulations in § 6. Reduced-rank maximum likelihood estimators, and derive their asymptotic distributions. In §§ 4 and 5, we investigate the full-rank and reduced-rank maximum likelihood estimators, and derive their asymptotic distributions. The finite sample properties of the estimators are examined through simulations in § 6. Finally, in § 7 an empirical example is presented.

2. Basic properties of the models

First we reparameterise the AR part of the model (1·1) as follows:

\[W_t = CY_{t-1} + \Phi^*_1 W_{t-1} + \ldots + \Phi^*_p W_{t-p+1} + \varepsilon_t, \tag{2·1} \]

where \(W_t = Y_t - Y_{t-1} \) and \(\Phi^*_1 = -\sum_{i=1}^{p} \Phi_i \). Following Ahn & Reinsel (1990), let \(m \times m \) matrices \(P \) and \(Q = P^{-1} \) be such that \(Q(\sum_{i=1}^{p} \Phi_i)P = \text{diag}(I_d, G_j) \), the Jordan canonical form of \(\sum_{i=1}^{p} \Phi_i \). Defining \(Z_t = Q Y_t \), we obtain

\[Z_t = \text{diag}(I_d, G_j)Z_{t-1} + u_t, \tag{2·2} \]

where \(u_t = Q(\Phi_1^* W_{t-1} + \ldots + \Phi_p^* W_{t-p+1} + \varepsilon_t) \). Furthermore, if we let

\[g(z) = (1 - z)^{-d} \det\{\Phi(z)\}, \quad H(z) = (1 - z)^{-d + 1} \text{adj}\{\Phi(z)\}, \]

we can rewrite \(u_t \) as

\[u_t = \left\{ I_m + Q \sum_{j=1}^{p-1} \Phi_j^* g(B)^{-1} H(B) PB^j \right\} a_t = \Psi(B)a_t, \tag{2·3} \]

where \(a_t = Q\varepsilon_t \) and

\[\Psi(B) = I_m + Q \sum_{j=1}^{p-1} \Phi_j^* g(B)^{-1} H(B) PB^j = \sum_{k=0}^{\infty} \Psi_k B^k, \tag{2·4} \]

in which \(\Psi_0 = I_m, \Psi_k = O(p^k) \) and \(p \in (0, 1) \), as in Ahn & Reinsel (1990).

Partition \(Q' = [Q_1, Q_2] \) and \(P = [P_1, P_2] \) such that \(Q_1 \) and \(P_1 \) are \(m \times d \) matrices, and \(Q_2 \) and \(P_2 \) are \(m \times r \) matrices. Furthermore, partition \(u_t = [u_{1t}, u_{2t}]' \) such that \(u_{1t} \) is \(d \times 1 \) and \(u_{2t} \) is \(r \times 1 \). Define \(Z_{1t} = Q'_1 Y_t \) and \(Z_{2t} = Q'_2 Y_t \), so that

\[Z_{1t} = Z_{1t-1} + u_{1t}, \quad Z_{2t} = G_t Z_{2t-1} + u_{2t}. \tag{2·5} \]

Here \(\{Z_{1t}\} \) is a nonstationary \(d \times 1 \) time series with \(d \) unit roots. However, under Assumptions 1 and 2 below, \(\{Z_{2t}\} \) is a stationary \(r \times 1 \) time series. The matrix \(Q'_2 \) is the so-called cointegrated vector with rank \(r \), as in Engle & Granger (1987). The error-correction form of model (2·1) can be found in Ahn & Reinsel (1990).

We now make the following assumptions about the innovations in model (1·1).

Assumption 1. The \(\{e_t\} \) and \(\{\delta_t\} \) are mutually independent.

Assumption 2. All eigenvalues of \(E(B_t \otimes B_t) \) are inside the unit circle, where \(\otimes \) denotes the Kronecker product and

\[B_t = \begin{pmatrix} I_m & \mathbb{X}_{q,1,t} & \mathbb{X}_{q,t} \\ \mathbb{Z}_{1t} & \mathbb{I}_{m} & 0 \\ \vdots & 0 & 0 \\ \mathbb{Z}_{q,t} & 0 & I_m \end{pmatrix}, \]

in which \(I_m \) is the \(m \times m \) identity matrix.
Under Assumptions 1 and 2, Ling & Deng (1993) showed that \(\varepsilon_t \) is strictly stationary and ergodic, and has the expansion

\[
\tilde{\varepsilon}_t = \eta_t + \sum_{k=1}^{\infty} \left(\prod_{i=0}^{k-1} B_i \right) \eta_{t-k},
\]

where \(\tilde{\varepsilon}_t = (\varepsilon'_t, \ldots, \varepsilon'_{t-q+1})' \) and \(\eta_t = (e'_t, 0, \ldots, 0)' \). Denote

\[
\sigma \{ e_s, x_{1s}, \ldots, x_{qs} : s = t, t-1, \ldots \}
\]

by \(\mathcal{F}_t \). By (2·6), \(\tilde{\varepsilon}_t \) is \(\mathcal{F}_t \)-measurable and

\[
V_t = E(\tilde{\varepsilon}_t \tilde{\varepsilon}_t' | \mathcal{F}_{t-1}) = (\tilde{\varepsilon}_{t-1} \otimes I_m) \Omega (\tilde{\varepsilon}_{t-1} \otimes I_m) + G.
\]

Thus, the conditional covariance matrix \(E(\tilde{\varepsilon}_t \tilde{\varepsilon}_t' | \mathcal{F}_{t-1}) \) depends on the past information \(\mathcal{F}_{t-1} \) and hence \(\{ \tilde{\varepsilon}_t \} \) generated by (1·2) is a multivariate ARCH-type process. In particular, when the \(x_{it} \) are independent for \(i = 1, \ldots, q \), we have

\[
V_t = \sum_{i=1}^{q} (\tilde{\varepsilon}_{t-1} \otimes I_m) E(\text{vec}(x_{it}) \text{vec}'(x_{it})) (\tilde{\varepsilon}_{t-1} \otimes I_m) + G.
\]

Furthermore, if \(m = 1 \) then

\[
V_t = \sum_{i=1}^{q} \sigma_i \tilde{\varepsilon}_{t-1}^2 + G
\]

with \(\sigma_i = E\varepsilon_{it}^2 \), which has the same form as Engle’s (1982) ARCH model.

By a direct extension of Theorem 3.1 in Ling (1999), the \(2m \)-order moment condition of \(\varepsilon_t \) is \(\rho(E(B^{\otimes 2m}) < 1 \), where \(B^{\otimes 2m} \) denotes \(B_1 \otimes \ldots \otimes B_{2m} \), with \(2m \) factors, and \(\rho(A) \) is the largest of the absolute magnitudes of the eigenvalues of \(A \). Under this condition, the \(2m \)-order moments of \(Z_{2t} \) and \(u_{1i} \) are finite since \(u_t \) has expansion (2·3). These results will be useful in the development of the asymptotic theory in this paper.

3. Preliminary estimation procedure

From this section onward we assume that \(\varepsilon_t \) and \(\text{vec}(\delta_t) \) in model (1·1) are normal random vectors and that the conditional covariance matrix \(V_t \) of \(\varepsilon_t \) is diagonal.

We first use least squares estimation for the parameters in the \(\text{AR} \) part of model (1·1).

Let

\[
X_{t-1} = [Y_{t-1}, W_{t-1}, \ldots, W_{t-p+1}]', \quad F = [C, \Phi_1, \ldots, \Phi_{p-1}].
\]

From (2·1), the least squares estimator of \(F \) is \(\hat{F} = (\sum_{t=1}^{n} W_t X_t) (\sum_{t=1}^{n} X_t X_t')^{-1} \).

Write

\[
Q^* = \text{diag}(Q, I_{m(p-1)}), \quad P^* = \text{diag}(P, I_{m(p-1)}), \quad X_t^* = Q^* X_t = [Z_{1t}, U_t]',
\]

with \(U_{t-1} = [Z_{2t-1}, W_{t-1}, \ldots, W_{t-p+1}]' \). Then

\[
Q(\hat{F} - F)P^* = \left(\sum_{t=1}^{n} a_t X_t^* \right) \left(\sum_{t=1}^{n} X_t^* X_t^* \right)^{-1}.
\]

Furthermore, denote \(\text{diag}(D, \sqrt{n} I_{m(p-1)}) \) by \(D^* \), where \(D = \text{diag}(n \Delta_{1t}, \sqrt{n} I_{1}) \).

Using Lemmas A1 and A2 in the Appendix and a similar argument to that of Ahn & Reinsel (1990), we can obtain the following theorem.

Theorem 1. Suppose that (1·1) has \(d \) unit roots and the remaining roots are outside the unit circle, that Assumptions 1 and 2 hold and that \(\rho(E(B^{\otimes 4})) < 1 \). Then

\[
(\hat{F} - F)P^* D^* \rightarrow P[M, N],
\]

(3·2)
in distribution, where

\[M = \Omega_m^{-1/2} \left\{ \int_0^t B_d(u) dB_m(u) \right\}^{-1} \left\{ \int_0^t B_d(u)B_d(u)^T du \right\}^{-1} \Omega_m^{-1/2} \Psi_{11}^{-1}, \]

\(\Omega_m = \text{cov}(a_i) = QV_0Q', \) \(V_0 = E(e_i e_i') \) and \(\Omega_m = \text{cov}(a_{1i}) = [I_d, 0] \Omega_m [I_d, 0]'; \) \(B_m(u) \) denotes an \(m \)-dimensional standard Brownian motion, and \(\Psi_{11} = [I_d, 0] \Omega_m^{1/2} B_m(u) \) is a \(d \)-dimensional standard Brownian motion, and \(\Psi_{11} = [I_d, 0] (\sum_{k=1}^\infty \Psi_k) [I_d, 0]'; \) and \(\text{vec}(N) \) is a normal vector with mean 0 and covariance matrix

\[\{E(U_{t-1} U_{t-1} \otimes I_m)\}^{-1} E(U_{t-1} U_{t-1} \otimes V') \{E(U_{t-1} U_{t-1} \otimes I_m)\}^{-1}. \]

The limiting distribution for the nonstationary component corresponding to \(Z_{1t} \) is the same as that given by Ahn & Reinsel (1990), but, for the stationary component, the limiting distribution has a different covariance matrix as a result of the conditional heteroscedasticity of the \(e_i \) in (1·1). When \(r = 0 \), all component processes of \(Y_i \) in model (1·1) are \(I(1) \), that is, each component has a unit root, the limiting distribution \(M \) in (3·2) will reduce to that of the multivariate unit-root case.

Using the residual \(\hat{e}_t = \hat{W} - \hat{X}_t \hat{F} \) as the artificial observation of \(e_i \), we can estimate \(\Omega \) and \(G \) in (2·7) by least squares or maximum likelihood. Since the convergent rate of \(\hat{F} \) is \(D^* \), it is immediate to show that these estimators are asymptotically equivalent in probability to those based on the true observation of \(e_i \); see Ling & Deng (1993) and a University of Hong Kong technical report on unit root testing under \(\Gamma \)-arch errors by S. Ling, W. K. Li and M. McAleer, available on request. From Theorem 4.1 in Nicholls & Quinn (1982), we know that the least squares estimator of \((\Omega, G) \) is asymptotically normal if \(E \hat{e}_{1,t}^4 < \infty \). Ling & Deng (1993) showed that the maximum likelihood estimator of \((\Omega, G) \) is asymptotically normal if \(E \hat{e}_{1,t}^4 < \infty \).

4. Full-rank maximum likelihood estimation

Let

\[V_i = \text{diag}(h_{11}, \ldots, h_{mm}), \]

with \(h_{kk} = g_k + \sum_{l=1}^k \sigma_{ki}^2 h_{kl}^{-1} \), where \(g_k = \text{var}(e_{ki}) \), \(\sigma_{ki} = \text{var}(z_{kki}) \), \(e_{ki} \) is the \(k \)th element of \(e_i \) and \(z_{kki} \) is the \((k, k) \)th element of \(z_{it} \). Let \(\alpha = (a'_1, \ldots, a'_m)' \), with \(\alpha_k = (g_k, \sigma_{k1}, \ldots, \sigma_{kk})' \) for \(k = 1, \ldots, m \).

The maximum likelihood estimators of \(F \) and \(\alpha \) are \(\hat{F} \) and \(\hat{\alpha} \), which minimise the conditional loglikelihood function

\[l = \sum_{i=1}^n l_i, \]

with

\[l_i = -\frac{1}{2} \sum_{k=1}^m \log h_{kk} - \frac{1}{2} \sum_{k=1}^m \frac{\hat{a}_{ki}^2}{h_{kk}}. \]

By direct differentiation, we obtain

\[\frac{\partial l_i}{\partial F} = \sum_{i=1}^q (X_{i-i-1} \otimes I_m) \eta_{it} + (X_{i-1} \otimes I_m) V_t^{-1} e_t, \]

in (4·2a),

\[(4·2b) \]
where
\[\eta_{it} = \begin{bmatrix} \sigma_{i1}^{2} \varepsilon_{1t-i} \left(1 - \frac{\varepsilon_{1t}^{2}}{h_{1t}} \right), \ldots, \sigma_{mi}^{2} \varepsilon_{mt-i} \left(1 - \frac{\varepsilon_{mt}^{2}}{h_{mt}} \right) \end{bmatrix}. \]

Let \(\bar{D}^* = D \otimes I_m = \text{diag}(nI_{dm}, \sqrt{n}I_{rm+(p-1)m^2}) \), \(\bar{Q}^* = \text{diag}(Q \otimes I_m, I_{(p-1)m^2}) \) and \(V_0 = 2 \text{ diag} \left(\frac{\sigma_{i1}^{2} \varepsilon_{1t-i}^{2}}{h_{1t}^{2}}, \ldots, \frac{\sigma_{mi}^{2} \varepsilon_{mt-i}^{2}}{h_{mt}^{2}} \right) \).

As in Ling & Li (1998), we can show that
\[
\bar{D}^* \bar{Q}^* \frac{\partial^{2} l}{\partial \bar{F} \partial \bar{F}} \bar{Q}^* \bar{D}^* = -\sum_{i=1}^{n} \bar{D}^* \bar{Q}^* M_i \bar{Q}^* \bar{D}^* + o_p(1),
\]
where
\[M_i = \sum_{i=1}^{n} (X_{i-i-1} X_{i'-i-1} \otimes V_0) + X_{i-1} X_{i'-1} \otimes V_i. \]

Since \(n^{-1/2} \bar{D}^* \bar{Q}^* \frac{\partial^{2} l}{\partial \bar{F} \partial \bar{F}} \bar{z}_k = o_p(1) \) (Ling & Li, 1998), both \(F \) and \(z_k \) can be estimated separately without loss of efficiency. The maximum likelihood estimator of \(z \) through (4·2) is asymptotically equivalent to the maximum likelihood estimator mentioned in § 3. Thus, in the following \(z \) is assumed to be known or estimated while we only discuss the estimator of \(F \).

The maximum likelihood estimator of \(F \) is obtained by the iterative approximate Newton–Raphson relation
\[
\hat{F}^{(i+1)}(\theta) = \hat{F}^{(i)} + \left(\sum_{i=1}^{n} M_i \right)^{-1} \left(\sum_{i=1}^{n} \frac{\partial l}{\partial \bar{F}} \right),
\]

where \(\hat{F}^{(i)} \) is the estimator at the \(i \)th iteration. It is straightforward to show that
\[
\sum_{i=1}^{n} \bar{D}^* \bar{Q}^* (M_i \bar{F} - \bar{F}) \bar{Q}^* \bar{D}^* = o_p(1),
\]

and
\[
\sum_{i=1}^{n} \bar{D}^* \bar{Q}^* \left(\frac{\partial l}{\partial \bar{F}} \right) = -\left(\sum_{i=1}^{n} \bar{D}^* \bar{Q}^* M_i \right) \text{vec} (\bar{F} - \bar{F}) + o_p(1).
\]

uniformly in the ball \(\Theta_n = \{ \bar{F} : \| \bar{D}^* \bar{Q}^* \bar{F} - \bar{F} \| \leq M \} \) for any fixed positive constant \(M \), where \(\| \cdot \| \) denotes the Euclidean norm. Similar details and the proof of consistency can be found in the aforementioned University of Hong Kong technical report by Ling et al. Thus, the estimator of \(F \) obtained by (4·4) satisfies \(\bar{D}^* \bar{Q}^* \bar{F} = O_p(1) \) if the initial estimator also satisfies this condition. The least squares estimator, denoted by \(\bar{F} \), of \(F \) in § 3 can be used as such an initial estimator. With this initial estimator and (4·4)–(4·6), we can obtain the asymptotic representation
\[
\bar{D}^* \bar{Q}^* \text{vec} (\bar{F} - \bar{F}) = \left(\sum_{i=1}^{n} \bar{D}^* \bar{Q}^* M_i \bar{Q}^* \bar{D}^* \right)^{-1} \left(\sum_{i=1}^{n} \bar{D}^* \bar{Q}^* \frac{\partial l}{\partial \bar{F}} \right) + o_p(1).
\]

Note that we can partition \(\bar{Q}^* (X_{i-i} \otimes I_m) \) into two parts:
\[
\bar{Q}^* (X_{i-i} \otimes I_m) = \begin{bmatrix} Z_{11} I_m & Z_{12} I_m \\ Z_{21} I_m & Z_{22} I_m \end{bmatrix},
\]
where
\[
Z_{11} = \begin{bmatrix} X_{11} - \bar{F} \bar{F} & X_{12} \bar{F} \\ X_{21} \bar{F} & X_{22} - \bar{F} \bar{F} \end{bmatrix}, \quad Z_{12} = \begin{bmatrix} X_{13} & X_{14} \bar{F} \\ X_{23} \bar{F} & X_{24} \end{bmatrix},
\]
\[
Z_{21} = \begin{bmatrix} X_{31} & X_{32} \bar{F} \\ X_{41} \bar{F} & X_{42} \end{bmatrix}, \quad Z_{22} = \begin{bmatrix} X_{33} - \bar{F} \bar{F} & X_{34} \bar{F} \\ X_{43} \bar{F} & X_{44} - \bar{F} \bar{F} \end{bmatrix}.
\]
We have

$$\bar{D}^{-1} \bar{Q}^{-1} \frac{\partial l}{\partial F} = \sum_{t=1}^{n} \left(\frac{N_{1t}}{N_{2t}} \right),$$

$$N_{1t} = \sum_{i=1}^{q} (Z_{t-i-1} \otimes I_m) \eta_{it} + (Z_{t-i-1} \otimes I_m) V_{t-1} \epsilon_{it},$$

$$N_{2t} = \sum_{i=1}^{q} (U_{t-i-1} \otimes I_m) \eta_{it} + (U_{t-i-1} \otimes I_m) V_{t-1} \epsilon_{it}.$$

As $$n^{-3/2} \sum_{t=1}^{n} U_{t-i} Z_{t-j-1} = o_p(1)$$, for $$i, j = 1, \ldots, q$$ (Ling & Li, 1998), the cross-product terms in $$\sum_{t=1}^{n} \bar{D}^{-1} \bar{Q}^{-1} M_t \bar{Q}^{-1} \bar{D}^{-1}$$ involving $$U_{t-i}$$ and $$Z_{t-j}$$ converge to zero in probability. Thus, we have

$$\sum_{t=1}^{n} \bar{D}^{-1} \bar{Q}^{-1} M_t \bar{Q}^{-1} \bar{D}^{-1} = \text{diag} \left\{ n^{-2} \sum_{t=1}^{n} \left\{ \sum_{i=1}^{q} (Z_{t-i-1} \otimes Z_{t-i-1} V_{t}) + Z_{t-i-1} \otimes V_{t}^{-1} \right\} \right\} + o_p(1).$$

The following is a basic and important lemma for Theorems 2 and 3. Its proof can be found in the Appendix.

Lemma 1. Assume the same conditions as in Theorem 1. Then

(a) $$n^{-2} \sum_{t=1}^{n} \left\{ \sum_{i=1}^{q} (Z_{t-i-1} \otimes Z_{t-i-1} V_{t}) + Z_{t-i-1} \otimes V_{t}^{-1} \right\} \rightarrow \Psi_{11} \Omega_{\nu_1}^{1/2} \left\{ \int_{0}^{1} B_{d}(u) B_{d}(u)\, du \right\} \Omega_{\nu_1}^{1/2} \Psi'_{11} \otimes \Omega_{11},$$

in distribution;

(b) $$n^{-1} \sum_{t=1}^{n} N_{1t} \rightarrow \text{vec} \left\{ \left\{ \int_{0}^{1} B_{d}(u) d\bar{W}_{m}(u) \right\}' \Omega_{\nu_1}^{1/2} \Psi'_{11} \right\},$$

in distribution;

(c) $$n^{-1} \sum_{t=1}^{n} \left\{ \sum_{i=1}^{q} (U_{t-i-1} U_{t-i-1} \otimes V_{t}) + U_{t-i-1} U_{t-i-1} \otimes V_{t}^{-1} \right\} \rightarrow \Omega_{\nu},$$

in probability;

(d) $$n^{-1} \sum_{t=1}^{n} N_{2t} \rightarrow N(0, \Omega_{\nu}),$$

in distribution.

Here $$B_{d} = \Omega_{\nu_1}^{1/2} [I_0, 0] \Omega_{\nu_1}^{1/2} B_{m}(u)$$ and $$B_{m}(u) = V_{0}^{-1/2} W_{m}(u)$$ are standard Brownian motions and
\((W_m(u), \tilde{W}_m(u))'\) is a 2m-dimensional Brownian motion with covariance matrix given by

\[
u \Omega_b = \nu \left(\begin{array}{cc} V_0 & I_m \\ I_m & \Omega_1 \end{array} \right), \quad V_0 = E V_t,
\]

\[
\Omega_1 = \text{diag} \left(\frac{1}{h_{11}} + 2 \sum_{i=1}^q \sigma_i^2 E \frac{e_{11}^2}{h_{11}^2}, \ldots, \frac{1}{h_{mt}} + 2 \sum_{i=1}^q \sigma_{mi}^2 E \frac{e_{mt}^2}{h_{mt}^2} \right),
\]

\[
\Omega_u = 2 \sum_{i=1}^q E \left\{ U_{t-i-1} U_{t-i-1}' \otimes \text{diag} \left(\frac{\sigma_i^2 e_{11}^2}{h_{11}^2}, \ldots, \frac{\sigma_{mi}^2 e_{mt}^2}{h_{mt}^2} \right) \right\} + E(U_{t-1} U_{t-1}' \otimes V_{t-1}^{-1}).
\]

To obtain the asymptotic distribution of \(F\), we rewrite model (2.1) as

\[
W_t = CP_1 Z_{t-1} + CP_2 Z_{2t-1} + \Phi_1^* W_{t-1} + \ldots + \Phi_{p-1}^* W_{t-p+1} + \epsilon_t.
\]

(4-8)

Let \(\beta_0 = \text{vec}(CP_1)\) and \(\beta_1 = \text{vec}(CP_2, \Phi_1^*, \ldots, \Phi_{p-1}^*)\). Furthermore, let

\[
\hat{\beta}_0 = \text{vec}(\hat{C}P_1), \quad \hat{\beta}_1 = \text{vec}(\hat{C}P_2, \hat{\Phi}_1^*, \ldots, \hat{\Phi}_{p-1}^*).
\]

Then \(\hat{\beta}^* = \text{vec}(\hat{F} - F)\), \((\hat{\beta}_0 - \beta_0)', (\hat{\beta}_1 - \beta_1)'\)'The following theorem comes directly from Lemma 1.

Theorem 2. Let \(\hat{\beta}_0\) and \(\hat{\beta}_1\) denote the full-rank maximum likelihood estimator obtained from (4.4) using an initial estimator \(\hat{F}\) such that \(\hat{D}^* \hat{Q}^* \text{vec}(\hat{F} - F) = O_p(1)\). Then, under the same assumptions as in Theorem 1,

(a) \(n(\hat{C} - C)P_1 \rightarrow \Omega_1^{-1} \left\{ \int_0^1 B_d(u) \ d\tilde{W}_m(u)' \right\}' \times \left\{ \int_0^1 B_d(u)B_d(u)' \ d\nu \right\}^{-1} \Omega_{n_{11}}^{-1} \psi_{11}
\]

in distribution;

(b) \(\sqrt{n(\hat{\beta}_1 - \beta_1)} \rightarrow N(0, \Omega_u^{-1})\), in distribution.

The notation is defined as in Lemma 1 and \(\hat{C}\) is the estimator of \(C\) corresponding to \(\hat{\beta}_0\).

Note that the limiting distribution of \(\hat{C}\) is different from that given by the least squares estimator in Theorem 1. Here it involves two correlated \(m\)-dimensional Brownian motions. Let

\[
\tilde{B}_m(\tau) = - (\Omega_1 - V_0^{-1})^{-1} V_0^{-1} W_m(\tau) + (\Omega_1 - V_0^{-1})^{-1} \tilde{W}_m(\tau).
\]

Then \(B_m(\tau)\) and \(\tilde{B}_m(\tau)\) are two independent \(m\)-dimensional standard Brownian motions and \(\tilde{W}_m(\tau) = V_0^{-1} B_m(\tau) + (\Omega_1 - V_0^{-1})^{-1} \tilde{B}_m(\tau)\). Furthermore, we obtain

\[
n(\hat{C} - C)P_1 \rightarrow \Omega_1^{-1} \left[V_0^{-1} \left\{ \int_0^1 B_d(u) \ dB_m(u) \right\}' + (\Omega_1 - V_0^{-1})^{-1} \left\{ \int_0^1 B_d(u) \ d\tilde{B}_m(\tau) \right\}' \right] \times \left\{ \int_0^1 B_d(u)B_d(u)' \ d\nu \right\}^{-1} \Omega_{n_{11}}^{-1} \psi_{11},
\]

in distribution. When \(V_t\) is a constant matrix, \(\Omega_1 = V_0^{-1}\) and hence the limiting distribution of \(\hat{C}\) reduces to that given in Theorem 1 since \(V_0^{1/2} B_m(u)\) has the same distribution as \(P\Omega_u^{1/2} B_m(u)\) in (3.2). As in the least squares case, when \(r = 0, P_1 = I_m\) and furthermore, when \(m = 1\), the asymptotic distribution is the same as that given by Ling & Li (1998) and Seo (1999). Ling & Li (1998) have shown that the maximum likelihood estimator of the unit root is more efficient than the least squares estimator when the innovations have
a time-varying conditional covariance matrix, in the sense defined in Ling & McAleer (2002). Similarly, when \(V_t \) is a time-varying conditional covariance matrix, it can be shown that the maximum likelihood estimator of \(\tilde{C} \) is more efficient than its least squares estimator counterpart in the same sense. The maximum likelihood estimator of \(\beta_t \) is also more efficient than its least squares estimator. Some comparisons can be found in Engle (1982) and Wong & Li (1997).

5. Reduced-rank estimation

The reduced-rank structure matrix \(C \) can be decomposed as \(C = AB \), where \(A \) and \(B \) are full-rank matrices of dimensions \(m \times r \) and \(r \times m \), respectively. Such a decomposition is not unique. In particular, Johansen (1995) in his Theorem 4.2 showed that there exist \(A \) and \(B \) such that \(BY_t \) is stationary and \(A_t' Y_t \) is a unit root process, where \(A_1 \) is an \(m \times d \) matrix such that \(A_1' A = 0 \) and \(\text{span}(A, A_1) = I_m \). This decomposition is quite natural in explaining the cointegration relations, and the parameters in \(A \) and \(B \) can be estimated by using canonical correlation analysis. For model (1·1), this technique seems not to be very convenient since the conditional covariance matrix is changing from time to time.

Using the notation in § 2, we decompose \(C = AB \) with \(A = -P_b(I_n - \Gamma_t)Q_{21}^* \), \(B = [I_r, B_0] \) and \(B_0 = Q_{21}^* Q_{22}^* \), where \(Q_{21}^* = (Q_{11}^*, Q_{12}^*) \) and \(Q_{11} \) is \(r \times r \); see Reinsel & Ahn (1992). Such a decomposition is unique and \(B_0 \) is an \(r \times d \) matrix of unknown parameters. For this decomposition, it is assumed that the components of series \(Y_t \) are arranged so that \(J' Y_t \) is purely nonstationary, where \(J' = [0, I_r] \). This assumption was used in Ahn & Reinsel (1990) and Yap & Reinsel (1995). As a referee has pointed out, it may not be easy to detect the order of the variables with data; see Maddala & Kim (1998, pp. 156–9).

Based on this decomposition, model (2·1) can be rewritten further as

\[
W_t = A B Y_{t-1} + \Phi_1^* W_{t-1} + \cdots + \Phi_{p-1}^* W_{t-p+1} + \epsilon_t. \tag{5·1}
\]

Let \(\gamma_0 = \text{vec}(B_0) \) and \(\gamma_1 = \text{vec}(A, \Phi_1^*, \ldots, \Phi_{p-1}^*) \). Then \(\gamma = (\gamma_0', \gamma_1')' \) is the vector of unknown parameters with dimension \(b = rd + mr + (p - 1)m^2 \). Furthermore, let \(\hat{\gamma}_0 = \text{vec}(\hat{B}_0) \), \(\hat{\gamma}_1 = \text{vec}(\hat{A}, \hat{\Phi}_1^*, \ldots, \hat{\Phi}_{p-1}^*) \) and \(\hat{\gamma} = (\hat{\gamma}_0', \hat{\gamma}_1')' \). Define

\[
\tilde{U}_{t-1}^* = [(J' Y_{t-1} \otimes A'), \tilde{U}_{t-1} \otimes I_m], \tag{5·2}
\]

where \(\tilde{U}_{t-1} = [(B Y_{t-1})', W_{t-1}, \ldots, W_{t-p+1}]' \). The loglikelihood function is defined as in (4·3), with the parameter \(F \) replaced by \(\gamma \). By directly differentiating (4·3), we obtain

\[
\frac{\partial l}{\partial \gamma} = \sum_{i=1}^{q} \tilde{U}_{t-i}^* \eta_t + \tilde{U}_{t-1}^* V_{t-1}^{-1} \epsilon_t. \tag{5·3}
\]

Let \(\bar{D}^* = \text{diag}(n I_d, \sqrt{n} I_d - \bar{r}) \). As in Ling & Li (1998), we can show that \(n^{-1} \bar{D}^* \bar{D}^* = -n^{-1} \bar{D}^* \frac{\hat{\tau}_t}{\hat{\tau}_t} \) is a \(\tilde{M}^* \) of \(A_p(1) \). Thus, \(\gamma \) and \(z \) can be estimated separately without loss of efficiency. As in § 4, we discuss only the estimator of \(\gamma \). As in Ling & Li (1998), we can show that

\[
\tilde{D}^* = 0 \quad \text{and} \quad \tilde{D}^* = 0 \quad \text{for} \quad t = 1, \ldots, n
\]

where \(\tilde{M}_t = \sum_{i=t}^{n} \tilde{U}_{t-i}^* V_{t-i} \tilde{U}_{t-i}^* + \tilde{U}_{t-1}^* V_{t-1}^{-1} \tilde{U}_{t-1}^* \). The maximum likelihood estimator of \(\gamma \) can be obtained by iterating the Newton–Raphson relation

\[
\hat{\gamma}_t^{(i+1)} = \hat{\gamma}_t^{(i)} + \left(\sum_{t=1}^{n} \tilde{M}_t \right)^{-1} \left(\sum_{t=1}^{n} \frac{\partial l}{\partial \gamma} \right)_{\gamma = \hat{\gamma}_t^{(i)}}, \tag{5·4}
\]
where $\hat{\gamma}^{(0)}$ is the estimate at the ith iteration. As argued for (4·7), the estimator of γ obtained by (5·4) satisfies $D^{**}(\hat{\gamma} - \gamma) = O_p(1)$ if the initial estimator also satisfies this condition.

Let $\hat{C} = [\hat{C}_1, \hat{C}_2]$ be the full-rank least squares estimator or maximum likelihood estimator of C, where \hat{C}_1 is $m \times r$. Then, using a similar method to that of Ahn & Reinsel (1990), we can show that $\hat{A} = \hat{C}_1$ is a consistent estimator of A of order $O_p(n^{-1})$ and $\hat{B}_0 = (\hat{A}^T \hat{\Omega}_n^{-1} \hat{A})^{-1} \hat{A}^T \hat{\Omega}_n^{-1} \hat{C}_2$ is a consistent estimator of B_0 of order $O_p(n^{-1})$, where $\hat{\Omega}_n = n^{-1} \sum_{t=1}^n \hat{e}_t \hat{e}_t^T$. With these initial estimators and using a similar argument as for (4·7), we can obtain the asymptotic representation

$$D^{**}(\hat{\gamma} - \gamma) = \left(\sum_{t=1}^n \hat{D}^{**-1} \hat{M}_t \hat{D}^{**-1} \right)^{-1} \left(\sum_{t=1}^n \hat{D}^{**-1} \frac{\partial l}{\partial \gamma} \right) + o_p(1). \quad (5·5)$$

Let $J'P = [P_{21}, P_{22}]$, where P_{21} is $d \times d$ and P_{22} is $d \times r$. Then, $J'Y = [0, I_d]PZ = P_{21}Z_{11} + P_{22}Z_{21}$. Here, $J'Y_t$ and Z_{11} are purely nonstationary, Z_{21} is stationary, and P_{22} is nonsingular. Thus, terms involving Z_{21} in the first d components of $D^{**-1}(\partial l/\partial \gamma)$ will converge to zero, and hence

$$D^{**-1} \frac{\partial l}{\partial \gamma} = \sum_{t=1}^n \left(\frac{n^{-1} \hat{N}_{1t}}{n^{-1} \hat{N}_{2t}} \right) + o_p(1),$$

$$\hat{N}_{1t} = \sum_{i=1}^q (P_{21}Z_{1t-i} \otimes A)\eta_{it} + (P_{21}Z_{1t-i} \otimes A)V_t^{-1} \hat{e}_t,$$

$$\hat{N}_{2t} = \sum_{i=1}^q (\hat{U}_{t-i} \otimes I_m)\eta_{it} + (\hat{U}_{t-i} \otimes I_m)V_t^{-1} \hat{e}_t.$$

As $n^{-3/2} \sum_{t=1}^n \hat{U}_{t-i} \hat{Z}_{1t-j} = o_p(1)$, for $i, j = 1, \ldots, q$ (Ling & Li, 1998), the cross-product terms in $\sum_{t=1}^n D^{**-1} \hat{M}_t D^{**-1}$ involving \hat{U}_{t-i} and Z_{1t-j} converge to zero in probability. Thus, using Lemma 1, we have the following theorem.

Theorem 3. Let \hat{B}_0 and $\hat{\gamma}_1$ be the reduced-ranked estimators obtained from (5·4) using initial values \hat{B}_0 and $\hat{\gamma}_1$ such that $n^{-1}(\hat{B}_0 - B_0) = O_p(1)$ and $\sqrt{n}(\hat{\gamma}_1 - \gamma_1) = O_p(1)$. Then, under the same assumptions as in Theorem 1,

(a) $n(\hat{B}_0 - B_0) \rightarrow (A' \Omega_1 A)^{-1} A' \left\{ \int_0^1 B_d(u) d\hat{\Psi}_m(u) \right\}'$

$$\times \left\{ \int_0^1 B_d(u) B_d(u)' du \right\}^{-1} \Omega_1^{-1/2} \Psi_1^{-1/2} P_{21}^{-1},$$

in distribution,

(b) $n(\hat{\gamma}_1 - \gamma_1) \rightarrow N(0, \hat{\Sigma}_1^{-1})$, in distribution,

where $\hat{\Omega}_m = E(\sum_{t=1}^n \hat{U}_{t-i} \hat{Z}_{i-1} \otimes \hat{V}_t + \hat{U}_{t-i} \hat{U}_{t-i}^T \otimes V_t^{-1})$, and the other notation is as defined in Lemma 1.

As in the full-rank case, we can show that, when V_t is a constant matrix, the limiting distribution of \hat{B}_0 is the same as that given in Ahn & Reinsel (1990). Furthermore, generalisation of our results to the case with a constant nonzero drift parameter μ and $Q_1 \mu = 0$ in (1·1) is direct.

In § 4 and in this section, we have constrained the conditional covariance matrix to be diagonal. From our derivations, the essential argument is to derive the limiting distributions of the information matrix and the score function. The former involves an
m-dimension Brownian motion and the latter involves the stochastic integral of two m-dimension Brownian motions as shown in Lemma 1(a) and (b). The difficult part is the former, which heavily depends on Theorem 2.1 in Ling & Li (1998) since $\sum_{i=1}^q V_t + V_t^{-1} - \Omega_t$ in (A·6) is not a martingale difference. To use this theorem, we need Lemma A3, which depends on expansion (2·6) of $\bar{\xi}_t$. For other types of ARCH model, the problem of under what conditions one can obtain the limiting distributions as in Lemma 1 seems difficult.

6. Simulation results

Data are generated from the following bivariate ARCH models.

Model 1:

\[
\begin{pmatrix}
Y_{1t} \\
Y_{2t}
\end{pmatrix} = \begin{pmatrix} 0.75 & 0.25 \\
0.25 & 0.75 \end{pmatrix} \begin{pmatrix} Y_{1t-1} \\
Y_{2t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\
\varepsilon_{2t} \end{pmatrix}, \tag{6·1}
\]

\[
\begin{pmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{pmatrix} = \begin{pmatrix} \delta_{11,t} & 0 \\
0 & \delta_{22,t} \end{pmatrix} \begin{pmatrix} \varepsilon_{1t-1} \\
\varepsilon_{2t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\
\varepsilon_{2t} \end{pmatrix}. \tag{6·2}
\]

In (6·2), we assume that $E(\varepsilon_{1t}\varepsilon_{2t}) = 0$ and $E(\varepsilon_{1t}\varepsilon_{2t}) = 0$. Furthermore, $\delta_{11,t}$, $\delta_{22,t}$, ε_{1t} and ε_{2t} are zero-mean, independent random variables with variances 0·36, 0·49, 0·01 and 0·09 respectively.

Thus, the equivalent representation for the innovation equation is

\[
\begin{pmatrix}
h_{1t} \\
h_{2t}
\end{pmatrix} = \begin{pmatrix} \beta_{01} \\
\beta_{02} \end{pmatrix} + \begin{pmatrix} \beta_{11} & 0 \\
0 & \beta_{22} \end{pmatrix} \begin{pmatrix} \varepsilon_{1t-1} \\
\varepsilon_{2t-1} \end{pmatrix}, \tag{6·3}
\]

where $\beta_{01} = 0·01$, $\beta_{11} = 0·36$, $\beta_{02} = 0·09$ and $\beta_{22} = 0·49$. It is easy to see that the reduced-rank parameters for the coefficient matrix in (6·1) are $-0·25$, $0·25$ and -1.

Model 2:

\[
\begin{pmatrix}
X_{1t} \\
X_{2t}
\end{pmatrix} = \begin{pmatrix} 0.9 & 0·1 \\
0·1 & 0.9 \end{pmatrix} \begin{pmatrix} X_{1t-1} \\
X_{2t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\
\varepsilon_{2t} \end{pmatrix}, \tag{6·4}
\]

\[
\begin{pmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{pmatrix} = \begin{pmatrix} \eta_{11,t} & 0 \\
0 & \eta_{22,t} \end{pmatrix} \begin{pmatrix} \varepsilon_{1t-1} \\
\varepsilon_{2t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\
\varepsilon_{2t} \end{pmatrix}. \tag{6·5}
\]

The assumptions are the same as for Model 1. The variances of $\eta_{11,t}$, $\eta_{22,t}$, ε_{1t} and ε_{2t} are 0·49, 0·25, 0·16 and 0·04, respectively. Thus the corresponding coefficients in (6·3) are $\beta_{01} = 0·16$, $\beta_{11} = 0·49$, $\beta_{02} = 0·04$ and $\beta_{22} = 0·25$. The reduced-rank parameters for (6·4) are $-0·1$, $0·1$ and -1.

For each model, three sample sizes, $n = 200$, 400 and 800, are considered although the results for $n = 400$ are omitted, for brevity. These sample sizes can be regarded as small to moderate in financial applications. For Model 1, the eigenvalues of the matrix in (6·1) are 0·5 and 1. Similarly the eigenvalues for (6·4) are 0·8 and 1, so that both models represent systems of bivariate time series with partial nonstationarity. We calculate the least-squares, full-rank and reduced-rank estimates for each possible combination of model and sample size. The number of replications for each combination is 1000. The empirical means, sample standard errors and asymptotic standard errors of the estimates are also
computed. The sample standard error of the estimates is just the standard error of the estimates in the 1000 replications. The asymptotic standard error is defined as the average of the theoretical standard errors, which in each simulation are obtained from the second derivatives of the loglikelihood. From maximum likelihood theory, the negative of the inverse of the matrix of second derivatives can be used to estimate the covariance matrix of the model parameters.

Table 1 lists the results for Model 1 and Model 2 respectively. The least-squares estimates provide initial values for the full-rank and reduced-rank estimation.

In both the full-rank and reduced-rank estimation, the parameters are estimated separ-

<p>| Table 1. Simulation results. Empirical means, sample standard errors and asymptotic standard errors for Models 1 and 2 |
|---|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>n</th>
<th>Model parameters</th>
<th>LS Mean</th>
<th>sse</th>
<th>Mean</th>
<th>FR sse</th>
<th>Ase</th>
<th>Mean</th>
<th>RR sse</th>
<th>Ase</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.75</td>
<td>0.7480</td>
<td>0.0184</td>
<td>0.7491</td>
<td>0.0163</td>
<td>0.0153</td>
<td>0.7491</td>
<td>0.0150</td>
<td>0.0153</td>
</tr>
<tr>
<td></td>
<td>0.25 (−0.25)</td>
<td>0.2493</td>
<td>0.0973</td>
<td>0.2453</td>
<td>0.0595</td>
<td>0.0576</td>
<td>−0.2509</td>
<td>0.0515</td>
<td>0.0556</td>
</tr>
<tr>
<td></td>
<td>0.25 (0.25)</td>
<td>0.2503</td>
<td>0.0167</td>
<td>0.2494</td>
<td>0.0149</td>
<td>0.0144</td>
<td>0.2560</td>
<td>0.0538</td>
<td>0.0556</td>
</tr>
<tr>
<td></td>
<td>0.75 (−1)</td>
<td>0.7337</td>
<td>0.0943</td>
<td>0.7449</td>
<td>0.0558</td>
<td>0.0551</td>
<td>−1.0009</td>
<td>0.0231</td>
<td>0.0188</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.0108</td>
<td>0.0018</td>
<td>0.0099</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0099</td>
<td>0.0015</td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>0.2826</td>
<td>0.1270</td>
<td>0.3489</td>
<td>0.1238</td>
<td>0.1262</td>
<td>0.3500</td>
<td>0.1362</td>
<td>0.1268</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.1236</td>
<td>0.0260</td>
<td>0.0924</td>
<td>0.0151</td>
<td>0.0152</td>
<td>0.0934</td>
<td>0.0151</td>
<td>0.0154</td>
</tr>
<tr>
<td></td>
<td>0.49</td>
<td>0.3373</td>
<td>0.1357</td>
<td>0.4633</td>
<td>0.1349</td>
<td>0.1349</td>
<td>0.4558</td>
<td>0.1347</td>
<td>0.1392</td>
</tr>
<tr>
<td>800</td>
<td>0.75</td>
<td>0.7496</td>
<td>0.0081</td>
<td>0.7498</td>
<td>0.0069</td>
<td>0.0069</td>
<td>0.7496</td>
<td>0.0069</td>
<td>0.0069</td>
</tr>
<tr>
<td></td>
<td>0.25 (−0.25)</td>
<td>0.2516</td>
<td>0.0591</td>
<td>0.2503</td>
<td>0.0279</td>
<td>0.0271</td>
<td>−0.2505</td>
<td>0.0069</td>
<td>0.0069</td>
</tr>
<tr>
<td></td>
<td>0.25 (0.25)</td>
<td>0.2500</td>
<td>0.0080</td>
<td>0.2500</td>
<td>0.0068</td>
<td>0.0068</td>
<td>0.2507</td>
<td>0.0263</td>
<td>0.0267</td>
</tr>
<tr>
<td></td>
<td>0.75 (−1)</td>
<td>0.7441</td>
<td>0.0589</td>
<td>0.7475</td>
<td>0.0278</td>
<td>0.0268</td>
<td>−0.9997</td>
<td>0.0052</td>
<td>0.0044</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.0105</td>
<td>0.0012</td>
<td>0.0100</td>
<td>0.0007</td>
<td>0.0007</td>
<td>0.0100</td>
<td>0.0007</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>0.3181</td>
<td>0.0849</td>
<td>0.3546</td>
<td>0.0620</td>
<td>0.0630</td>
<td>0.3576</td>
<td>0.0654</td>
<td>0.0631</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.1199</td>
<td>0.0191</td>
<td>0.0904</td>
<td>0.0074</td>
<td>0.0074</td>
<td>0.0905</td>
<td>0.0072</td>
<td>0.0074</td>
</tr>
<tr>
<td></td>
<td>0.49</td>
<td>0.3999</td>
<td>0.0981</td>
<td>0.4860</td>
<td>0.0692</td>
<td>0.0696</td>
<td>0.4875</td>
<td>0.0687</td>
<td>0.0698</td>
</tr>
</tbody>
</table>

800 | 0.75 | 0.8822 | 0.0549 | 0.8893 | 0.0374 | 0.0358 | 0.8822 | 0.0381 | 0.0362 |
	0.1 (−0.1)	0.1019	0.0180	0.1013	0.0167	0.0161	−0.1084	0.0381	0.0362
	0.1 (0.1)	0.1009	0.0589	0.0989	0.0428	0.0396	0.1031	0.0166	0.0162
	0.9 (−1)	0.8944	0.0210	0.8955	0.0194	0.0181	−1.0049	0.0874	0.0715
	0.16	0.1931	0.0397	0.1597	0.0265	0.0253	0.1625	0.0243	0.0255
	0.49	0.3451	0.1355	0.4747	0.1346	0.1311	0.4597	0.1328	0.1389
	0.04	0.0415	0.0063	0.0401	0.0059	0.0057	0.0400	0.0059	0.0058
	0.25	0.2051	0.1173	0.2365	0.1147	0.1132	0.2409	0.1154	0.1149

800 | 0.9 | 0.8955 | 0.0272 | 0.8981 | 0.0172 | 0.0173 | 0.8955 | 0.0175 | 0.0172 |
	0.1 (−0.1)	0.1006	0.0087	0.1005	0.0081	0.0077	−0.1008	0.0175	0.0172
	0.1 (0.1)	0.1004	0.0277	0.0994	0.0177	0.0177	0.1003	0.0077	0.0076
	0.9 (−1)	0.8987	0.0090	0.8989	0.0083	0.0079	−1.0000	0.0200	0.0169
	0.16	0.1834	0.0256	0.1596	0.0123	0.0124	0.1607	0.0123	0.0125
	0.49	0.4023	0.0980	0.4864	0.0691	0.0697	0.4873	0.0672	0.0698
	0.04	0.0407	0.0038	0.0400	0.0029	0.0029	0.0400	0.0029	0.0028
	0.25	0.2346	0.0734	0.2484	0.0552	0.0568	0.2487	0.0591	0.0569

Values in parentheses are parameters for reduced rank estimation.

LS, least-squares; FR, full-rank maximum likelihood; RR, reduced-rank maximum likelihood; sse, sample standard error; Ase, asymptotic standard error.
ately, as stated in previous sections. This greatly reduces the computation as the dimensions of the matrices computed are highly reduced. In our case, we work with 4 by 4 and 2 by 2 matrices, instead of 8 by 8 matrices, and this advantage will be even greater if we are to work with higher-dimensional multivariate time series.

From Table 1, the following properties are noted. First, the full-rank and reduced-rank estimators are clearly better than the least-squares estimator in terms of both bias and efficiency. For instance, take Model 2 and \(n = 200 \). Simple calculation gives the norms of the bias vectors of the least-squares and full-rank estimates to be 0·156 and 0·0235 respectively. The least-squares bias vector has a norm that is 6·6 times that of the full-rank case. The result is similar in other cases. Moreover, the sample standard error of the full-rank estimator is uniformly smaller than that of the least-squares estimator. In some cases the difference can exceed 30%. Note also that the asymptotic standard error for least-squares estimation is not listed. The method for calculating the theoretical standard error for the least-squares estimators is standard; see for example Lutkepohl (1993, Ch. 3). In our computation, however, it is found that the covariance matrices of the estimators of the parameters in the innovation equation are often negative definite, thus giving rise to complex values for the asymptotic standard error. This phenomenon can naturally be attributed to the imprecision of the least-squares estimates. Secondly, note that there is not much difference between the full-rank and reduced-rank estimates, in terms of both bias and efficiency. The same observation was made by Ahn & Reinsel (1990). However, as argued by Ahn & Reinsel (1990) the reduced rank formulation may provide better forecasting performance because of the imposition of the unit root on the series.

7. An example

To illustrate the presence of both cointegration and conditional heteroscedasticity, we consider the daily closing price of the Malaysian and Thai stock indices during the period 1989–91. This is a three-year span with a total of 695 observations for each series. We try to model the centred data of the log prices. The data were also multiplied by 100 in Fig. 1; the two series are more separated in the first half of the plot, with the lower graph being the Thai series. They are much closer to each other and show many crossings in the second half. This agrees well with the usual error-correcting interpretation of cointegration; the two series can appear to be independent of each other for some time but tend to reach an equilibrium state in the long run. Using the Johansen Test from the package CATS in RATS (Hansen & Juselius, 1995), we find that there is one cointegrating vector; see Table 2.

To understand the conditional heteroscedasticity dynamics of the two series, we perform some preliminary analysis for the individual series. This time their first differences of logs are considered to ensure stationarity; the first differences are also scaled by a factor of 100. They can then be fitted by the univariate ARCH (1) model. In other words, if \(W_{1t} \) and \(W_{2t} \) are the scaled first differences of logs of the Malaysian and Thai stock indices respectively, then we have

\[
W_{1t} = 0.2794 W_{1t-1} + \epsilon_{1t}, \quad h_{1t} = E(\epsilon_{1t}^2 | \mathcal{F}_{t-1}) = 1.1362 + 0.3178 \epsilon_{1t-1}^2,
\]

\[
W_{2t} = 0.1521 W_{2t-1} + \epsilon_{2t}, \quad h_{2t} = E(\epsilon_{2t}^2 | \mathcal{F}_{t-1}) = 2.2044 + 0.5097 \epsilon_{2t-1}^2;
\]

the values in parentheses are the estimated standard errors. It is quite well known that the linear part, the observation equation, of stock prices usually contains a lag-1 term at most. We thus try a bivariate first-order ARCH model for the centred and scaled log data.
Fig. 1. Time series plot of transformed stock data, Malaysian stock (solid line) and Thai stock (broken line).

Table 2. Malaysian and Thai stock indices: I(1) analysis using the Johansen Test

<table>
<thead>
<tr>
<th>Eigenv.</th>
<th>L-max</th>
<th>Trace</th>
<th>(H_0: r)</th>
<th>(m - r)</th>
<th>Upper 90% critical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0163</td>
<td>11.41</td>
<td>16.78</td>
<td>0</td>
<td>2</td>
<td>10.60</td>
</tr>
<tr>
<td>0.0077</td>
<td>5.37</td>
<td>5.37</td>
<td>1</td>
<td>1</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Eigenv., eigenvalues corresponding to the maximised likelihood function; \(H_0 \), hypothesis about the cointegrating rank \(r \); L-max, the likelihood ratio test statistic for testing \(r \) cointegrating vectors versus the alternative of \(r + 1 \) cointegrating vector; Trace, the likelihood ratio test statistic for testing the hypothesis of at most \(r \) cointegrating vectors.

If \(Y_{1t} \) and \(Y_{2t} \) are the transformed data for the Malaysian and Thai stock indices, then our model is

\[
\begin{pmatrix}
Y_{1t} \\
Y_{2t}
\end{pmatrix} =
\begin{pmatrix}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{pmatrix}
\begin{pmatrix}
Y_{1t-1} \\
Y_{2t-1}
\end{pmatrix} +
\begin{pmatrix}
\eta_{1t} \\
\eta_{2t}
\end{pmatrix},
\]

(7.1)

\[
\begin{pmatrix}
\eta_{1t} \\
\eta_{2t}
\end{pmatrix} =
\begin{pmatrix}
\delta_{11t} & 0 \\
0 & \delta_{22t}
\end{pmatrix}
\begin{pmatrix}
\eta_{1t-1} \\
\eta_{2t-1}
\end{pmatrix} +
\begin{pmatrix}
e_{1t} \\
e_{2t}
\end{pmatrix}.
\]

(7.2)

Based on our early discussion, (7.2) is equivalent to

\[
\begin{pmatrix}
h_{1t} \\
h_{2t}
\end{pmatrix} =
\begin{pmatrix}
E(\eta_{1t}^2 | \mathcal{F}_{t-1}) \\
E(\eta_{2t}^2 | \mathcal{F}_{t-1})
\end{pmatrix} +
\begin{pmatrix}
\beta_{01} & 0 & \beta_{11} \\
0 & \beta_{02} & 0 \beta_{22}
\end{pmatrix}
\begin{pmatrix}
\eta_{1t-1}^2 \\
\eta_{2t-1}^2
\end{pmatrix}.
\]

(7.3)

Let

\[
\Phi =
\begin{pmatrix}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{pmatrix}.
\]

The estimation results are summarised in Table 3. Note that, for the full-rank estimation
assuming no conditional heteroscedasticity the loglikelihood value is \(-1291.57\). It is interesting to make the following observations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Least-squares</th>
<th>Full-rank</th>
<th>Reduced-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_{11})</td>
<td>0.9780 (0.0071)</td>
<td>0.9771 (0.0062)</td>
<td>—</td>
</tr>
<tr>
<td>(\phi_{21})</td>
<td>(-0.0050 (0.0041))</td>
<td>(-0.0219 (0.0106))</td>
<td>—</td>
</tr>
<tr>
<td>(\phi_{12})</td>
<td>0.0085 (0.0123)</td>
<td>0.0095 (0.0036)</td>
<td>—</td>
</tr>
<tr>
<td>(\phi_{22})</td>
<td>0.9940 (0.0072)</td>
<td>1.0067 (0.0062)</td>
<td>—</td>
</tr>
<tr>
<td>(\beta_{01})</td>
<td>0.9379 (0.2383)</td>
<td>0.8788 (0.0668)</td>
<td>0.8793 (0.0667)</td>
</tr>
<tr>
<td>(\beta_{11})</td>
<td>0.3112 (0.0652)</td>
<td>0.4030 (0.0846)</td>
<td>0.4022 (0.0860)</td>
</tr>
<tr>
<td>(\beta_{02})</td>
<td>2.5459 (0.4733)</td>
<td>2.1361 (0.1637)</td>
<td>2.1354 (0.1643)</td>
</tr>
<tr>
<td>(\beta_{22})</td>
<td>0.3841 (0.0410)</td>
<td>0.5455 (0.0900)</td>
<td>0.5477 (0.0894)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>—</td>
<td>—</td>
<td>(-0.0220 (0.0062))</td>
</tr>
<tr>
<td>(a_2)</td>
<td>—</td>
<td>—</td>
<td>(-0.0252 (0.0094))</td>
</tr>
<tr>
<td>(b)</td>
<td>—</td>
<td>—</td>
<td>(-0.3866 (0.0605))</td>
</tr>
<tr>
<td>Loglikelihood</td>
<td>—</td>
<td>(-1167.146)</td>
<td>(-1167.502)</td>
</tr>
</tbody>
</table>

Remark 1. The full-rank and reduced-rank results are very similar. Note also the reasonable agreement between the univariate and bivariate results in the ARCH parameters. For the Malaysian series, the ARCH parameter estimates from univariate and bivariate estimation, in the reduced-rank case, are 0.3178 and 0.4022. Similarly, for the Thai series, the estimates for ARCH are 0.5097 and 0.5477. These results can serve as a crossvalidation for both methods.

Remark 2. The likelihood ratio test for ARCH versus no ARCH is highly significant. Standard errors for \(\hat{\Phi}\) in the least-squares case are also higher, suggesting wider confidence intervals. In particular, both \(\hat{\phi}_{21}\) and \(\hat{\phi}_{12}\) are more than twice the standard error in magnitude under full-rank estimation while under least-squares estimation these are just about equal to their respective standard errors. Note that \(\hat{\Phi}\) is asymptotically the maximum likelihood estimate of \(\Phi\) with no ARCH.

Acknowledgement

The authors would like to thank the referees, the associate editor, the editor and Professor M. McAleer for their careful comments which led to improvements of this paper. W. K. Li’s research is partially supported by the Hong Kong Research Grants Council. H. Wong’s research is supported by the Central Research Grant of the Hong Kong Polytechnic University.

Appendix

Proof of Lemma 1

As mentioned in §§ 3 and 4, we only prove the result with \(V_t\) defined by (4·1); thus, \(V_t\) is diagonal in Lemmas 1, A1, A2 and A3.

Lemma A1. Suppose that the process \(e_t\) is defined as in model (1·1) and that Assumptions 1 and 2 are satisfied. Then

\[
\frac{1}{\sqrt{n}} \sum_{t=1}^{[n]} \left(e_t \right) \to \left(W_{m}(\tau) \right)
\]
Proof. Let λ_1 and λ_2 be constant $m \times 1$ vectors and $\lambda = (\lambda_1', \lambda_2')'$, with $\lambda\lambda' = 0$. Let $\eta_i = \lambda_1' \tilde{e}_i + \lambda_2' \tilde{e}_i'$ and $S_n = \sum_{i=1}^{n} \eta_i$. It is obvious that λ_i is a martingale difference sequence with respect to T. By Assumptions 1 and 2, $\sigma^2 = n^{-1} ES^2 = \lambda_1' E(V_i^t) \lambda_1 + 2\lambda_1' \tilde{e}_2 + \lambda_2' \Omega_1 \lambda_2 < \infty$. When V_t is not a constant matrix, it is easy to show that Ω_n is positive definite, and hence $\sigma^2 > 0$. Furthermore,

$$E(\xi^2 | \mathcal{F}_{-1}) = \lambda_1' V_t \lambda_1 + 2\lambda_1' \tilde{e}_2 + \lambda_2' \sum_{i=1}^{q} V_{it}^* \lambda_2,$$

where $V_{it}^* = \text{diag}(2\sigma_1^2 \tilde{e}_1^2 / h_{1i}^2 + 1/h_{1i}^2, \ldots, 2\sigma_m^2 \tilde{e}_m^2 / h_{mi}^2 + 1/h_{mi}^2)$. Note that $\{E(\xi^2_j | \mathcal{F}_{-1})\}$ is a strictly stationary and ergodic time series. By the ergodic theorem and Assumption 2, we have that $(ES^2)^{-1} \sum_{i=1}^{n} \xi_i | \mathcal{F}_{-1}) = 1 + o_P(1)$. Since $\{\xi_i\}$ is also a strictly stationary and ergodic time series with finite variance for any small $\varepsilon > 0$,

$$\frac{1}{n} \sum_{i=1}^{n} E(\xi^2_i I(\xi_i > \varepsilon)) = \frac{1}{n} \sum_{i=1}^{n} E(\xi^2_i I(\xi_i > \varepsilon)) = \int_{x > \varepsilon} x^2 dP(x) = o(1), \quad (A1)$$

where $P(x)$ is the distribution function of ξ_i. By the usual invariance principle for martingales, $n^{-1/2} \sum_{i=1}^{n} \xi_i \rightarrow \sigma^2 B(t)$ in distribution in D, where $B(t)$ is a univariate standard Brownian motion.

When V_t is a constant matrix, $\sigma^2 = 0$. In a similar manner to the proof of Theorem 3.2 in Ling & Li (1998), we can still show that $n^{-1/2} \sum_{i=1}^{n} \xi_i \rightarrow \sigma^2 B(t)$ in distribution in D. By Proposition 4.1 of Wooldridge & White (1988), we complete the proof.

Note that, for Theorem 1, we need the limiting distribution of $n^{-1/2} \sum_{i=1}^{n} \xi_i$ in Lemma A1 which holds without the diagonal assumption on V_t.

Lemma A2. Under the same assumptions as in Theorem 1,

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} u_{1k} \rightarrow \Psi_{11} \Omega_{1/2} B_\theta(t)$$

in distribution in D, where u_{1k} is defined as in (2.5), $B_\theta = ([I_d, 0] \Omega_{1/2} [I_d, 0])^{-1/2} [I_d, 0] \Omega_{1/2} B_m$. $B_m = \Omega^{-1/2}_u Q W_m$ and $\Psi_{11} = [I_d, 0] \left(\sum_{k=1}^{\infty} \Psi_{1k} \right) [I_d, 0]^t$.

The proof of Lemma A2 can be found in a University of Hong Kong technical report by the authors. In order to prove Lemma 1, the following lemma plays an important role.

Lemma A3. Let $s_{kt} = 2 \sum_{k=1}^{q} \sigma_{kt}^2 \tilde{e}_k^2 / h_{kt}^2 + h_{kt}^{-1}$. Then, under the assumptions as in Theorem 1, $n^{-1/2} \sum_{t=1}^{n} (s_{kt} - E(s_{kt})) \rightarrow \sigma_k w_k(t)$ in distribution, where $k = 1, \ldots, m$, σ_k is a nonnegative constant, and w_k is a standard Brownian motion.

Proof. Let

$$G_{t-m} = \sigma \{ z_{1t}, \ldots, z_{mt}, e_{i_t}^* s = t - m, \ldots, t \}, \quad e_{i_t} = \eta_{t-m} + \sum_{j=1}^{m} \left(\prod_{i=0}^{j-1} B_{i-t-m-i} \right) \eta_{t-m-j}$$

and $R_{t,m} = i_t - e_{i_t}^* - m$. We first show that

$$E(||R_{t,m}||^4) = O(p^m). \quad (A2)$$

Let $r_{i,j} = \eta_{i-j} \left[\prod_{i=0}^{j} B_{i-t-i} \right] \prod_{i=0}^{j} B_{i-t-i} \eta_{i-j}$. Then, by (2.6) and a direct calculation,
Multivariate autoregressive models

\[E(r^2_{t,i}) = E \left[\text{vec}(\pi_{1-t-j} \eta_{1-t-j}) \text{vec} \left(\left(\prod_{i=0}^{j} B_{i-1} \right) \left(\prod_{i=0}^{1-t-j} B_{i-1} \right) \right) \right]^2 \]

\[= c_1 E \left[\left(\prod_{i=0}^{j} B_{i-1} \otimes \prod_{i=0}^{1-t-j} B_{i-1} \otimes \prod_{i=0}^{1-t-j} B_{i-1} \right) \text{vec}(I_m) \text{vec}(I_m) \right] \]

\[= c_1^2 E(B^2 \otimes I) \]

where \(c_1 \) and \(c_2 \) are constant vectors and \(O(.) \) holds uniformly in \(t \). Furthermore, we can show that

\[E(\| R_{t,m} \|') \leq E(\| R_{t,m} R_{t,m} \|^2) \]

\[= \sum_{i=1}^{\infty} E(r^2_{t,i}) + \sum_{i=1}^{\infty} E(r_{t,i-1} r_{t,i-1} + r_{t,i-1} r_{t,i-1}) = O(p^m), \]

so that (A-2) holds.

Since \(s_{t,i} \) is a function of \(\pi_{1-t-j} \) and \(\eta_{1-t-j} \) \(i, j = 1, \ldots, q \), by a direct calculation, we can show that \(E(s_{t,i} - E(s_{t,i} | G_{t,m}))^2 = O(p^m) \). It is not difficult to verify that conditions C1--C4 of Theorem 3.2 in Ling & Li (1998) hold. Thus, \(\sum_{i=1}^{m} [s_{t,i} - E(s_{t,i})] \rightarrow \sigma_t w_t(t) \), where \(w_t(t) \) is a standard Brownian motion. This completes the proof.

\[\square \]

\[\text{Proof of Lemma 1}. \text{ Note that} \]

\[Z_{t+1-i} = \sum_{k=1}^{i} u_{1k} = Z_{t+1} = \sum_{k=t-i}^{i} u_{1k} = Z_{t+1} + r_{t+1}, \]

where \(r_{t+1} = -\sum_{k=1}^{t+1-i} u_{1k} \). It is not difficult to show that

\[n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{q} (Z_{t+1-i} r_{i+j} + r_{i+j} Z_{t+1-i}) = o_p(1). \]

Furthermore, since \(\sum_{i=1}^{n} v_{i} \) \(V_{i} \) \(V_{i}^{-1} \), we have that

\[n^{-2} \sum_{i=1}^{n} \left(\prod_{i=1}^{q} Z_{t+1-i} Z_{t+1-i} \otimes V_{i} + Z_{t+1-i} Z_{t+1-i} \otimes V_{i}^{-1} \right) \]

\[= n^{-2} \sum_{i=1}^{n} \left(\prod_{i=1}^{q} v_{i} + V_{i}^{-1} \right) + o_p(1). \]

By Theorem 3.1 in Ling & Li (1998), (2.5), Lemma A2 and Lemma A3, (A-5) is given by

\[n^{-2} \sum_{i=1}^{n} \left(\prod_{i=1}^{q} Z_{t+1-i} \otimes V_{i} \right) + n^{-2} \sum_{i=1}^{n} \left(\prod_{i=1}^{q} v_{i} + V_{i}^{-1} - \Omega_i \right) + o_p(1) \]

\[\rightarrow \Psi_{11} \Omega_{11}^{1/2} \left(\prod_{i=1}^{1} B_{d} \right) \frac{1}{d} d \Omega_{11}^{1/2} \Psi_{11}^{-1} \otimes \Omega_{11}, \]

in distribution. By (A-5)--(A-6) part (a) holds. Similarly, we can show that

\[\frac{1}{n} \sum_{i=1}^{n} Z_{t+1-i} \otimes I_m = o_p(1). \]

By Theorem 2.2 in Kurtz & Protter (1991), Lemma A1 and (A-7), part (b) holds. Part (c) holds by the ergodic theorem and part (d) can be proved by the standard martingale central limit theorem. This completes the proof.

\[\square \]

\[\text{References} \]

[Received October 1999. Revised May 2001]